Exhibit 1 Page 1 of 490

Investment Grade Energy Audit Report Broward County RFP No. R1243101P1 January 17, 2018

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Table of Contents

1.	Execu	tive Summary	1
2.	Energy	y Conservation Measure Opportunities	
	a.	Control System Upgrades	23
	b.	Mechanical Upgrades	59
	C.	Lighting Upgrades	77
	d.	Water Conservation Upgrades	
	e.	Building Envelope Improvements	
	f.	Solar Energy Systems	110
	g.	Other	153
3.	Histori	cal Energy Usage	155
4.	Data c	on Present Facilities	161
5.	Measu	urement & Verification Plan	235
6.	Apper	ndices	
	1.	Control & Mechanical Savings Calculations	
	2.	Lighting Savings Calculations	
	3.	Water Savings Calculations	
	4.	Building Envelope Savings Calculations	
	5.	Solar Savings Calculations	
	6.	Electric Baseline Data	
	7.	Water Baseline Data	

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

1. Executive Summary

Introduction

OpTerra Energy Services (OpTerra) is pleased to present this County-Wide Energy Efficiency and Energy Management Assessment Investment Grade Audit (IGA) Report. The Report investigates the County designated "Group B" listing of sites and was prepared to not only assess the County's facilities and equipment but to also identify opportunities to utilize resources more efficiently. Further, in the Report we analyzed the feasibility of generating clean renewable energy through solar photovoltaic (PV) power.

Broward County has an aggressive history of implementing energy efficiency improvements by investing in energy savings projects and programs. The County has made great progress in energy efficiency, but now seeks to achieve even higher goals. To that end, after a public qualification and selection process, the County Commission approved OpTerra to begin the process of assessing facilities. Under the first phase, OpTerra generated a Feasibility Study which was delivered to the County on July 13, 2017. The County then provided OpTerra with a list of facilities and content on which to focus for Phase 2, the Investment Grade Audit. The IGA is a more complex and comprehensive energy assessment of the "Group B" sites that includes recommendations for an energy performance contract program. In a meeting on August 10, 2017, the County Facilities Management staff directed OpTerra to identify and propose a project and implementation plan to achieve the following criteria:

- Provide a comprehensive program, including efficiency and renewable technologies for facilities listed in the "Group B" sites listing provided by the County on August 14, 2017. The primary focus of the program was to be on facility ECMs (Energy Conservation Measures) having a payback of less than 12 years with the following exceptions and qualifications:
 - a. Solar PV is focused only on Broward County branded buildings (for example, the homeless shelters are not included)
 - b. Include Heating, Ventilation and Air Conditioning (HVAC) equipment upgrades that are a part of the County's 5-year Capital Improvement Plan (CIP), as received on August 14, 2017.
 - c. Include replacements for HVAC equipment utilizing HCFC-22 (R-22) Refrigerant.
- 2. Showcase water consumption saving opportunities for cooling tower (CT) blowdown.
- 3. The following should be considered and/or included in the IGA with respect to the Parks.
 - a. Park management will choose the manufacturer on all lights that are to be installed at their sites.
 - b. Where applicable, evaluate on-site generation of hypochlorite pool chemicals.

A description of how this criterion was achieved within this Audit is described in the Report.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Scope of Report & Summary of ECMs

				Building Sq.
	Site	Address	City	Ft.
	CD REGIONAL	3700 NW 11TH PL	Lauderhill	50,516
	TOPEEKEEGEE YUGNEE	3300 N. PARK RD.	Hollywood	44,378
	EASTERLIN	1000 NW 38ST.	Oakland Park	36,194
	TREE TOPS	3900 S.W. 100TH AVE.	Davie	26,103
	LONG KEY	3501 SW 130TH AVENUE	Davie	23,591
<u>s</u>	WEST LAKE / Anne Kolb NC	751 SHERIDAN ST	Hollywood	20,776
Pai	BRIAN PICCOLO	9501 SHERIDAN ST	Cooper City	11,706
	FERN FOREST	4800 SW 4 ST	Margate	9,893
	PLANTATION HERITAGE	1100 S. FIG TREE LN.	Plantation	7,674
	SECRET WOODS	2701 W. STATE RD. 84	Dania Beach	7,257
	HOLLYWOOD NORTH BEACH	3601 N OCEAN DRIVE	Hollywood	4,000
	SAW PALMETTO	4950 NW 71ST PL	Coconut Creek	160
	LIBRARY, AF, African American	2650 NW 6th Street	Ft Lauderdale	61,150
	LIBRARY, SW, SW Regional	16835 Sheridan St	Pembroke Pines	79,747
	LIBRARY, WR, West Regional	100 North Pine Island Road	Plantation	72,000
	LIBRARY, NO, North West Regional	3151 University Drive	Coral Springs	72,000
	LIBRARY, WE, Weston	4205 Bonaventure Boulevard	Weston	51,000
	LIBRARY, LL, Lauderdale Lakes	3580 West Oakland Park Blvd	Lauderdale Lakes	20,237
s	LIBRARY, SL, Stirling Road	3151 Stirling Road	Hollywood	20,000
rari	LIBRARY, NL, North Lauderdale	6601 Boulevard of Champions	North Lauderdale	20,000
ib	LIBRARY, SN, Dan Pearl	10500 W Oakland Park Blvd	Sunrise	19,500
_	LIBRARY, MG, Margate	5810 Park Drive	Margate	15,800
	LIBRARY, HL, Hallandale	300 South Federal Highway	Hallandale	14,700
	LIBRARY, CP, Century Plaza	1890 Hillsboro Boulevard	Deerfield Beach	11,682
	LIBRARY, DA, Dania Beach	1 Park Avenue, East	Dania	9,970
	LIBRARY, CR, Carver Ranches	4733 SW 18th Street	West Park	16,700
	LIBRARY, NW, Pompano Branch	1580 NW 3rd Avenue	Pompano Beach	10,000
	Public Safety Complex	2602 West Broward Boulevard	Fort Lauderdale	300,720
se v	North Regional Courthouse	1600 W Hillsboro Blvd.	Deerfield Beach	200,000
a c	Government Center West	1 North University Dr.	Plantation	184,820
j≟ T	TRAF ENGN Administration North	2300 W Commercial Blvd	Fort Lauderdale	71,346
٥ğ	PARK Administration Complex	950 NW 38th St	Oakland Park	35,296
	INTEG WAST South Landfill	6541- 7101 SW 205th Avenue	Fort Lauderdale	17,847
	Central Homeless Asst. Ctr.	920 NW 7th Ave	Ft Laud	63,244
Lab	Booher Building	3275 NW 99th Way	Coral Springs	53,060
P	North Homeless Asst. Ctr.	1700 Blount road	Pomp Bch	44,254
ar	Family Success Center, N, Pompano	2011 NW 3rd Avenue	Pompano Beach	11,929
Ě	Sexual Assault Treatment Center	400 NE 4th Street	Fort Lauderdale	10,643
Ťe	EPD Environmental Monitoring Facility & Lab	3211 College Avenue	Davie	9,694
_	EAP Our House	408 NE 4th Street	Fort Lauderdale	1,127
P	MASS TRAN, North Maintenance	3201 Copans Road	Pompano Beach	195,189
a di	BSO Maintenance Facility	2001 NW 31st Avenue	Lauderdale Lakes	14,800
cing use	BCJC South Parking Garage	612 - 644 South Andrews Avenue	Fort Lauderdale	14,397
hou	HIGH & BRDG Mosquito Control, Pembroke	1200 South University Drive	Pembroke Park	9,865
are	South Maintenance Shop	8500 Griffin Road	Davie	6,024
Š	MASS TRAN Northeast Terminal	304 Hammondville Boulevard	Pompano Beach	2,000
TOTAL FO	R ALL "GROUP B" FACILITIES			1,982,989

The following Broward County Facilities are included in this Report.

Op Terra - "Group B" Facilities

As part of this Audit, our staff studied the County's energy use data, surveyed the County's facilities, inventoried equipment, developed ECMs, and modeled the facilities for performance improvements as a result of the ECMs. Whole building energy simulations were utilized for eight of the larger facilities, which accounted approximately 40 percent of the total square footage within the "Group B" list of buildings. An implementation plan is provided, which includes the pricing proposal and schedule for the turnkey design-build installation of each of the measures. The ECMs identified and recommended for implementation are:

- Interior and exterior LED lighting upgrades, including parks
- Mechanical system replacements and improvements
- Building Automation System (BAS) improvements
- Water conservation
- Building envelope sealing
- Solar PV renewable energy generating systems

The Investment Grade Audit Report sections following this Executive Summary will describe the specific scope of the recommended ECMs, where they will be applied, and the benefits expected to be achieved as a result.

Program Energy Savings, Financial, and Implementation

Energy Savings Impact

The County is a leader and an example for others to follow in sustainability, fiscal responsibility and environmental stewardship. Through this project initiative, the County will significantly reduce is usage of ozone depleting and high Global Warming Potential refrigerant (HCFC-22); which will further enhance its position as a leader in both environmental and fiscal responsibility, and realize the following achievements:

- Guaranteed savings of nearly \$35.5 million over the project term.
- This project will reduce the amount of electricity the County purchases annually by 16,658,109 kWh, a 42.4 percent reduction.
 - Energy Conservation Measures will reduce building consumption by 23.8 percent for Group B Buildings.
 - On-Site Generation, via Solar Photovoltaic Arrays, will reduce Broward County's purchasing by another 18.6 percent for Group B Buildings.
- Save 5,638,000 gallons per year of fresh, drinkable water.
- Eliminate 13,616 tons of carbon dioxide entering the atmosphere each year, which is equivalent of removing 2,645 passenger vehicles from the roadways.
- Hedge Broward County's exposure against future energy price increases by significantly reducing electricity purchased from FP&L.
- Encourage and continue to support community sustainability actions through Broward Sustainability Stewards, using this project as an example to showcase Broward County's passion to continually drive sustainability, environmental awareness, and STEM activities throughout the community.

Project Financial Impact

		Cummulative	Electric	Gas	Water/	Total	Oper. &	
	Project	Demand	Consumption	Energy	Sewer	Utility	Maint.	Total
Energy Conservation	Cost	Savings	Savings	Savings	Savings	Savings	Savings	Savings
Measure Category	(\$)	(kW)	(kWh)	(Therms)	(kgal)	(\$)	(\$)	(\$)
Controls	\$2,886,625	-198.2	2,422,731	0	0	\$116,160	\$0	\$116,160
Mechanical	\$4,631,085	1,262.6	438,919	0	41	\$39,820	\$12,264	\$52,084
Lighting	\$7,699,323	10,834.3	6,312,473	0	0	\$521,225	\$159,500	\$680,725
Water	\$561,570	0.0	71,525	0	7,793	\$67,758	\$3,535	\$71,293
Building Envelope	\$109,689	0.0	121,247	0	0	\$10,797	\$0	\$10,797
Solar	\$14,991,001	1,475.5	7,291,214	0	0	\$408,950	\$0	\$408,950
Other	\$3,514	0.0	0	0	0	\$0	\$350	\$350
COUNTY TOTALS	\$30,882,807	13,374.2	16,658,109	0	7,834	\$1,164,710	\$175,649	\$1,340,359

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Program Implementation & Schedule

Under this program, OpTerra maintains total responsibility to the County. We are responsible for the final design and engineering, equipment procurement, subcontracts, scheduling and coordination. Further, we include a rigorous system commissioning protocol, maintain all documentation, and fully train County staff in preparation for the overall performance guarantee. All aspects of the work are closely coordinated with County in a collaborative manner to assure complete satisfaction.

We foresee this project being completed within eighteen months from notice-to-proceed. We estimate spending four months on final engineering, followed by twelve months of construction and two months to complete project closeout. The final project schedule will be developed in coordination with the County following project award.

In addition, OpTerra proposes to implement a training program to support Broward County Facilities Staff on the new ECM's being installed which will support an increased equipment lifecycle, enhanced energy efficiency, environmental sustainability and workforce development.

The projected cash flow analysis for this project.

			Financial	Aspects of Perfo	ormance Based E	Energy Program	for		
				Bro	ward County				
				Fort I	auderdale, FL				
Implemer	ntation Cost				\$30,527,663				
Developn	nent Fee				\$355,144				
Total Pro	ject Fee				\$30,882,807				
Rebates,	Incentives & Grants				\$9,975				
Net Proje	ect Amount				\$30,872,832				
1	2	3	4	5	6	7	8	9	10
			Energy	Operational and		Measurement &	Operation &		
	Solar PV	Solar PV Utility	Consumption	Maintenance	Total Guaranteed	Verification	Maintenance	Total Program	1
Year	Generated kWh	Offset Savings	Savings	Savings	Project Savings	Services	Services	Costs	Net Savings
1	7,291,214	\$408,950	\$755,760	\$175,650	\$1,340,359	\$42,903	\$105,167	\$148,070	\$1,192,289
2	7,254,758	\$419,112	\$778,432	\$180,920	\$1,378,464	\$44,190	\$108,322	\$152,512	\$1,225,952
3	7,218,484	\$429,527	\$801,785	\$186,347	\$1,417,659	\$45,516	\$111,572	\$157,088	\$1,260,571
4	7,182,392	\$440,201	\$825,839	\$191,937	\$1,457,977	\$46,881	\$114,919	\$161,800	\$1,296,177
5	7,146,480	\$451,140	\$850,614	\$197,696	\$1,499,450	\$48,287	\$118,366	\$166,653	\$1,332,797
6	7,110,747	\$462,351	\$876,132	\$203,626	\$1,542,109	\$49,736	\$121,917	\$171,653	\$1,370,456
7	7,075,194	\$473,840	\$902,416	\$209,735	\$1,585,991	\$51,228	\$125,575	\$176,803	\$1,409,188
8	7,039,818	\$485,615	\$929,488	\$216,027	\$1,631,130	\$52,765	\$129,342	\$182,107	\$1,449,023
9	7,004,618	\$497,683	\$957,373	\$222,508	\$1,677,564	\$54,348	\$133,222	\$187,570	\$1,489,994
10	6,969,595	\$510,050	\$986,094	\$229,183	\$1,725,327	\$55,978	\$137,219	\$193,197	\$1,532,130
11	6,934,747	\$522,725	\$1,015,677	\$236,059	\$1,774,461	\$57,657	\$141,335	\$198,992	\$1,575,469
12	6,900,074	\$535,715	\$1,046,147	\$243,141	\$1,825,003	\$59,387	\$145,576	\$204,963	\$1,620,040
13	6,865,573	\$549,027	\$1,077,531	\$250,435	\$1,876,993	\$61,169	\$149,943	\$211,112	\$1,665,881
14	6,831,245	\$562,671	\$1,109,857	\$257,948	\$1,930,476	\$63,004	\$154,441	\$217,445	\$1,713,031
15	6,797,089	\$576,653	\$1,143,153	\$265,686	\$1,985,492	\$64,894	\$159,074	\$223,968	\$1,761,524
16	6,763,104	\$590,983	\$1,177,448	\$273,657	\$2,042,088	\$66,841	\$163,847	\$230,688	\$1,811,400
17	6,729,288	\$605,669	\$1,212,771	\$281,867	\$2,100,307	\$68,846	\$168,762	\$237,608	\$1,862,699
18	6.695.642	\$620,720	\$1,249,154	\$290.323	\$2,160,197	\$70.911	\$173.825	\$244,736	\$1,915,461
19	6,662,164	\$636,144	\$1,286,629	\$299,032	\$2,221,805	\$73,038	\$179,040	\$252,078	\$1,969,727
20	6,628,853	\$651,953	\$1,325,228	\$308,003	\$2,285,184	\$75,229	\$184,411	\$259,640	\$2,025,544
Totale	120 101 079	\$10,420,720	¢20.207.529	\$4 710 790	\$2E 4E9 026	£1 152 000	\$2 02E 07E	\$2,070,602	¢21 470 252

Notes By Column:

Years after implementing retrofit changes. (1)

(2) (3) Annual kWh generated by the solar PV systems installed. Annual solar PV generation is derated at 0.5% per year

Annual utility cost offset by solar PV generation. Solar production is derated annually; however, Utility Offset is escalation by 3%, after derating, to account for inflation

(4) (5) Annual energy savings generated by installed Energy Conservation Measures (ECMs). Energy Consumption Savings are escalated by 3% to account for inflation.

Operational and Maintenance Savings are stipulated and escalated by 3% to account for inflation.

(6) (7) Total Guaranteed Project Savings are the sum of Columns (3), (4), and (5).

Measurement and Verification Services are escalated by 3% to account for inflation

Annual Operation and Maintenance Services are billed annually to Broward County for Solar PV Preventative Maintenance, and are escalated at 3% to account for inflation. (8)

(9) Annual Program Costs are the sum of Columns (7), (8), and (9)

(10) Net Savings equals Total Guaranteed Project Savings less Total Program Costs, Columns (6) - (9).

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Overall Environmental Benefit

The OpTerra proposed project will provide the following environmental benefits:

Notes:

1. The calculator utilized is the Greenhouse Gas Equivalencies Calculator published and maintained by the United States Environmental Protection Agency and could be found at the following website address: <u>https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator</u>.

Overall Project Economic Impact

The local economy and community are expected to benefit as shown below:

Notes:

- 1. The calculator uses multipliers from RIMS II, from the Bureau from Economic Analysis. RIMS II Multipliers used are from the U.S. Department of Commerce, Bureau of Economic Analysis; "RIMS II input-output multipliers show how local demand shocks affect total gross output, value added, earnings, and employment in the region." https://www.bea.gov/regional/rims/rimsii/
- 2. "Jobs" refers to average annual Full Time Equivalents (FTEs) i.e. if 2 part-time jobs are created, the model calculates it as 1 job. These job numbers underestimate the impact of job creation as the majority of jobs created since 2008 have been part-time and temporary jobs. So, it is reasonable to estimate that 2 3X the number of individuals will be impacted by the job creation shown. Martha Amram, MIT PhD economist

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Conclusion

OpTerra believes this Investment Grade Audit Report presents an actionable solution that meet the County's long-term goals and ambitions. From energy conservation and renewable energy generation, this program will benefit the County in many ways. For example, over 13,600 tons of CO2 will be eliminated from the atmosphere and local economic growth will be stimulated over the twenty-year project term; Further, the program will support the County's goal of replacing a significant amount of HVAC equipment included in the current 5-year CIP and also improve upon existing community-wide STEM education engagement through such avenues as *Broward Sustainability Stewards*, Broward County Schools, and "internal" Broward County employee education.

We would like to extend our most sincere thanks and appreciation to all County and Utility staff who provided friendly, helpful, and professional assistance during our audit. The success of this program depends on a respectful environment of shared thoughts, experiences, and knowledge, and we believe that success is achieved through openness and willingness to share information. We value our long-standing relationship with Broward County, and look forward to strengthening our partnership as we continue to support the County's sustainability goals, energy awareness, and fiscally responsibility.

Thank you for your time and consideration, as well as the opportunity to further serve you - our valued customer. It has been a pleasure.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Project General Notes/Exclusions:

- The implementation costs shown are based on current material costs, labor costs, and current codes enforced at the time of submission (January 2018). This price will be valid for six months (except Solar as detailed in the Solar ECM Description). Thereafter, OpTerra has the right to increase the implementation cost if market conditions change.
- Broward County has not provided OpTerra with current asbestos reports for any of the included buildings. OpTerra has not included abatement services, of any type, in this project. If Asbestos Containing Materials (ACMs) are found during engineering design or implementation, OpTerra will notify Broward County immediately. If construction is in progress, OpTerra will stop work on effected areas immediately. OpTerra will aid the County in determining a feasible solution; however, the cost to abate ACMs will be the County's responsibility.
- The project includes a minimum of 10% CBE participation.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

2. Energy Conservation Measure Opportunities

This section of the report provides a brief description of the Energy Conservation Measures (ECMs) identified during the Investment Grade Audit. This section is broken into the following ECM groupings for easier review by the County:

- Controls
- Mechanical/Electrical
- Lighting
- Water
- Building Envelope
- Solar
- Other

As part of the Preliminary Energy Performance Report that was submitted by OpTerra, various energy conservation measures (ECMs) were evaluated for the Broward County Energy Savings Performance Contracting project. These ECMs were further evaluated in the Investment Grade Audit (IGA). Additionally, Broward County requested that OpTerra analyze new ECMs inspired by deferred maintenance or planned Capital Improvement Project. Scopes of work were developed for each ECM which were utilized to establish accurate construction cost estimates and to determine the projected energy savings generated by the ECM.

BASELINE MODELING

Opterra used a combination of methods to establish the baseline energy usage for this project, depending on the available data and Measurement and Verification (M&V) options selected for the various sites. We have compared our modeling results to the actual utility data, weather data, and occupancy statistics, then made fine adjustments to the modeling input as necessary to calibrate our models to actual building consumption.

As the facility conditions change throughout the program life, and they almost always do, the baseline will be adjusted accordingly. Factors necessitating a baseline adjustment include occupancy time changes, facility use changes, HVAC operation and set point changes, and equipment modifications to name a few. Factors such as occupancy data, operation schedules, and facility use changes will be re-entered into the modeling program to determine the baseline adjustment. All data and modeling results will be reviewed with the County staff.

The baseline energy use profile is defined as the monthly and annual usage of each energy source used at the building that is indicative of usage with current equipment, occupancy and operational methodology.

In determining a baseline, OpTerra has:

1. Analyzed energy usage records for the most recent three years; where available, OpTerra took into account any changes in facility equipment and operations that would alter the usage during that three-year period.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

- 2. Developed a thorough understanding of the programmatic activities conducted in each building, as well as an understanding of the electrical and mechanical equipment operating patterns.
- 3. Develop an energy and water-usage computer simulation model for the facility that is calibrated using actual data.

Computerized Modeling Program

This data collected from Items 1 and 2 was then used to rebuild the facility as a computer energy model. Definitions of building shape, size, construction, occupancy, lighting, temperatures, schedules, controls, plug load, weather locale and other details are used to create the model. The computer then simulates the energy use of the facility

for a year taking into account the changing effects of weather, schedule variances, etc. To verify the accuracy of the model, the simulated energy usage is compared and calibrated to the history of monthly energy bills for the facility over a three-year period. The calibrated model then becomes the "baseline".

Example Baseline Calibration Output

North Regional Courthouse: Actual (Solid Blue Line) vs Modeled (Columns)

All viable ECMs are then put in to the model and simulated over a full year of to determine their energy savings. "Packages" of ECMs are evaluated in the model to observe the interactive effects of the measures. For example, the effects on savings generated by implementing lighting, HVAC and controls measures as a package.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Government Center West Model

Public Safety Building Model

Spreadsheet Calculations

An alternate method utilized for calculating energy and water savings was modeling of the individual ECMs with spreadsheets utilizing bin weather data, annual load variation, equipment energy use, and schedule parameters. The savings were calculated as the difference between existing equipment definition (efficiencies, full load energy use and capacities, part-load profiles, and operating schedule) and proposed equipment modification or replacement.

The type of calculation described above is very accurate for well-defined ECMs. For instance, water consumption savings for domestic water retrofits were determined by individually subtracting the rated water flow of the retrofit from the existing fixture water flow. Field measurements as well as manufacturer and industry ratings were used.

Determination of Calculation Methodology

Based upon the ECMs identified and the level of complexity and interaction of the ECMs, the mathematical models may consist of spreadsheet calculations, while others will require a building simulation software to be utilized. The buildings in which OpTerra utilized baseline modeling whole building energy simulation software packages are:

- Public Safety Building
- African American Library
- North Regional Courthouse
- Government Center West
- Hallandale Library
- Stirling Road Library
- Dan Pearl Library
- Sexual Assault Treatment Center

Table 2-1 on the following page presents a summary of included ECMs, by building. Table 2-2 details ECMs that were evaluated; however, they did not meet the payback criteria set by Broward County. Following Table 2-2 are the financial details and descriptions for each ECM, which includes an explanation of the existing system operations and how these systems can be modified or replaced to provide more efficient and reliable operation.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

<u>TABLE 2-1</u>

INCLUDED ENERGY CONSERVATION MEASURES

						PAR	ĸs										LIBRA	RIES								OFFIC	E & C	OURTI	HOUSE				HE	ALTH	AND LA	в	1	PARK	ING, W RE	AREH	OUSE,	., &
Measures	CD Regional	Topeekeegee Yugnee	Easterlin	Tree Tops	Long Key	West Lake/Anne Kolb NC	Brian Piccolo	Fern Forest	Plantation Heritage Secret Woods	Hollywood North Beach	Saw Palmetto	African American SW Perrional	West Regional	Northwest Regional	Weston	Lauder dale Lakes	Stirling Road North Landerdele	Dan Pearl	Margate	Hallandale	Century Plaza	Dania Beach Carver Ranches	Pompano Beach	Public Safety Complex - Public Safety Building	Public Safety Complex - Logistics Warehouse	Public Safety Complex - Lactical Lfaining Building Public Safety Complex - Central Supply Building	Public Safety Complex - BSO District 5 Office	North Regional Courthouse	Government Center West	Park Administration Complex	INTEG WAST South Landfill	Central Homeless Assistance Center	Booher Building	North Homeless Assistance Center	Family Success Center Sexual Assault Treatment Center	EPD Environmental Monitoring Facility	EAP Our House	MASS TRAN, North Maintenance	BSO Maintenance raciity BCJC South Parking Garage	HIGH & BRDG Mosquito Control	South Maintenance Shop	MASS Tran Northeast Terminal
CONTROLS	-	1	1	1		- T		- T		T T		- 1	-	гт	- T	- T-	x		1	1 1	- T	- 1	1	v	v	~ ~	V	1 1	- T		<u></u>	 	— ———————————————————————————————————					<u> </u>	—	-	ΓT	
C1 Install New BAS	+							-			_	Y			-		^	×	-				-	X	~		X			-	—	+	+	+	+	⊢ +		-		+	\vdash	_
C2 Energy Elliciency opgrades to Existing BAS	+							_	-		-	Y	×	Y	¥		-	-	¥						-	-	-		v	+	+	+		-		\vdash	-	+		+		
C3 System Check-Out of Existing BAS	+						-	_			_	^	^	Â	^	_	_	-			-						-		^	+	+-	+	-	-			-	+			+	_
C4 Install Networkable Programmable Thermostats	+						-	_			_	_			-	_	_	-	-		-				-		-			+	+-	+	-	+			-	+			+	_
Cs Variable Volume Control of Single Zone AHLIs	+							-			-					-	-												-		-	+		-						+	\vdash	_
C7 Variable Flow CHW Pumping	+	1	-				-			+	+				-				-					+			1			+	+	++	-+	-		\vdash	+	+	+	+		_
C7 Variable Flow Criter Fullping	+							-			-	-			-	-	-				-				-	-	1		-	+		+ +		-	_			-		+		_
Co Variable Volume Exhaust Fans	+							-			-	-			-	-	-				-				-	-	1		-	+		+ +		-	_			-		+		
C9 Valiable Volume Exhaust Paris	+							-	-		-				-	_	-		-				-		-	-			-	+	+	++	-	-		\vdash	-	+		-	<u> </u>	
C10 Reconligure Cooling Tower Control	+					v	-	_	-		-	v	- v	v	v	v	_		- v	-	-		v			-	-	~	v	+	+	++	\rightarrow	+	_	⊢_+		-		+	+	_
C11 Optimize RVAC Schedules and Set Points	+			-	-	^		_	-		-	^	-		^	^	-	-	-		-	^			-	-	-	-	^	+	+	+				\vdash	+	+		+ - 1	++	
C12 Reprogram Control of Outside Air Damper	+	<u>ا</u>	-	-			-		_		_		-				_		-		-				_	_	-				_		_			╘┓╌┝		<u> </u>			<u> </u>	
Ma Install New Chiller		T	1	1		T	- T	Т	<u> </u>	TT		- 1	1	X	- T	- T	- T	-	X	1 1	1		1		- T	<u> </u>	1		- T	—		t T	T		<u> </u>		_	—	<u> </u>	1	ΓT	
Mi Instali New Chiller (VCD Ontion)	 						-	_			-	_			-	_	-		- ^		-		-				-	<u>^</u>	-	—		+			_	\vdash	-	-+		+ +	t - t	_
MI(A) Install New Criller (VSD Option)	+							_	_	-	-				-		_	-	-						-	-	-		_	+		+		-		\vdash	-	+		+	+	
M2 Cooling Tower Replacement	 						-	_			-	_			-	_	-		-		-		-				-		-	—		+			_	\vdash	-	+		+ +	t - t	_
Ma Replace P 22 Split System (Even Coil & Condensing Unit Only)	+	×			x	x	-	x			-	_		x	x	-		(x	-	×				- v	-			+		+	-	-	- v		~	<u>_</u>			V	
M4 Replace R-22 Split System (Evap Coll & Condensing Unit Only)	+	^			X	~		Y	_		-			-	^		ť	`		^		X		v	-	-	-		_	+		+	~		~	\vdash	<u></u>	<u></u>		+^-		
MS Replace R-22 Roonop Unit (RTU)	+		-		~			~					-				-		-		-	^		^	-	-	-					++	-		^	\vdash				+	+ +	
M6 Straighten Condensing Unit Fins	+						-	_	-		-	_	-	v	-	_	_				-		-		-	-	-		-	+		++	\rightarrow	+	\rightarrow	\vdash	-	-		+	++	_
M7 CHW Coll Cleaning	+	-	-	-		_	_	_	_	-		_	-	<u>^</u>		_	_	_	-			-	-		_	_	-	v		—		+	-+	-+	\rightarrow	\vdash	+	+		+	⊢	
M8 Install New AHU	┯			-					_	_	_		_				_	_	_				-		_	_	-	×		—		++	—	+	—	\vdash		-		+	++	
M9 Replace Existing DHW Heater with Instantaneous Electric Heater	<u>+</u>			-				_	_	-			_				_	_	-	-			_		_	-	-			—		++				\vdash		\rightarrow	_	+	┢━┿	
M10 Install New Outside Air Damper	+		-	-			_	_	_		_	_	_		_	_	_	_	_				_		_	_	-		_	—		++	\rightarrow	+	_	┢──┾	_	+		+	⊢	
M11 Install VFD on Supply Fan	+			-					_	-		_	_			_			_				_			_	_		_	—		+	\rightarrow	\rightarrow	_	⊢	_	<u> </u>	—	+	⊢	
M12 Repair Smoke Damper Leakage	+					X		_							_		_	_					_	X	_	_	-			_		+				\vdash	_	+	_	+	⊢	
M13 Eliminate Uncontrolled Supply Air Diffusers in Mechanical Rooms	<u>+</u>							_							_		_	_						X	_	_	-			_		+				\vdash	-	+	_	+	⊢	
M14 Chilled Water Pipe Insulation	<u>+</u>							_	_				_		_		_	_							_	_	-			—		++				\vdash	-	+	_	+	⊢+	
M15 Replace Leibert Roottop Condensing Units	+	+		+					_	+				$\left \right $				_	+	+			-	+		_	+			+		++	+	+	+	\vdash	+	+	+	+	⊢	-
M16 Replace Air Compressor	+						_	_	_				_		_		_	_					_		_	_	-			+		++				\vdash	_	+	_	+	⊢+	
M17 Install Fiberglass Insulation above Ceiling Tile	+	+		$\left \right $					_	+			_	$\left \right $					+	+			-	+		_	+	$\left - \right $		+		++	+	+	+	\vdash	+	+	+	+	⊢	-
M18 Replace VAV Boxes & Controllers	+			-					_	-			_		_		_	_					_		_	-	-			—		++		_	_	\vdash	_	+		+	⊢+	
M19 CHW Pump Replacement	-										_						_						_													╘═┻┷	_				┶━┷┶	_
LIGHTING			V	V	V	V	V	V	VVV	<u> </u>		~ \			~	V	~ \				V	~ ~	V	V	V	~ ~	V		V		-	- <u>-</u>	~ -	<u> </u>			~	<u></u>	<u> </u>	-	Γ <u>ν</u> Γ	
Interior Lighting Opgrade Exterior and Site Lighting Upgrade	÷	Ŷ	X	x	X	X	Ŷ	x	$\frac{1}{x}$		-	$\frac{1}{x}$	} 	X	Ŷ	X	$\frac{2}{x}$		÷	X	Ŷ	x x	X	X	Ŷ	$\frac{1}{x}$	X	x	X	÷÷	÷ ÷	+ x +	Ŷ	÷	$\frac{1}{x}$	Î	÷	÷	$\frac{1}{x}$	+ Ŷ	Ŷ	X
L3 Sports Field Lighting Upgrade	<u> </u>		~		~	~	~	~ .				~ /			~	~ .	<u> </u>			Ê	~	<u> </u>		~	~		-		~ .	<u>+ ^</u>		- ^		<u> </u>	<u>A</u> A			<u> </u>	<u> </u>	Ĥ		
WATER														• •						• •				1				• •														
W1 Plumbing Fixture Upgrades			Х	Х	Х					Х								(Х	Х	Х	Х	Х	Х				Х	Х	ΧХ		1	Х			Х	Х			Х		
w2 Install Refrigeration Line Heat Exchanger on Ice Machines	х				Х																																					
w3 Central Control Weather Based Irrigation	Х																							Х				Х								х						
W4 Cooling Tower Low Blowdown																								х																		
BUILDING ENVELOPE																																										
B1 Seal Building Envelope	Х	Х	Х	Х	Х		Х	X	х х	Х		Х																	Х		Х						Х		ΧХ		Х	
SOLAR																																										
S1 Install Solar PV Rooftop System			1				_Ţ	_			_Ţ		Х	х	х											x		х	X	\leq	+-	\vdash	$-\mathbf{T}$		х	\vdash		х	Х	$+ \neg$	ĻТ	
S2 Install Solar PV Parking Canopies	–	L	L	-											_												-					\vdash	$ \rightarrow $			╘━━┣╴	_				\square	_
OTHER	4	_	_	_				_	_						_	_	_	_	_				_	-	_	_	_	,	_			—							4	_	<u> </u>	
01 Surge Protection	<u>+</u> _'	1	-			Х				+								_									1			+	+	\vdash	\rightarrow	\rightarrow	\rightarrow	\vdash	\rightarrow	\rightarrow	+	+	\mapsto	
02 Submeter RV Camping Spaces	4'	1	1	1															1	1				1			1	1												1	1	

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

<u> TABLE 2-2</u>

EVALUATED, NOT INCLUDED, ENERGY CONSERVATION MEASURES

			PARKS								LIE	BRAR	RIES							OFI	FICE &	COUR	THOUSE	=			HE/	ALTH	AND L/	AB		PAR	(ING, V Rí	VAREH EPAIR	IOUSE	ē, &					
Measures	CD Regional	ropeekeegee Yugnee	aster lin	ree Tops	-ong key Nest Lake/Anne Kolb NC	3rian Piccolo	ern Forest	Plantation Heritage	Secret Woods	Hollywood North Beach Saw Palmetto	African American	SW Regional	Nest Regional	Vorthwest Regional Meston	-auderdale Lakes	Stirling Road	Vorth Lauderdale	Dan Pearl	Margate Jallandale	Century Plaza	Jania Beach	Carver Ranches ompano Beach	Public Safety Complex - Public Safety Building	Public Safety Complex - Logistics Warehouse	Public Safety Complex - Tactical Training Building	Public Safety Complex - Central Supply Building	-unito adrety compress - boo district 3 Onice North Regional Courthouse	Sovernment Center West	FRAF ENG Administration North	an Administration Compress NTEG WAST South Landfill	Central Homeless Assistance Center	Sooher Building	Vorth Homeless Assistance Center comity Sucress Center	amily success vertices Sexual Assault Treatment Center	EPD Environmental Monitoring Facility	EAP Our House	MASS TRAN, North Maintenance	3SO Maintenance Facility 3CJC South Parking Garage	HGH & BRDG Mosquito Control	South Maintenance Shop	MASS Tran Northeast Terminal
CONTROLS			<u> </u>				1 4	1 -		<u> </u>			> .	~ >			1 4				10						- 1 -						<u> </u>		1 1 1		<	<u> </u>			-
C1 Install New BAS							T																																		
C2 Energy Efficiency Upgrades to Existing BAS												N	Ν								N	N					N												-	1	
C3 System Check-Out of Existing BAS												N			N		Ν						N																-	1	
C4 Install Networkable Programmable Thermostats		N		1	N N	I N	N												N	I N		N								4		N	1	N N		N	N	N	N	N	
c5 Window Air Conditioner Controller																																							-	1	
C6 Variable Volume Control of Single Zone AHUs											N								N	1														_				_	-		
cz Variable Flow CHW Pumping																							N				N	N						_				_	-		
C8 Decouple Exhaust Fan and Lighting Control																			N	1			1								-		_	_				_	-	-	
Co. Variable Volume Exhaust Fans	-																																_	N							
C10 Reconfigure Cooling Tower Control																															+			-	+++			_	-	+ +	
Cite Optimize HVAC Schedules and Set Points	+		N	-			-			-	-	N		-	-	N	N				N								-		+	_		+-	++	-	-	N		+	
CTT Optimize HVAC Schedules and Set Follits	+		IN .	-			-	-			-			-	-					-			-			-	-		-	-	+				++		-		-	++	<u> </u>
C12 Reprogram Control of Odtside Air Damper	-	L - I		_	_	-	-	-						_	-	-				-	-					_	-	1 1	_	_	+		_	_	4		_		_	┷┷┽	
Martal New Chiller	N	<u> </u>	- 1	- T		1	1	1		- 1			N	-	1	1	1			-	1	N	NI		гт		1	1 1	-			<u> </u>	<u> </u>	<u> </u>	T	-		<u> </u>	-	TT	
M1 Install New Chiller	<u>+``</u> '			-			-	-			-		N	_		-					-		IN						_	-	+++			+	+	-	_		-	++	\vdash
M1(A) Install New Chiller (VSD Option)	+'			_		_	-	-			-		N		_	-	-			_	-		N				N		_	_	++	—	—	—	++		_	—		+	<u> </u>
M2 Cooling Lower Replacement	+'			_		_	-	-			N		IN		-	-	-			_	_								_	-	+-+	—		—	++		_	—	+	+	<u> </u>
M3 Chilled Water Pump Replacement	–					_	_	_			N					_	-			_	_		N				N			_	++	\rightarrow	—	—	++			—	_	+	
M4 Replace R-22 Split System (Evap Coil & Condensing Unit Only)	<u>+-</u> '			_		_	_				_					_		N		_	_			N	N	_	_		_					_	+			_	_	+	-
M5 Replace R-22 Rooftop Unit (RTU)	<u>+-</u> '			_		_	_				_					_				_	_				N	_	_		_				_	_	+			_	_	+	←
M6 Straighten Condensing Unit Fins																																		_	+			_		$ \rightarrow $	
M7 CHW Coil Cleaning											N	N																													
M8 Install New AHU																	Ν	Ν	N				Ν	Ν		Ν		Ν													1
M9 Replace Existing DHW Heater with Instantaneous Electric Heater																																	_								
M10 Install New Outside Air Damper											N																						_					_			
M11 Install VFD on Supply Fan				1	N																																			1	
M12 Repair Smoke Damper Leakage																																								1	
M13 Eliminate Uncontrolled Supply Air Diffusers in Mechanical Rooms																																						_	-		
M14 Chilled Water Pine Insulation	<u> </u>																														-			-	1				-		
M15 Replace Leibert Roofton Condensing Linits	<u> </u>																						N								-		_	-	+				-	1	
M16 Penlace Air Compressor	<u>+</u> -'			-			1			- 1	1		-		-	1	1			+	1		1								++	N	+	+	+	+	-	+	+	+	
Mile Replace All Complexion			- 1				-			-				_							-		-			-			-		+-+	-14		+	++	-	-		-		
M17 Inistali Fibergiass insulation above Cening The			- 1				-			-		N	-	_							-		-						-		+-+			+-	++	-	-				
Mite CIII// Dump Deplement	+'						+				+		-	N		1	1			+	+	+	1								++	+	+	+-	+			+	+-	++	
							-	-								_	-				-		1												┶━━┶						
LIGHTING	1		-	-		1	1			N			-	-	-	1	1			1	1	1 1				-	1	1 1	-	-	+	-	T		—		-		-	1	
L2 Exterior and Site Lighting Upgrade	<u> </u>									N																					+			+	+		-		-	+	
L3 Sports Field Lighting Upgrade	Ν					N																											_								
WATER																																									
W1 Plumbing Fixture Upgrades	Ν	Ν			N	I N		Ν	Ν		Ν	N	N	N N	I N	Ν		Ν			N									N	N	1	NN	N V		Ν	N	N		Ν	N
w2 Install Refrigeration Line Heat Exchanger on Ice Machines			N																										1	N	N	1	N								
w3 Central Control Weather Based Irrigation																						$\Box \Box$											N								
W4 Cooling Tower Sewer Deduct Meter																																									
w5 Cooling Tower Low Blowdown													N										N				N	N													
BUILDING ENVELOPE																	_																								
B1 Seal Building Envelope					N							N	N	N N	I N	N	Ν	N	NN	I N	N	N N	N				N		NI	N	N	N	NN	N N	N		Ν		N		N
SOLAR																<u></u>																									
s1 Install Solar PV Rooftop System																																									
S2 Install Solar PV Parking Canopies	↓ _'	шĪ										\Box													LГ						┶┷┖				┶┷┛					┶	\square
OTHER					_	_	-	_							_	-				_	_										4		_					_	_	—	
01 Surge Protection	<u> </u>										1												1																		
02 Submeter RV Camping Spaces							1				1						I						1	1																	L

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

<u>TABLE 2-3</u>

Comprehensive Summary of Energy Conservation Measures By Building Category

Energy Concervation Measures	Project Cost	Cummulative Demand Savings	Electric Consumption Savings	Electric Dollar Savings	Gas Energy Savings	Gas Dollar Savings	Water/ Sewer Savings	Water/ Sewer Savings	Total Utility Savings	Oper. & Maint. Savings	Total Savings
Energy conservation measures	(\$)	(KVV)	(KVVN)	(\$)	(Therms)	(\$)	(kgai)	(\$)	(\$)	(\$)	(\$)
All Sites											
Parks	\$1,942,910	0.0	825,254	\$94,025	0	\$0	433	\$3,720	\$97,745	\$20,308	\$118,053
Libraries	\$5,914,957	5,197.6	3,677,506	\$273,443	0	\$0	250	\$2,148	\$275,591	\$58,167	\$333,758
Offices & Courthouses	\$17,430,883	4,552.6	8,574,789	\$471,983	0	\$0	6,479	\$52,192	\$524,175	\$61,843	\$586,018
Health & Labs	\$1,534,059	978.6	594,216	\$45,660	0	\$0	582	\$4,999	\$50,659	\$17,105	\$67,764
Parking, Warehouse & Repair	\$4,059,998	2,645.4	2,986,344	\$215,767	0	\$0	90	\$773	\$216,540	\$18,226	\$234,766
County Totals	\$30,882,807	13,374.2	16,658,109	\$1,100,878	0	\$0	7,834	\$63,832	\$1,164,710	\$175,649	\$1,340,359

<u>TABLE 2-4</u>

Comprehensive Summary of Energy Conservation Measures By ECM Category

		Cummulative	Electric	Electric	Gas	Gas	Water/	Water/	Total	Oper. &	
	Project	Demand	Consumption	Dollar	Energy	Dollar	Sewer	Sewer	Utility	Maint.	Total
	Cost	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings
Energy Conservation Measures	(\$)	(kW)	(kWh)	(\$)	(Therms)	(\$)	(kgal)	(\$)	(\$)	(\$)	(\$)
Controls	\$2,886,625	-198.2	2,422,731	\$116,160	0	\$0	0	\$0	\$116,160	\$0	\$116,160
Mechanical	\$4,631,085	1,262.6	438,919	\$39,468	0	\$0	41	\$352	\$39,820	\$12,264	\$52,084
Lighting	\$7,699,323	10,834.3	6,312,473	\$521,225	0	\$0	0	\$0	\$521,225	\$159,500	\$680,725
Water	\$561,570	0.0	71,525	\$4,278	0	\$0	7,793	\$63,480	\$67,758	\$3,535	\$71,293
Building Envelope	\$109,689	0.0	121,247	\$10,797	0	\$0	0	\$0	\$10,797	\$0	\$10,797
Solar	\$14,991,001	1,475.5	7,291,214	\$408,950	0	\$0	0	\$0	\$408,950	\$0	\$408,950
Other	\$3,514	0.0	0	\$0	0	\$0	0	\$0	\$0	\$350	\$350
COUNTY TOTALS	\$30,882,807	13,374.2	16,658,109	\$1,100,878	0	\$0	7,834	\$63,832	\$1,164,710	\$175,649	\$1,340,359

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

<u>TABLE 2-5</u>

Comprehensive Summary of Energy Conservation Measures By Site

Comprehensive List of Energy Conservation Measures Broward County - Parks

			A				Floatela	6	0.00	Matani	Materi	Total	Oner R	
	Destant	Cumm. On-Peak	Cumm Off-Peak	Summer	Summer	vanter	Electric	Gas	Gas	vvater/	vvater/	Total	Oper. &	T . 1 . 1
	Project	Demand	Demand	On-Peak	Off-Peak	Off-Peak	Dollar	Energy	Dollar	Sewer	Sewer	Utility	Maint.	Iotal
5	Cost	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings
Energy Conservation Measures	(\$)	(kW)	(kW)	(kWh)	(kWh)	(kWh)	(\$)	(Therms)	(\$)	(kgal)	(\$)	(\$)	(\$)	(\$)
CD Regional														
1 Interior Lighting Lingrade	\$142.100	0.0		62 663			\$7.221				e0	\$7.221	8001	00000
1.2 Exterior and Site Lighting Upgrade	\$246 274	0.0	0.0	230 357	ő	0	\$26.525	ő	\$0 \$0	0	50	\$26.525	\$2514	\$20,030
W2 Install Refrigeration Line Heat Exchanger on Ice Machine	\$2 576	0.0	0.0	2 081	ő	0	\$240	ő	\$0	0	\$0	\$240	\$0	\$240
W3 Central Control Weather Based Irrigation	\$16.099	0.0	0.0	0	ő	0	\$0	ő	\$0	151	\$1,297	\$1,297	\$75	\$1,372
B1 Seal Building Envelope	\$8,530	0.0	0.0	8,341	0	0	\$960	0	\$0	0	\$0	\$960	\$0	\$960
CD Regional Totals	\$516,668	0.0	0.0	304,441	0	0	\$35,056	0	\$0	151	\$1,297	\$36,353	\$3,480	\$39,833
Topaskasgas Yugnas														
1.1. Interior Lighting Lingrade	\$147 140	0.0	0.0	73.057	ö	0	\$0 220		e0		¢0.	\$0 220	\$2.125	\$11.452
1.2 Exterior and Site Lighting Lloarede	\$31 770	0.0	0.0	6 594	ŏ	ő	\$751	ŏ	20	ŏ	\$0	\$751	\$200	\$1.050
M4 Replace R-22 Split System (Evap Coil & Condensing Lin	\$100 568	0.0	0.0	9 161	0	0	\$1.044	ň	\$0	ň	\$0	\$1.044	\$553	\$1,597
B1 Seal Building Envelope	\$4 836	0.0	0.0	6 664	0	0	\$760	ő	\$0	ő	\$0	\$760	\$0	\$760
Topeekeegee Yugnee Totals	\$284,323	0.0	0.0	95,466	Ő	Ő	\$10,883	0	\$0	0	\$0	\$10,883	\$3,977	\$14,860
Fasteria														
Ld Interior Lighting Lingrade	#1E 0.0E	0.0	0.0	1.074			\$150				20	0100	8402	0.000
1.2 Exterior and Site Lighting Upgrade	\$7 7.43	0.0	0.0	9 184	ő	0	\$1 305	0	\$0	0	\$0	\$1305	\$460	\$1.765
W1 Plumbing Fixture Lingrades	\$10,830	0.0	0.0	1 721	0	0	\$245	ň	\$0	89	\$765	\$1,000	\$122	\$1 132
B1 Seal Building Envelope	\$3 215	0.0	0.0	4 025	0	ő	\$572	ő	\$0	0	\$0	\$572	\$0	\$572
Easterlin Totals	\$36,853	0.0	0.0	16,001	0	0	\$2,274	0	\$0	89	\$765	\$3,039	\$685	\$3,724
Tree Tons														
1.1 Interior Lighting Ungrade	\$56.055	0.0	0.0	22 4 0 2	0	0	\$2 177	0	\$0	ō	\$0	\$2 177	\$838	\$3,015
L2 Exterior and Site Lighting Upgrade	\$76,198	0.0	0.0	28.384	ŏ	ŏ	\$2,759	0	\$0	Ő	\$0	\$2,759	\$622	\$3,381
W1 Plumbing Fixture Upgrades	\$10,890	0.0	0.0	297	ō	0	\$29	0	\$0	75	\$644	\$673	\$105	\$778
B1 Seal Building Envelope	\$8,409	0.0	0.0	9,023	0	0	\$877	0	\$0	0	\$0	\$877	\$0	\$877
Tree Tops Totals	\$151,552	0.0	0.0	60,106	0	0	\$5,842	0	\$0	75	\$644	\$6,486	\$1,565	\$8,051
Long Key														
L1 Interior Lighting Upgrade	\$54 296	0.0	0.0	28 836	0	0	\$3,701	0	\$0	ö	\$0	\$3 701	\$1.066	\$4 767
L2 Exterior and Site Lighting Upgrade	\$28.821	0.0	0.0	18 863	0	0	\$2.421	0	\$0	0	\$0	\$2.421	\$245	\$2,666
M4 Replace R-22 Split System (Evap Coil & Condensing Un	\$188,883	0.0	0.0	12,870	0	0	\$1,652	0	\$0	0	\$0	\$1,652	\$1,256	\$2,908
W1 Plumbing Fixture Upgrades	\$14,288	0.0	0.0	1,885	0	0	\$242	0	\$0	93	\$799	\$1,041	\$152	\$1,193
W2 Install Refrigeration Line Heat Exchanger on Ice Machine	\$1,287	0.0	0.0	1,664	0	0	\$214	0	\$0	0	\$0	\$214	\$0	\$214
B1 Seal Building Envelope	\$7,972	0.0	0.0	6,730	0	0	\$864	0	\$0	0	\$0	\$864	\$0	\$864
Long Key Totals	\$295,547	0.0	0.0	70,848	0	0	\$9,094	0	\$0	93	\$799	\$9,893	\$2,719	\$12,612
West Lake/Anne Kolb NC														
L1 Interior Lighting Upgrade	\$72,744	0.0	0.0	45,003	0	0	\$3,938	0	\$0	0	\$0	\$3,938	\$2,395	\$6,333
L2 Exterior and Site Lighting Upgrade	\$36,248	0.0	0.0	46,123	0	0	\$4,036	0	\$0	0	\$0	\$4,036	\$1,205	\$5,241
C11 Optimize HVAC Schedules and Set Points	\$16,687	0.0	0.0	7,254	0	0	\$635	0	\$0	0	\$0	\$635	\$0	\$635
M4 Replace R-22 Split System (Evap Coil & Condensing Un	\$137,089	0.0	0.0	20,063	0	0	\$1,755	0	\$0	0	\$0	\$1,755	\$591	\$2,346
M12 Repair Smoke Damper Leakage	\$2,353	0.0	0.0	260	0	0	\$23	0	\$0	0	\$0	\$23	\$0	\$23
O1 Surge Protection	\$3,514	0.0	0.0	0	0	0	\$0	0	\$0	0	\$0	\$0	\$350	\$350
West Lake/Anne Kolb NC Totals	\$268.635	0.0	0.0	118,703	0	0	\$10,387	0	\$0	0	\$0	\$10.387	\$4,541	\$14,928

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

		Cumm. On-Peak	Cumm Off-Peak	Summer	Summer	Winter	Electric	Gas	Gas	Water/	Water/	Total	Oper. &	
	Project	Demand	Demand	On-Peak	Off-Peak	Off-Peak	Dollar	Energy	Dollar	Sewer	Sewer	Utility	Maint.	Total
	Cost	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings
Energy Conservation Measures	(\$)	(kW)	(kW)	(kWh)	(kWh)	(kWh)	(\$)	(Therms)	(\$)	(kgal)	(\$)	(\$)	(\$)	(\$)
Delen Dissele														
Brian Piccolo	\$70 747		0.0	14 0 0 2			\$2.420				C 0	\$2.420	6247	\$3 777
L 2 Exterior Eighting Opgrade	\$13,111	0.0	0.0	14,002	0	0	\$2,450 \$4,540		\$0 80		\$0 ©0	\$2,430	\$347	¢2,111
L2 Exterior and Site Lighting Opgrade	\$83,404	0.0	0.0	20,175	0	0	\$4,518		\$0		\$0	\$4,518	\$185	\$4,703
Brian Biasela Tatala	\$2,939	0.0	0.0	3,440	0	0	\$594		\$U 80	0	\$0	\$594	\$0	\$594
Brian Piccolo Totais	\$160,060	0.0	0.0	43,097	<u> </u>	0	\$1,542	0	\$0	9	\$0	\$7,542	\$532	\$8,074
Fem Forest														
L1 Interior Lighting Upgrade	\$17,980	0.0	0.0	8,741	0	0	\$945	0	\$0	0	\$0	\$945	\$412	\$1,357
L2 Exterior and Site Lighting Upgrade	\$4,506	0.0	0.0	1.007	0	0	\$109	0	\$0	0	\$0	\$109	\$128	\$237
M5 Replace R-22 Rooftop Unit (RTU)	\$81,706	0.0	0.0	4,772	0	0	\$516	0	\$0	0	\$0	\$516	\$431	\$947
B1 Seal Building Envelope	\$8,731	0.0	0.0	9,785	0	0	\$1,057	0	\$0	0	\$0	\$1,057	\$0	\$1,057
Fem Forest Totals	\$112,923	0.0	0.0	24,305	0	0	\$2,627	0	\$0	0	\$0	\$2,627	\$971	\$3,598
Plantation Heritage														
L1 Interior Lighting Upgrade	\$46 440	0.0	0.0	19 809	0	0	\$2.240	0	\$0	0	\$0	\$2.240	\$637	\$2877
L2 Exterior and Site Lighting Ungrade	\$4 753	0.0	0.0	25.062	ő	ň	\$2.835	0	\$0	0	\$0	\$2.835	\$420	\$3 255
B1 Seal Building Envelope	\$4 511	0.0	0.0	8.197	ŏ	ő	\$927	Ő	\$0	0	\$0	\$927	\$0	\$927
Plantation Heritage Totals	\$55,704	0.0	0.0	53,068	0	0	\$6,002	0	\$0	0	\$0	\$6,002	\$1,057	\$7,059
Secret Woods						0								
1.1. Interior Lighting Lingrade	\$32.526	0.0	0.0	21 4 04	0	ő	\$2.401	0	\$0	0	.02	\$2401	\$627	\$3.028
1.2 Exterior and Site Lighting Ungrade	\$13,245	0.0	0.0	8 362	ň	ň	\$938	ň	\$0	ň	\$0	\$938	\$138	\$1.076
R1 Seal Building Envelope	\$10,020	0.0	0.0	6 656	ň	0	\$747	i ii	\$0	ň	\$0	\$747	\$0	\$747
Secret Woods Totals	\$55,791	0.0	0.0	36,422	0	Ű	\$4,086	0	\$0	0	\$0	\$4,086	\$765	\$4,851
Hollywood North Beach				4 0 0 0										****
P4 Cool Drilding Focure Opgrades	\$3,953	0.0	0.0	1,026	0	0	\$108		\$0	25	\$215	\$323	\$16	\$339
bi Seal Building Envelope	\$901	0.0	0.0	1,1/1	0	0	\$124	0	\$0	0	\$0	\$124	\$0	\$124
Honywood North Beach Lotais	\$1,851	0.0	0.0	2,197	0	0	\$232	°	\$0	25	\$215	\$147	\$16	\$463
Parks Totals	\$1,942,910	0.0	0.0	825,254	0	0	\$94,025	0	\$0	433	\$3,720	\$97,745	\$20,308	\$118,053

Summary of Energy Conservation Measures for Broward County - Parks

	Project	Cumm. On-Peak Demand	Cumm Off-Peak Demand	Summer On-Peak	Summer Off-Peak	Winter Off-Peak	Electric Dollar	Gas Energy	Gas Dollar	Water/ Sewer	Water/ Sewer	Total Utility	Oper. & Maint.	Total
	Cost	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings
Energy Conservation Measures	(\$)	(kW)	(kW)	(kWh)	(kWh)	(kWh)	(\$)	(Therms)	(\$)	(kgal)	(\$)	(\$)	(\$)	(\$)
Controls	\$16,687	0.0	0.0	7,254	0	0	\$635	0	0	0	\$0	\$635	\$0	\$635
Mechanical	\$510,599	0.0	0.0	47,126	0	0	\$4,990	0	0	0	\$0	\$4,990	\$2,831	\$7,821
Lighting	\$1,292,123	0.0	0.0	698,168	0	0	\$79,840	0	0	0	\$0	\$79,840	\$16,657	\$96,497
Water	\$59,923	0.0	0.0	8,674	0	0	\$1,078	0	0	433	\$3,720	\$4,798	\$470	\$5,268
Building Envelope	\$60,064	0.0	0.0	64,032	0	0	\$7,482	0	0	0	\$0	\$7,482	\$0	\$7,482
Solar	\$0	0.0	0.0	0	0	0	\$0	0	0	0	\$0	\$0	\$0	\$0
Other	\$3,514	0.0	0.0	0	0	0	\$0	0	0	0	\$0	\$0	\$350	\$350
Total	\$1,942,910	0.0	0.0	825,254	0	0	\$94,025	0	0	433	\$3,720	\$97,745	\$20,308	\$118,053

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Comprehensive List of Energy Conservation Measures Broward County - Libraries

		Cumm On Pask	Cumm Off-Pask	Summar	Summer	Winter	Electric	Gas	Gas	Water/	Water/	Total	Oper &	
	Project	Demand	Demand	On Beak	Off Deals	Off Deals	Dollar	Energy	Dellar	Saurer	Sawar	Litility	Maint	Total
	Cost	Demand	Demand	On-Peak	On-Peak	On-Peak Devines	Couinan	Caulman	Coulinge	Caulman	Caulman	County	Caulman.	Paulana
Energy Conservation Measures	(\$)	Savings (kW)	savings (kWA	(kWh)	(k)Mh)	(kWh)	Savings (\$)	(Therms)	Savings (\$)	(knal)	Savings (\$)	Savings (\$)	Savings (\$)	Savings (\$)
Energy conservation measures	(*)	(877)	(817)	(army	(((*)	(inclina)	(*)	(ngu)	(*)	(*)	(*/	(*)
African American							1							
L1 Interior Lighting Upgrade	\$210,331	432.0	0.0	57,852	95,609	0	\$14,377	0	\$0	0	\$0	\$14,377	\$4,640	\$19,017
L2 Exterior and Site Lighting Upgrade	\$46,476	0.0	0.0	0	83,858	0	\$3,901	0	\$0	0	\$0	\$3,901	\$1,253	\$5,154
C2 Energy Efficiency Upgrades to Existing BAS	\$21,028	103.3	0.0	17,245	76,378	0	\$6,219	0	\$0	0	\$0	\$6,219	\$0	\$6,219
C3 System Check-Out of Existing BAS	\$39,409	23.0	0.0	1,764	1,876	0	\$503	0	\$0	0	\$0	\$503	\$0	\$503
C11 Optimize HVAC Schedules and Set Points	\$3,958	196.0	0.0	42,535	146,897	0	\$12,732	0	\$0	0	\$0	\$12,732	\$0	\$12,732
B1 Seal Building Envelope	\$12,522	0.0	0.0	2,549	7,457	0	\$565	0	\$0	0	\$0	\$565	\$0	\$565
African American Totals	\$333,724	754.3	0.0	121,945	412,075	0	\$38,297	0	\$0	0	\$0	\$38,297	\$5,893	\$44,190
Southwart Pegional														
1 Interior Lighting Linguage	\$242 DOE	544.0	0.0	202 042	i i		\$10 102					¢10 102	00 110	004 000
1.2 Exterior and Sta Lighting Upgrade	¢240,000	044.0	0.0	203,042	, i		φ10,195 \$558	l õ			φ0 \$0	φ10,100 \$558	40,440	\$24,035 \$854
C2 Exterior and Site Eighting opgrade	\$10,040 \$254,022	644.0	0.0	212 254	0	0	\$19,740				00	\$330	\$80 \$0 £20	#054 #05.007
Sourmest Regional Totals	\$204,000	044.0	0.0	210,004	Ĭ		\$10,745	×	φ0	1 °	40	\$10,740	40,000	\$20,207
West Regional														
L1 Interior Lighting Upgrade	\$260,706	521.6	0.0	171,019	0	0	\$16,006	0	\$0	0	\$0	\$16,006	\$6,117	\$22,123
L2 Exterior and Site Lighting Upgrade	\$51,986	0.0	0.0	104,624	0	0	\$6,116	0	\$0	Ö	\$0	\$6,116	\$1,185	\$7,301
C3 System Check-Out of Existing BAS	\$69,596	0.0	0.0	20,462	0	0	\$1,196	0	\$0	0	\$0	\$1,196	\$0	\$1,196
C11 Optimize HVAC Schedules and Set Points	\$9,895	0.0	0.0	46,327	0	0	\$2,708	0	\$0	0	\$0	\$2,708	\$0	\$2,708
S1 Install Solar PV Rooftop System	\$846,555	109.3	0.0	310,357	0	0	\$19,401	0	\$0	0	\$0	\$19,401	\$0	\$19,401
West Regional Totals	\$1,038,738	630.9	0.0	652,789	0	0	\$45,427	0	\$0	0	\$0	\$45,427	\$7,302	\$52,729
Northwest Regional							1							
1.1 Interior Lighting Linguado	\$375 970	504.2	0.0	215 402			\$10.222					\$10.222	\$0.747	\$20.070
1.2 Exterior and Sta Lighting Ungrade	\$210,018	0.0	0.0	80.381			\$18,525 \$2,845	l ő	\$0		\$0	\$13,525 \$3,645	\$3,141	\$23,070
C3 Sustem Chack-Out of Existing BAS	\$35,1/4	0.0	0.0	16.526			\$066		\$0	i i	\$0	\$986	\$711	\$066
C11 Ontimize HVAC Schedules and Sat Points	\$3,058	0.0	0.0	10,320	ő	0	\$6.4.20	0	\$0		\$0	\$6.420		\$6.420
M1 Install New Chiller	\$3,830	277.0	0.0	45 460			\$5,950	0	\$0		\$0	\$5,950	\$0	\$5,950
M4 Deplace D-22 Split Sustem (Evan Coil & Condensing Lin	\$21.967	17	0.0	546	ă		0,000	Ĭ	***	l õ		\$5.000	\$9.4	\$136
M7 CHW Coll Classing	\$23,007	56.3	0.0	22 205	0		\$1 047	l ő	\$0		\$0	\$1 047	\$0	\$1.047
S1 Install Solar PV Roofton System	\$836 417	164.4	0.0	416 292	ň		\$26 228	i i	\$0	Ĩ	\$0	\$26,228	\$0	\$26 228
Northwest Regional Totals	\$1,664,770	1,084.6	0.0	888,631	0	0	\$64,440	0	\$0	0	\$0	\$64,440	\$10,542	\$74,982
Weston						~								
L1 Interior Lighting Upgrade	\$260,739	385.3	0.0	115.057	0	0	\$11,164	0	\$0	0	\$0	\$11,164	\$6,898	\$18,062
L2 Exterior and Site Lighting Upgrade	\$18,333	0.0	0.0	22,074	0	0	\$1,290	0	\$0	0	\$0	\$1,290	\$394	\$1,684
C3 System Check-Out of Existing BAS	\$43,232	0.0	0.0	20,433	0	0	\$1,194	0	\$0	0	\$0	\$1,194	\$0	\$1,194
C11 Optimize HVAC Schedules and Set Points	\$3,958	0.0	0.0	45,090	0	0	\$2,636	0	\$0	0	\$0	\$2,636	\$0	\$2,636
M4 Replace R-22 Split System (Evap Coil & Condensing Un	\$18,888	0.0	0.0	132	0	0	\$8	0	\$0	0	\$0	\$8	\$56	\$64
S1 Install Solar PV Rooftop System	\$722,751	152.0	0.0	345,827	0	0	\$21,966	0	\$0	0	\$0	\$21,966	\$0	\$21,966
Weston Regional Totals	\$1,067,901	537.3	0.0	548,613	0	0	\$38,258	0	\$0	0	\$0	\$38,258	\$7,348	\$45,606

			0.000.0				Electric	Cas	Cas	Mintered	Makend	Total	0	
		Cumm. On-Peak	Cumm Off-Peak	Summer	Summer	Winter	Electric	Gas	Gas	vvater/	vvater/	Total	Oper. &	
	Project	Demand	Demand	On-Peak	Off-Peak	Off-Peak	Dollar	Energy	Dollar	Sewer	Sewer	Utility	Maint.	Total
	Cost	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings
Energy Conservation Measures	(\$)	(kW)	(kW)	(kWh)	(kWh)	(kWh)	(\$)	(Therms)	(\$)	(kgal)	(\$)	(\$)	(\$)	(\$)
Lauderdale Lakes	10000 0000													
L1 Interior Lighting Upgrade	\$67,888	172.1	0.0	54,828	0	0	\$5,188	0	\$0	0	\$0	\$5,188	\$1,414	\$6,602
L2 Extenor and Site Lighting Upgrade	\$14.010	0.0	0.0	23,244	0	0	\$1,359	0	\$0	0	\$0	\$1,359	\$410	\$1,769
C11 Optimize HVAC Schedules and Set Points	\$3,958	0.0	0.0	12,685	0	0	\$742	0	\$0	0	\$0	\$742	\$0	\$742
Lauderdale Lakes Totals	\$85,856	172.1	0.0	90,757	0	0	\$7,289	0	\$0	0	\$0	\$7,289	\$1,824	\$9,113
Stirling Road							1							
L1 Interior Lighting Upgrade	\$96.363	51.3	102.6	3.051	12.407	24,814	\$4,284	0	\$0	0	\$0	\$4,284	\$1,386	\$5.670
1.2 Exterior and Site Lighting Upgrade	\$37.532	0.0	0.0	0	11.484	22.968	\$1,922	0	\$0	0	\$0	\$1,922	\$690	\$2.612
C1 Install New BAS	\$111.114	34.6	-42.6	2.225	27,182	27.011	\$3,211	0	\$0	0	\$0	\$3.211	\$0	\$3,211
Stirling Road Totals	\$245,009	85.9	60.0	5,276	51,073	74,793	\$9,417	0	\$0	0	\$0	\$9,417	\$2,076	\$11,493
							1							
North Lauderdale														
L1 Interior Lighting Upgrade	\$107,440	279.3	0.0	90,411	0	0	\$8,503	0	\$0	0	\$0	\$8,503	\$2,565	\$11,068
L2 Exterior and Site Lighting Upgrade	\$16,369	0.0	0.0	14,526	0	C	\$849	0	\$0	0	\$0	\$849	\$365	\$1,214
M4 Replace R-22 Split System (Evap Coil & Condensing Un	\$197,705	7.6	0.0	17,044	0	0	\$1,084	0	\$0	0	\$0	\$1,084	\$1,688	\$2,772
W1 Plumbing Fixture Upgrades	\$2,840	0.0	0.0	1,237	0	C	\$72	0	\$0	54	\$464	\$536	\$44	\$580
North Lauderdale Totals	\$324,354	286.9	0.0	123,218	0	0	\$10,508	0	\$0	54	\$464	\$10,972	\$4,662	\$15,634
Dan Pearl							1							
L1 Interior Lighting Upgrade	\$119.840	350.0	0.0	93,729	0	0	\$9,511	0	\$0	0	\$0	\$9,511	\$3,247	\$12,758
L2 Exterior and Site Lighting Upgrade	\$18,698	0.0	0.0	18 487	0	0	\$1.081	0	\$0	0	\$0	\$1.081	\$303	\$1,384
C2 Energy Efficiency Upgrades to Existing BAS	\$9,895	23.2	0.0	5,189	0	0	\$571	0	\$0	6	\$0	\$571	\$0	\$571
C11 Optimize HVAC Schedules and Set Points	\$3.958	-49.9	0.0	59.879	0	0	\$2,925	0	\$0	0	\$0	\$2,925	\$0	\$2,925
Dan Pearl Totals	\$152,391	323.3	0.0	177,284	0	0	\$14,088	0	\$0	0	\$0	\$14,088	\$3,550	\$17,638
Margata														
1.1 Interior Linkting Lingua de	\$47.400	430.0		44.004			84.025					R4 005	04.244	05 220
1.2 Exterior and Sto Lighting Upgrade	\$12.077	130.0	0.0	41,004	š		\$770		00	i š	40	\$770	\$010	\$0.000
C3 Sustem Check-Out of Existing BAS	\$20,608	0.0	0.0	6.032	ŏ		\$405	0	\$0	Ĭ	\$0 \$0	\$405	80	\$405
C11 Ontimize HVAC Schedulae and Sat Pointe	\$2 728	0.0	0.0	4 112	ŏ		\$240	i ő	\$0		\$0	\$240	00	\$240
M1 Install New Chiller	\$108,471	94.4	0.0	20.884	ŏ		\$2.143	ň	\$0	Ĭ	\$0	\$2.143	80	\$2.143
W/1 Plumbing Exture Lingrades	\$2.114	0.0	0.0	1 1 9 2	ŏ		\$80		\$0	28	\$222	\$202	\$7	\$200
Margate Totals	\$196,195	171.2	0.0	97,333	0	0	\$7,661	0	\$0	26	\$223	\$7,884	\$1,534	\$9,418
	070 x 200			100-11-000							0.000	2000 000 00		
Hallandale	100000000000000000000000000000000000000		201.2			10000000	-					2022/2012/202		
L1 Interior Lighting Upgrade	\$46,345	22.4	44.8	1,543	6,275	12,550	\$2,043	0	\$0	0	\$0	\$2,043	\$807	\$2,850
L2 Exterior and Site Lighting Upgrade	\$12,437	0.0	0.0	0	4,537	9,074	\$759	0	\$0	0	\$0	\$759	\$209	\$968
M4 Replace R-22 Split System (Evap Coil & Condensing Un	\$57,177	11.6	17.5	652	2,260	3,114	\$726	0	\$0	0	\$0	\$726	\$413	\$1,139
W1 Plumbing Fixture Upgrades	\$2,321	0.0	0.0	0	389	778	\$65	0	\$0	25	\$215	\$280	\$10	\$290
Hallandale Totals	\$118,280	34.0	62.3	2,195	13,461	25,516	\$3,593	0	\$0	25	\$215	\$3,808	\$1,439	\$5,247
Century Plaza							1							
1.1 Interior Lighting Lingrade	\$37.950	60.4	0.0	18 088	i i		\$1 753	0	\$0	i ii	\$0	\$1 753	\$413	\$2.166
1.2 Exterior and Site Lighting Ungrade	\$481	0.0	0.0	10,000	ŏ		\$0	0	\$0	i i	\$0	\$0	80	\$0
W1 Plumbing Fixture Lingrades	\$9.782	0.0	0.0	1 1 28	ň	0	\$66	, o	\$0	81	\$898	\$782	\$33	\$705
Century Plaza Totals	\$48,193	60.4	0.0	19,216	0	0	\$1,819	0	\$0	81	\$696	\$2,515	\$446	\$2,961
					l î									
Dania Beach														
L1 Interior Lighting Upgrade	\$39,390	19.8	39.5	1,340	5,449	10,898	\$1,785	0	\$0	0	\$0	\$1,785	\$1,261	\$3,046
L2 Exterior and Site Lighting Upgrade	\$5,254	0.0	0.0	0	1,179	2,358	\$197	0	\$0	0	\$0	\$197	\$464	\$661
Dania Beach Totals	\$44,644	19.8	39.5	1,340	6,628	13,256	\$1,982	0	\$0	0	\$0	\$1,982	\$1,725	\$3,707

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

	Project	Cumm. On-Peak Demand	Cumm Off-Peak Demand	Summer On-Peak	Summer Off-Peak	Winter Off-Peak	Electric Dollar	Gas Energy	Gas Dollar	Water/ Sewer	Water/ Sewer	Total Utility	Oper. & Maint.	Total
Energy Conservation Measures	Cost (\$)	Savings (kW)	Savings (kW)	Savings (kWh)	Savings (kWh)	(kWh)	Savings (\$)	Savings (Therms)	Savings (\$)	(kgal)	Savings (\$)	Savings (\$)	Savings (\$)	Savings (\$)
Carver Ranches														
L1 Interior Lighting Upgrade L2 Exterior and Site Lighting Upgrade	\$101,834 \$22,939	183.5 0.0	0.0 0.0	50,658 14,453	0	0	\$5,075 \$845	0	\$0 \$0	0	\$0 \$0	\$5,075 \$845	\$919 \$238	\$5,994 \$1,083
C11 Optimize HVAC Schedules and Set Points M4 Replace R-22 Split System (Evap Coil & Condensing Un	\$3,958 \$78,295	0.0 26.0	0.0	10,918 11,435	0	0	\$638 \$968	0	\$0 \$0	0	\$0 \$0	\$638 \$968	\$0 \$656	\$638 \$1,624
M5 Replace R-22 Rootop Unit (RTU) W1 Plumbing Fixture Upgrades	\$74,996 \$6,261	38.6	0.0	2,777	0	0	\$607 \$62	0	\$0 \$0	0 42	\$0 \$361	\$607 \$423	\$422 \$77	\$1,029 \$500
NW Pompano Beach	\$200,203	240.1	0.0	91,290	0	0	\$6,195		\$0	42	\$301	\$0,000	\$2,312	\$10,000
L1 Interior Lighting Upgrade L2 Exterior and Site Lighting Upgrade	\$35,763 \$11.899	82.1 0.0	0.0	24,118 15.695	0	0	\$2,356 \$917	0	\$0 \$0	0	\$0 \$0	\$2,356 \$917	\$769 \$197	\$3,125 \$1,114
C11 Optimize HVAC Schedules and Set Points W1 Plumbing Fixture Upgrades	\$1,979 \$2,145	0.0	0.0	6,618 1,026	0	0	\$387 \$60	0	\$0 \$0	0 22	\$0 \$189	\$387 \$249	\$0 \$10	\$387 \$259
NW Pompano Beach Totals	\$51,786	82.1	0.0	47,457	0	0	\$3,720	0	\$0	22	\$189	\$3,909	\$976	\$4,885
Library Totals	\$5,914,957	5,035.8	161.8	3,080,704	483,237	113,565	\$273,443	0	\$0	260	\$2,148	\$275,591	\$58,167	\$333,758

Summary of Energy Conservation Measures for Broward County - Libraries

Energy Conservation Measures	Project Cost (\$)	Cumm. On-Peak Demand Savings (kW)	Cumm Off-Peak Demand Savings (kW)	Summer On-Peak Savings (kWh)	Summer Off-Peak Savings (kWh)	Winter Off-Peak Savings (kWh)	Electric Dollar Savings (\$)	Gas Energy Savings (Therms)	Gas Dollar Savings (\$)	Water/ Sewer Savings (kgal)	Water/ Sewer Savings (\$)	Total Utility Savings (\$)	Oper. & Maint. Savings (\$)	Total Savings (\$)
Controls Mechanical Lighting Water Building Envelope Solar Other	\$389,471 \$997,333 \$2,284,465 \$25,443 \$12,522 \$2,205,723 \$0	330.2 454.1 3.825.8 0.0 0.0 425.7 0.0	-42.6 17.5 186.9 0.0 0.0 0.0 0.0	428,771 130,144 1,441,136 5,628 2,549 1,072,476 0	252,333 2,260 220,798 389 7,457 0 0	27,011 3,114 82,662 778 0 0 0	\$43,693 \$13,394 \$147,802 \$394 \$565 \$67,595 \$0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 250 0 0	\$0 \$0 \$2,148 \$0 \$0 \$0 \$0	\$43,693 \$13,394 \$147,802 \$2,542 \$565 \$67,595 \$0	\$0 \$3,319 \$54,667 \$181 \$0 \$0 \$0	\$43,693 \$16,713 \$202,469 \$2,723 \$565 \$67,595 \$0
Total	\$5,914,957	5,035.8	161.8	3,080,704	483,237	113,565	\$273,443	0	0	250	\$2,148	\$275,591	\$58,167	\$333,758

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Comprehensive List of Energy Conservation Measures Broward County - Office & Courthouse

		Cumm, On-Peak	Cumm Off-Peak	Summer	Summer	Winter	Electric	Gas	Gas	Water/	Water/	Total	Oper. &	
	Project	Demand	Demand	On-Peak	Off-Peak	Off-Peak	Dollar	Energy	Dollar	Sewer	Sewer	Utility	Maint.	Total
	Cost	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings
Energy Conservation Measures	(\$)	(kW)	(k)00	(k)A(h)	(k)Ath)	(kWh)	(\$)	(Therms)	(\$)	(kgal)	(\$)	(\$)	(\$)	(\$)
Energy conservation measures	(*)	(414)	(***)	(~~~~)	(*****)	(1111)	(*/	(Therma)	(*)	(Kgui)	(*/	(*)	(*/	(*/
Public Safety Complex														
Public Safety Building														
L1 Interior Lighting Upgrade	\$615.053	1.067.0	0.0	215.778	236,727	0	\$30.840	0	\$0	0	\$0	\$30,840	\$16,250	\$47.090
L2 Exterior and Site Lighting Upgrade	\$64.413	0.0	0.0	0	134 430	0	\$5,752	0	\$0	0	\$0	\$5.752	\$1.341	\$7 093
C1 Install New BAS	\$2,267,567	-549.9	0.0	139,449	1,264,021	0	\$55,611	0	\$0	0	\$0	\$55,611	\$0	\$55,611
M5 Replace R-22 Rooftop Unit (RTU)	\$91,061	63.9	0.0	2,306	6,918	0	\$1,020	0	\$0	0	\$0	\$1,020	\$459	\$1,479
M12 Repair Smoke Damper Leakage	\$326,550	79.1	0.0	18,462	27,973	0	\$2,852	0	\$0	0	\$0	\$2,852	\$0	\$2,852
M13 Eliminate Uncontrolled Supply Air Diffusers in Mechanica	\$24,260	204.4	0.0	209	60,447	0	\$4,553	0	\$0	0	\$0	\$4,553	\$0	\$4,553
W1 Plumbing Fixture Upgrades	\$237,846	0.0	0.0	6,409	19,226	0	\$1,135	0	\$0	1,971	\$16,931	\$18,066	\$1,488	\$19,554
W3 Central Control Weather Based Irrigation	\$16,099	0.0	0.0	0	0	0	\$0	0	\$0	151	\$1,297	\$1,297	\$75	\$1,372
W4 Cooling Tower Sewer Deduct Meter	\$18,794	0.0	0.0	0	0	0	\$0	0	\$0	2.086	\$14,456	\$14,456	\$0	\$14,456
S1 Install Solar PV Rooftop System	\$4,313,284	0.0	0.0	673,553	1.276.706	0	\$87,405	0	\$0	0	\$0	\$87,405	\$0	\$87,405
Logistics Warehouse								I						
L1 Interior Lighting Upgrade	\$27.099	20.5	0.0	895	11.183	0	\$943	0	\$0	0	\$0	\$943	\$338	\$1,281
L2 Exterior and Site Lighting Upgrade	\$1,753	0.0	0.0	0	1,773	0	\$89	0	\$0	0	\$0	\$89	\$20	\$109
C1 Install New BAS	\$6.747	0.0	0.0	0	16.010	0	\$808	0	\$0	0	\$0	\$808	\$0	\$808
	10.000 10		10,02		201012		100000							
Tactical Training Building								I						
L1 Interior Lighting Upgrade	\$38,630	55.3	0.0	30.017	0	0	\$2.392	0	\$0	0	\$0	\$2,392	\$686	\$3.078
L2 Exterior and Site Lighting Upgrade	\$2,240	0.0	0.0	2.397	0	Ő	\$140	0	\$0	Ó	\$0	\$140	\$30	\$170
C1 Install New BAS	\$17.325	0.0	0.0	30,364	0	0	\$1,775	0	\$0	0	\$0	\$1,775	\$0	\$1,775
						-								
Central Supply Building														
L1 Interior Lighting Upgrade	\$38,630	55.3	0.0	30,017	0	0	\$2,392	0	\$0	0	\$0	\$2,392	\$686	\$3,078
L2 Exterior and Site Lighting Upgrade	\$2,240	0.0	0.0	2,397	0	0	\$140	0	\$0	0	\$0	\$140	\$30	\$170
C1 Install New BAS	\$6,747	0.0	0.0	9,384	0	0	\$549	0	\$0	0	\$0	\$549	\$0	\$549
M4 Replace R-22 Split System (Evap Coil & Condensing Un	\$60,551	18.0	0.0	2,253	0	0	\$339	0	\$0	0	\$0	\$339	\$563	\$902
BSO District 5 Office														
L1 Interior Lighting Upgrade	\$97,024	114.0	0.0	23,432	32,804	0	\$4,845	0	\$0	0	\$0	\$4,845	\$2,787	\$7,632
L2 Exterior and Site Lighting Upgrade	\$4,166	0.0	0.0	0	3,121	0	\$145	0	\$0	0	\$0	\$145	\$49	\$194
C1 Install New BAS	\$42,189	0.0	0.0	0	88,986	0	\$4,139	0	\$0	0	\$0	\$4,139	\$0	\$4,139
Public Safety Complex Totals	\$8,320,268	1,127.6	0.0	1,187,322	3,180,325	0	\$207,864	0	\$0	4,208	\$32,684	\$240,548	\$24,801	\$265,349
	100.00.00.00.00.00.00.00.00.00.00.00.00.				11.5 11.000 00.000		100000000000000000000000000000000000000							
North Regional Courthouse														
L1 Interior Lighting Upgrade	\$411,125	943.9	0.0	299,158	0	0	\$27,332	0	\$0	0	\$0	\$27,332	\$6,543	\$33,875
L2 Exterior and Site Lighting Upgrade	\$33,149	0.0	0.0	41,144	0	0	\$2,207	0	\$0	0	\$0	\$2,207	\$463	\$2.670
C11 Optimize HVAC Schedules and Set Points	\$9,895	61.8	0.0	21,056	0	0	\$1,868	0	\$0	0	\$0	\$1,868	\$0	\$1,868
M1 Install New Chiller	\$485,209	187.5	0.0	39,619	0	0	\$4,367	0	\$0	41	\$352	\$4,719	\$0	\$4,719
M8 Install New AHU	\$1,470,987	83.9	0.0	32,445	0	0	\$2,744	0	\$0	0	\$0	\$2,744	\$0	\$2,744
W1 Plumbing Fixture Upgrades	\$54.668	0.0	0.0	15,345	0	0	\$823	0	\$0	1,400	\$12,026	\$12,849	\$373	\$13,222
W3 Central Control Weather Based Irrigation	\$16,099	0.0	0.0	0	0	0	\$0	0	\$0	151	\$1,297	\$1,297	\$75	\$1,372
S1 Install Solar PV Rooftop System	\$3,408,151	194.8	0.0	1,797,720	0	0	\$98,774	0	\$0	0	\$0	\$98,774	\$0	\$98,774
North Regional Courthouse Totals	\$5,889,283	1,471.9	0.0	2,246,487	0	0	\$138,115	0	\$0	1,592	\$13,675	\$151,790	\$7,454	\$159,244

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

	Project	Cumm. On-Peak Demand	Cumm Off-Peak Demand	Summer On-Peak	Summer Off-Peak	Winter Off-Peak	Electric Dollar	Gas Energy	Gas Dollar	Water/ Sewer	Water/ Sewer	Total Utility	Oper. & Maint.	Total
Energy Conservation Measures	(\$)	(kW)	Savings (kW)	(kWh)	(kWh)	(kWh)	Savings (\$)	(Therms)	Savings (\$)	(kgal)	Savings (\$)	Savings (\$)	Savings (\$)	Savings (\$)
Covernment Center Ment														
1.1 Interior Lighting Lingrade	\$575 866	802.4	0.0	160.487	153 023	0	\$28 793	i i	\$0	i i	\$0	\$28 703	\$15 207	\$44,000
L2 Exterior and Site Lighting Upgrade	\$107 191	0.0	0.0	0	215 793	0	\$10 013	ő	\$0	ő	\$0	\$10 013	\$3,211	\$13 224
C3 System Check-Out of Existing BAS	\$121 102	74.3	0.0	5.438	9 205	ő	\$1,796	ŏ	\$0	ŏ	\$0	\$1796	\$0	\$1796
C11 Optimize HVAC Schedules and Set Points	\$8,895	-72.0	0.0	24,480	98,969	ŏ	\$5,286	0	\$0	ŏ	\$0	\$5,286	\$0	\$5,286
W1 Plumbing Fixture Upgrades	\$31,585	0.0	0.0	795	2,385	ő	\$165	0	\$0	150	\$1,289	\$1,454	\$13	\$1,467
B1 Seal Building Envelope	\$12,066	0.0	0.0	3,589	10,498	0	\$731	0	\$0	0	\$0	\$731	\$0	\$731
S1 Install Solar PV Rooftop System	\$878,807	319.2	0.0	154,949	292,419	0	\$28,384	0	\$0	0	\$0	\$28,384	\$0	\$28,384
Government Center West Totals	\$1,735,512	1,123.9	0.0	349,738	782,292	0	\$75,168	0	\$0	150	\$1,289	\$76,457	\$18,431	\$94,888
TRAF ENGN Administration North														
L1 Interior Lighting Upgrade	\$152,084	97.7	195.3	6,419	45,790	91,579	\$3,805	0	\$0	0	\$0	\$3,805	\$8,476	\$12,281
L2 Exterior and Site Lighting Upgrade	\$5,941	0.0	0.0	0	266	533	\$12	0	\$0	0	\$0	\$12	\$33	\$45
W1 Plumbing Fixture Upgrades	\$8,053	0.0	0.0	0	0	0	\$0	0	\$0	275	\$2,362	\$2,362	\$166	\$2,528
S1 Install Solar PV Rooftop System	\$1,138,513	266.0	0.0	186,451	361,131	0	\$35,821	0	\$0	0	\$0	\$35,821	\$0	\$35,821
TRAF ENGN Administration North Totals	\$1,304,591	363.7	195.3	192,870	407,187	92,112	\$39,638	0	\$0	275	\$2,362	\$42,000	\$8,675	\$50,675
PARK Administration Complex														
L1 Interior Lighting Upgrade	\$68,659	110.6	0.0	29,519	0	0	\$3,000	0	\$0	0	\$0	\$3,000	\$827	\$3,827
L2 Exterior and Site Lighting Upgrade	\$4,510	0.0	0.0	3,545	0	0	\$207	0	\$0	0	\$0	\$207	\$115	\$322
W1 Plumbing Fixture Upgrades	\$10,683	0.0	0.0	4,156	0	0	\$243	0	\$0	254	\$2,182	\$2,425	\$142	\$2,567
PARK Administration Complex Totals	\$83,852	110.6	0.0	37,220	0	0	\$3,450	0	\$0	254	\$2,182	\$5,632	\$1,084	\$6,716
INTEG WAST South Landfill														
L1 Interior Lighting Upgrade	\$59,079	53.2	106.4	3,808	16,498	32,995	\$5,139	0	\$0	0	\$0	\$5,139	\$783	\$5,922
L2 Exterior and Site Lighting Upgrade	\$23,051	0.0	0.0	0	8,916	17,833	\$1,492	0	\$0	0	\$0	\$1,492	\$615	\$2,107
B1 Seal Building Envelope	\$15,247	0.0	0.0	569	6,206	12,411	\$1,117	0	\$0	0	\$0	\$1,117	\$0	\$1,117
INTEG WAST South Landfill Totals	\$97,377	53.2	106.4	4,377	31,620	63,239	\$7,748	0	\$0	0	\$0	\$7,748	\$1,398	\$9,146
Office & Courthouse Totals	\$17,430,883	4,250.9	301.7	4,018,014	4,401,424	155,351	\$471,983	0	\$0	6,479	\$52,192	\$524,175	\$61,843	\$586,018

Summary of Energy Conservation Measures for Broward County - Office & Courthouse

	Project Cost	Cumm. On-Peak Demand Savings	Cumm Off-Peak Demand Savings	Summer On-Peak Savings	Summer Off-Peak Savings	Winter Off-Peak Savings	Electric Dollar Savings	Gas Energy Savings	Gas Dollar Savings	Water/ Sewer Savings	Water/ Sewer Savings	Total Utility Savings	Oper. & Maint. Savings	Total Savings
Energy Conservation Measures	(\$)	(kW)	(kW)	(kWh)	(kWh)	(kWh)	(\$)	(Therms)	(\$)	(kgal)	(\$)	(\$)	(\$)	(\$)
Controls Mechanical Lighting Water Building Envolope Solar Other	\$2,480,467 \$2,458,618 \$2,331,903 \$393,827 \$27,313 \$9,738,755 \$0	-485.8 636.8 3,319.9 0.0 0.0 780.0 0.0	0.0 0.0 301.7 0.0 0.0 0.0	230,171 95.294 849,013 26,705 4,158 2,812,673 0	1,477,191 95,338 860,324 21,611 16,704 1,930,256 0	0 0 142,940 0 12,111 0 0	\$71,832 \$15,875 \$129,678 \$2,366 \$1,818 \$250,384 \$0	000000000000000000000000000000000000000	0 0 0 0 0 0 0	0 41 6,438 0 0 0	\$0 \$352 \$0 \$51,840 \$0 \$0 \$0	\$71,832 \$16,227 \$129,678 \$54,206 \$1,818 \$250,384 \$0	\$0 \$1,022 \$58,489 \$2,332 \$0 \$0 \$0	\$71,832 \$17,249 \$188,167 \$56,538 \$1,848 \$250,384 \$0
Total	\$17,430,883	4,250.9	301.7	4,018,014	4,401,424	155,351	\$471,983	0	0	6,479	\$52,192	\$524,175	\$61,843	\$586,018

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Comprehensive List of Energy Conservation Measures Broward County - Health & Labs

	Project	Cumm. On-Peak Demand	Cumm Off-Peak Demand	Summer On-Peak	Summer Off-Peak	Winter Off-Peak	Electric Dollar	Gas Energy	Gas Dollar	Water/ Sewer	Water/ Sewer	Total Utility	Oper. & Maint.	Total
	Cost	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings
Energy Conservation Measures	(\$)	(KW)	(KW)	(kWh)	(kWh)	(kWh)	(\$)	(Therms)	(\$)	(kgal)	(\$)	(\$)	(\$)	(\$)
Central Homeless Assistance Center	4440.030	100.1		04 303			00.000					00.000	0000	A. 000
L1 Intenor Lighting Upgrade	\$118,378	139.1	0.0	34,727	U	0	\$3,632	U	30	0	30	\$3,632	5607	\$4,239
L2 Exterior and Site Lighting Upgrade	\$43,256	0.0	0.0	16,697	U	0	\$976	U	30	0	30	29/6	\$224	\$1,200
Central Homeless Assistance Center Totals	\$161,634	139.1	0.0	51,424	U	0	\$4,608	U	30	0	3-0	\$4,608	\$831	\$5,439
Booher Building														
L1 Interior Lighting Upgrade	\$157,969	244.0	0.0	49,219	95,283	0	\$11,456	0	\$0	0	\$0	\$11,456	\$5,404	\$16,860
L2 Exterior and Site Lighting Upgrade	\$17,125	0.0	0.0	0	14,655	0	\$682	0	\$0	0	\$0	\$682	\$403	\$1,085
M5 Replace R-22 Rooftop Unit (RTU)	\$464,837	45.0	0.0	979	46,330	0	\$2,758	0	\$0	0	\$0	\$2,758	\$3,938	\$6,696
W1 Plumbing Fixture Upgrades	\$64,617	0.0	0.0	1,383	4,149	0	\$311	0	\$0	426	\$3,659	\$3,970	\$407	\$4,377
Booher Building Totals	\$704,548	289.0	0.0	51,581	160,417	0	\$15,207	0	\$0	426	\$3,659	\$18,866	\$10,152	\$29,018
North Viewellers Assistance Contra												1		
North Homeless Assistance Center	A100 444	105.0	0.0	00 400			00.004				10	40.004	1000	17.450
L1 Interior Lighting Upgrade	\$123,114	100.0	0.0	80,402		0	36,604	U	30	0	30	56,604	3040	\$7,150
L2 Exterior and Site Lighting Upgrade	337,206	0.0	0.0	24,900	0	0	\$1,450	U	30	0	30	\$1,456	\$1,662	\$3,118
North Homeless Assistance Center Totals	\$160,320	165.3	0.0	105,302	U	U	\$8,060	U	30	0	20	\$8,060	\$2,208	\$10,268
Family Success Center, N. Pompano				I	I							1 . 1		
L1 Interior Lighting Upgrade	\$49,184	83.2	0.0	27,170	0	0	\$2,547	0	\$0	0	\$0	\$2,547	\$511	\$3,058
L2 Exterior and Site Lighting Upgrade	\$13,840	0.0	0.0	15,646	0	0	\$915	0	\$0	0	\$0	\$915	\$457	\$1,372
M5 Replace R-22 Rooftop Unit (RTU)	\$83,919	82.5	0.0	9.524	0	0	\$1.507	ō	\$0	0	\$0	\$1.507	\$497	\$2.004
S1 Install Solar PV Roofton System	\$212,896	30.4	0.0	102 335	0	0	\$6.332	0	\$0	0	\$0	\$6,332	\$0	\$6.332
Family Success Center, N. Pompano Totals	\$359,839	196.1	0.0	154,675	0	0	\$11,301	0	\$0	0	\$0	\$11,301	\$1,465	\$12,766
Sexual Assault Treatment Center	400.000	05.5		05.004			40.407		40		40	40.407	4500	40.000
L1 Interior Lighting Upgrade	\$30,339	05.5	0.0	25,864	0	0	\$2,491	U	30	0	50	\$2,497	3009	\$3,000
L2 Exterior and Site Lighting Upgrade	\$4,470	0.0	0.0	6,432	U	U	\$3/6	U	30	U	2-0	\$3/6	\$92	\$468
M4 Replace R-22 Split System (Evap Coll & Condensing Un	\$15,999	9.0	0.0	1,976	0	0	\$219	0	\$0	0	3-0	\$219	\$94	\$313
Sexual Assault Treatment Center Totals	\$58,808	94.5	0.0	34,272	0	0	\$3,092	0	30	0	20	\$3,092	\$775	\$3,867
EPD Environmental Monitoring Facility & Lab				I								1		
L1 Interior Lighting Upgrade	\$51,496	31.5	63.1	2,227	8,908	17,815	\$2,896	0	\$0	0	\$0	\$2,896	\$1,254	\$4,150
L2 Exterior and Site Lighting Upgrade	\$6,440	0.0	0.0	0	1,999	3,998	\$335	0	\$0	0	\$0	\$335	\$242	\$577
W1 Plumbing Fixture Upgrades	\$3,134	0.0	0.0	0	13	25	\$2	0	\$0	55	\$472	\$474	\$26	\$500
W3 Central Control Weather Based Irrigation	\$11,952	0.0	0.0	0	0	0	\$0	0	\$0	101	\$868	\$868	\$75	\$943
EPD Environmental Monitoring Facility & Lab Totals	\$73,022	31.5	63.1	2,227	10,920	21,838	\$3,233	0	\$0	156	\$1,340	\$4,573	\$1,597	\$6,170
EAB Our Hourse				I	I							1 1		
EAP Our House	49 700	0.0		700			470		40		40			A100
L1 Interior Lighting Opgrade	\$3,100	0.0	0.0	766	0	0	3/0	0	30	0	30	\$10	330	\$100
L2 Exterior and site Lighting Upgrade	\$278	0.0	0.0	100	0	0	30	U	30	0	3-0	50	20	50
M4 Replace R-22 Split System (Evap Coll & Condensing Uni	\$11,033	0.0	0.0	126	0	0	\$13	0	\$0	0	\$0	\$13	\$47	\$60
B1 Seal Building Envelope	\$877	0.0	0.0	668	0	0	\$68	0	50	0	50	\$68	\$0	\$68
EAP Our House	\$15,888	0.0	0.0	1,560	0	0	\$159	0	\$0	0	\$0	\$159	\$77	\$236
Health & Labs Totals	\$1,534,059	915.5	63.1	401.041	171,337	21,838	\$45,660	0	\$0	582	\$4,999	\$50,659	\$17,105	\$67,764

Summary of Energy Conservation Measures for Broward County - Health & Labs

Energy Conservation Measures	Project Cost (\$)	Cumm. On-Peak Demand Savings (kW)	Cumm Off-Peak Demand Savings (kW)	Summer On-Peak Savings (kWh)	Summer Off-Peak Savings (kWh)	Winter Off-Peak Savings (kWh)	Electric Dollar Savings (\$)	Gas Energy Savings (Therms)	Gas Dollar Savings (\$)	Water/ Sewer Savings (kgal)	Water/ Sewer Savings (\$)	Total Utility Savings (\$)	Oper. & Maint. Savings (\$)	Total Savings (\$)
Controls Mechanical Lighting Water Building Envelope Solar Other	\$0 \$575,788 \$664,795 \$79,703 \$877 \$212,896 \$0	0.0 136.5 748.6 0.0 0.0 30.4 0.0	0.0 0.0 63.1 0.0 0.0 0.0 0.0	0 12,605 284,050 1,383 668 102,335 0	0 46,330 120,845 4,162 0 0 0	0 21,813 25 0 0 0	\$0 \$4,497 \$34,450 \$313 \$68 \$6,332 \$0	000000000000000000000000000000000000000		0 0 582 0 0 0	\$0 \$0 \$4,999 \$0 \$0 \$0 \$0	\$0 \$4,497 \$34,450 \$5,312 \$68 \$6,332 \$0	\$0 \$4,576 \$12,021 \$508 \$0 \$0 \$0 \$0	\$0 \$9,073 \$46,471 \$5,820 \$68 \$6,332 \$6,332 \$0
Total	\$1,534,059	915.5	63.1	401,041	171,337	21,838	\$45,660	0	0	582	\$4,999	\$50,659	\$17,105	\$67,764

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Comprehensive List of Energy Conservation Measures Broward County - Parking, Warehouse and Repair

		Cumm. On-Peak	Cumm Off-Peak	Summer	Summer	Winter	Electric	Gas	Gas	Water/	Water/	Total	Oper. &	
	Project	Demand	Demand	On-Peak	Off-Peak	Off-Peak	Dollar	Energy	Dollar	Sewer	Sewer	Utility	Maint.	Total
25. 0. 22. 59	Cost	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings
Energy Conservation Measures	(\$)	(kW)	(kW)	(k₩h)	(k₩h)	(kWh)	(\$)	(Therms)	(\$)	(kgal)	(\$)	(\$)	(\$)	(\$)
MASS TRAN North Maintenance														
L1 Interior Lighting Upgrade	\$615,949	2.106.7	0.0	570,743	493,166	0	\$96.064	0	\$0	0	\$0	\$96.064	\$8,940	\$105.004
L2 Exterior and Site Lighting Upgrade	\$112,429	0.0	0.0	0	116,246	0	\$5,408	0	\$0	0	\$0	\$5,408	\$1,291	\$6,699
M4 Replace R-22 Split System (Evap Coil & Condensing Unit	\$41,885	17.1	0.0	1,313	2,169	0	\$410	0	\$0	0	\$0	\$410	\$244	\$854
S1 Install Solar PV Rooftop System	\$2,055,689	218.5	0.0	359,643	683,832	0	\$65,108	0	\$0	0	\$0	\$65,108	\$0	\$65,108
MASS TRAN North Maintenance Totals	\$2,825,912	2,342.3	0.0	931,699	1,295,413	0	\$166,990	0	\$0	0	\$0	\$166,990	\$10,475	\$177,465
BSO Maintenance Facility														
L1 Interior Lighting Upgrade	\$47,531	46.4	92.7	2,894	10,611	21,222	\$3,790	0	\$0	0	\$0	\$3,790	\$607	\$4,397
L2 Exterior and Site Lighting Upgrade	\$23,447	0.0	0.0	0	5,566	11,131	\$931	0	\$0	0	\$0	\$931	\$224	\$1,155
B1 Seal Building Envelope	\$3,636	0.0	0.0	155	1,685	3,371	\$303	0	\$0	0	\$0	\$303	\$0	\$303
BSO Maintenance Facility Totals	\$74,614	46.4	92.7	3,049	17,882	35,724	\$5,024	0	\$0	0	\$0	\$5,024	\$831	\$5,855
BCJC South Parking Garage														
L1 Interior Lighting Upgrade	\$45,397	68.4	0.0	12,696	0	0	\$1,530	0	\$0	0	\$0	\$1,530	\$340	\$1,870
L2 Exterior and Site Lighting Upgrade	\$179,402	0.0	0.0	245,424	0	0	\$14,346	0	\$0	0	\$0	\$14,346	\$4,315	\$18,661
B1 Seal Building Envelope	\$3,527	0.0	0.0	6,660	0	0	\$389	0	\$0	0	\$0	\$389	\$0	\$389
S1 Install Solar PV Rooftop System	\$777,958	20.9	0.0	329,999	0	0	\$19,531	0	\$0	0	\$0	\$19,531	\$0	\$19,531
BCJC South Parking Garage Totals	\$1,006,284	6.69	0.0	594,779	2	2	\$35,795	1	20		30	\$35,785	34,000	340,451
HIGH & BRDG Mosquito Control														
L1 Interior Lighting Upgrade	\$29,783	51.3	0.0	10,447	0	0	\$1,202	0	\$0	0	\$0	\$1,202	\$224	\$1,428
L2 Exterior and Site Lighting Upgrade	\$12,018	0.0	0.0	14,805	0	0	\$865	0	\$0	0	\$0	\$865	\$251	\$1,116
M4 Replace R-22 Split System (Evap Coil & Condensing Unit	\$20,265	0.6	0.0	755	0	0	\$51	0	\$0	0	\$0	\$51	\$122	\$173
W1 Plumbing Fixture Upgrades	\$2,674	0.0	0.0	2,170	0	0	\$127	0	\$0	90	\$773	\$900	\$44	\$944
HIGH & BRDG Mosquito Control Totals	\$64,738	51.8	0.0	28,177	U	U	\$2,245	U	\$U	80	\$1.13	\$3,018	\$641	\$3,658
South Maintenance Shop														
L1 Interior Lighting Upgrade	\$18,603	0.0	0.0	9,370	0	0	\$950	0	\$0	0	\$0	\$950	\$166	\$1,116
L2 Exterior and Site Lighting Upgrade	\$4,103	0.0	0.0	5,222	0	0	\$530	0	\$0	0	\$0	\$530	\$79	\$609
M4 Replace R-22 Split System (Evap Coil & Condensing Unit	\$26,617	0.0	0.0	2,471	0	0	\$251	0	\$0	0	\$0	\$251	\$150	\$401
B1 Seal Building Envelope	\$1,750	0.0	0.0	1,397	0	0	\$142	0	\$0	0	\$0	\$142	\$0	\$142
South Maintenance Shop Totals	\$51,073	0.0	0.0	18,460	0	0	\$1,873	0	\$0	0	\$0	\$1,873	\$395	\$2,268
MASS Tran Northeast Terminal														
L1 Interior Lighting Upgrade	\$14,338	22.8	0.0	6,780	0	0	\$659	0	\$0	0	\$0	\$659	\$307	\$966
L2 Exterior and Site Lighting Upgrade	\$23,039	0.0	0.0	54,401	0	0	\$3,180	0	\$0	0	\$0	\$3,180	\$922	\$4,102
MASS Tran Northeast Terminal Totals	\$37,377	22.8	0.0	61,181	0	0	\$3,839	0	\$0	0	\$0	\$3,839	\$1,229	\$5,068
Parking, Warehouse and RepairTotals	\$4,059,998	2 552 7	92.7	1.637.345	1.313.275	35,724	\$215,767	0	\$0	90	\$773	\$216,540	\$18,226	\$234,766

Summary of Energy Conservation Measures for Broward County - Parking, Warehouse and Repair

Energy Conservation Measures	Project Cost (\$)	Cumm. On-Peak Demand Savings (kW)	Cumm Off-Peak Demand Savings (kW)	Summer On-Peak Savings (kWh)	Summer Off-Peak Savings (kWh)	Winter Off-Peak Savings (kWh)	Electric Dollar Savings (\$)	Gas Energy Savings (Therms)	Gas Dollar Savings (\$)	Water/ Sewer Savings (kgal)	Water/ Sewer Savings (\$)	Total Utility Savings (\$)	Oper. & Maint. Savings (\$)	Total Savings (\$)
Controls	\$0	0.0	0.0	0	0	0	\$0		0		\$0	\$0.	\$0	\$0
Mechanical	\$88.747	17.7	0.0	4 539	2 169	0	\$712	i i	0	n n	\$0	\$712	\$516	\$1 228
Lighting	\$1,126,037	2,295.6	92.7	932,782	625,589	32,353	\$129,455	0	0	0	\$0	\$129,455	\$17,666	\$147,121
Water	\$2,874	0.0	0.0	2,170	0	0	\$127	0	0	90	\$773	\$900	\$44	\$944
Building Envelope	\$8,913	0.0	0.0	8,212	1,685	3,371	\$834	0	0	0	\$0	\$834	\$0	\$834
Solar	\$2,833,627	239.4	0.0	689,642	683,832	0	\$84,639	0	0	0	\$0	\$84,639	\$0	\$84,639
Other	\$0	0.0	0.0	0	0	0	\$0	0	0	0	\$0	\$0	\$0	\$0
Total	\$4,059,998	2,552.7	92.7	1,637,345	1,313,275	35,724	\$215,767	0	0	90	\$773	\$216,540	\$18,226	\$234,766

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

CONTROL SYSTEM UPGRADES

OpTerra performed an audit of all existing building/HVAC equipment and controls for the Group B buildings. Building Automation Systems (BAS) improve comfort levels, reduce energy use, and improve and extend the operational efficiency of existing building and HVAC equipment. Changes in building utilization sometimes make it difficult to control the physical environment of the facilities and continue to use energy efficiently. A state-of the-art, computer-based BAS and improvements in select buildings will allow Broward County to meet this challenge. OpTerra works closely with controls contractors and the County's' IT departments to both design and implement an energy management and BAS that will provide for the efficient operation of all HVAC equipment.

The existing building controls equipment was inspected and noted as to age, reliability and efficiency. After the equipment was evaluated, the OpTerra team then proceeded with developing practical solutions to improve any underlining problems and areas that stand out for potential energy savers.

During the audit, it was noted that some of the facilities had controls that are outdated and not being fully utilized to realize their full potential in order to maximize energy savings. Some HVAC systems are not controlled by the BAS and were found to be controlled by programmable thermostats or non-programmable thermostats that maintain occupied temperatures 24 hours per day.

A thorough inspection of the HVAC controls revealed that much of the existing systems need a comprehensive expansion and improvement. Upgrades and improvement to the HVAC controls will result in the following benefits for Broward County.

Benefits of these ECMs include:

- Reduction in electric and natural gas consumption
- Improved space temperatures and air quality
- Deferred Maintenance benefits
- Operational Savings
- Increased reliability

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM C-1: Install New Building Automation System (BAS)

ECM Description:

It was observed during the site assessments that several of the County's facilities do not have any existing Building Automation Systems (BAS) or the existing BAS is obsolete. In these cases, OpTerra is proposing the installation of a new BAS. Buildings operating these obsolete systems will continue to decline in energy performance and occupant comfort and maintenance costs will continue to increase in both the time it takes to repair issues and the costs for replacement parts. The BAS can also be programmed to ensure the

appropriate control strategies are implemented that will result in optimal operation of the HVAC systems.

The sites that are considered for a New Building Automation System are as follows:

- Stirling Road Library: Currently operating an obsolete KMC Control System. Limited remote access is available through a dialup modem. Many zones were found to be operating poorly.
- Public Safety Complex: The Public Safety Building is currently utilizing a vintage Johnson Controls BAS with DSC-8500 controllers. This system has exceeded its useful life. There are few technicians in the local market that have the ability to service this system. The Tactical Training Building, Logistics Warehouse, and Central Supply Building all utilize standard wall

mounted thermostats for control. The BSO District 5 Office utilizes a slightly newer Johnson Controls BAS to control the Rooftop Units.

BAS features, existing conditions, and IT department assistance during the expansion of the existing BAS are described as follows:

BAS Features:

- All hardware and software will communicate with the existing Siemen's Insight Server
- All new BAS systems will be in accordance with the Broward County specifications provided to OpTerra during the Investment Grade Audit.
- Front end software provides a graphical user interface (GUI) in accordance with Broward County standards for Insight Graphics.
- OpTerra will commission the newly installed BAS with coordination between the controls contractor and the facility's personnel. Commissioning provides OpTerra and the County written verification that the BAS operates as intended.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

• HVAC equipment controlled by the BAS will be remotely enabled/disabled. The heating and cooling systems will maintain space temperature set points and allow for temperature set point setback during the "unoccupied" periods.

Existing Conditions and IT Department Assistance:

- It is assumed that the existing heaters, dampers, valves, etc. are functional. If the dampers or valves are non-functional, any repairs required to make these devices functional will be the responsibility of the County. During BAS Commissioning, a master issues log will document any mechanical deficiencies that will need to be repaired by County maintenance.
- Pneumatic demo in mechanical rooms is included; however, demo of pneumatic lines above ceilings or in enclosed spaces is not included. Pneumatic lines will be remove and capped at VAV Boxes.
- Monitoring and/or control of CACUs is excluded. These systems are to be operated by County IT Staff.
- Pricing of this proposal is based on the County Information Technology (IT) department providing communication over their existing Ethernet system and installing Ethernet connections (LAN drops) where necessary for communication.
- Unless stated otherwise, it is assumed that all AHU fire/smoke detectors and associated alarms are currently functional. Any repairs required to make these devices functional will be the responsibility of the County.

The HVAC equipment will be scheduled according to the occupancy schedule of the spaces outlined in the OpTerra Standards of Control. It is imperative that the County verify that the BAS schedules match the contract schedules from the Standards of Control. Failing to maintain these schedules will jeopardize the savings guarantee and result in the loss of energy savings. The BAS time of day schedules will be adjustable from the front-end computer.

Energy Savings:

The following is a list of common BAS system capabilities and energy saving features:

1. Outside Air Lockout

Disabling heating equipment when the outside air temperature is greater than a user-defined set point (typically 55°F) saves energy by reducing overheating in the buildings, and also minimizes moisture which could ultimately lead to mold growth. Disabling the cooling system until the outside air temperature exceeds a separate user-defined set point (typically 60°F) also saves equipment runtime and energy. These adjustable systems having the ability to enable/disable set points, prevent simultaneous cooling and heating system operation.

2. Unoccupied Temperature Setback/Setup

The HVAC equipment operates to maintain a space temperature set point during the occupied schedule. When the facility is unoccupied and the HVAC systems are in the cooling mode, the space temperature set point is setup (moved higher) to reduce the cooling load. When the facility is unoccupied and the HVAC system is in the heating mode, the space temperature set point is setback (moved lower) to reduce the heating load on the HVAC system. When the building is unoccupied, outside air dampers are closed, exhaust fans are turned off, and AHU supply fans are turned off unless there are HVAC requirements for 24/7 operation, or the space temperature conditions are exceeded. If necessary to reduce odors, etc., the BAS will purge the

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

building air before the occupied schedule by briefly running AHUs with outside air dampers set to 100% open.

3. Air Handling Unit Control Features

Fan status will be available on all AHUs. Supervisory controls enable/disable packaged units and split systems while leaving specific equipment control functions to the unit controls that typically come installed directly from the factory. Direct Digital Control (DDC) capabilities include outside/return air damper positioning, hot/chilled water valve actuation, DX cooling system control, and supply air temperature control.

4. Equipment Optimal Start Time

The Optimal Start control strategy determines the most energy efficient time to start the HVAC equipment to bring the building to the occupied set point temperature prior to the occupied period. The BAS software monitors space temperature sensors to "learn" when to start the equipment based on the outside air temperature. If deemed appropriate, Optimal Start can be replaced with operator determined time of day start/stop schedules at the BAS. While bringing the building to the occupied temperature, the outside air dampers will be closed until the occupied schedule start time.

5. Staging of Cooling and Heating Equipment

Areas that are served by multiple pieces of HVAC equipment offer the opportunity to stage (sequence) the proper amount of heating or cooling capacity to match the building load. Without staging, all systems are enabled and tend to short cycle during part load conditions. Short cycling of cooling systems compromises the dehumidification capability of the system and may shorten the life of the equipment, cause mold and mildew issues in the space, etc.

6. Demand Controlled Ventilation

Many existing air handling units provide a fixed quantity of outside air (OA) that determines the amount of fresh air required to maintain proper indoor air quality (IAQ) during design conditions. It is also permissible to set the OA flow by a performance method that allows the OA flow rate to be adjusted as needed to meet the actual occupancy as represented by a tracer gas, such as CO2.

During periods when a space is unoccupied, the OA dampers can be closed. If the OA dampers are left open during this time, it can contribute to unnecessary heating or cooling in the space. Closing the OA dampers during these unoccupied periods in the space will result in energy savings for the County.

7. Static Pressure Reset

Variable air volume (VAV) systems typically have a supply fan motor with a variable frequency drive (VFD) which varies the fan speed to maintain a supply air duct static pressure set point. Instead of maintaining a fixed duct static pressure set point, a control algorithm at the BAS will monitor the damper positions of each VAV box connected to a given AHU, and will reset the duct static pressure set point accordingly. By resetting the static pressure set point, the VFD will adjust the fan speed as needed to minimize the number of VAV dampers in the minimum position. Duct static pressure will be allowed to vary instead of being fixed (as in the present operation) and fan energy can be reduced by up to 20%.

The functions listed above are typical for basic BAS control of HVAC systems. Application of these functions will depend on the types of equipment to be controlled in each building.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

O&M Impact/Benefits:

There are many benefits with the expansion of a BAS such as:

- Facility operators can manage and control the applicable HVAC equipment from a central location, or from a remote location, in a web-based application.
- Facility operators can establish standardized energy policies and have the resources to enforce them.
- Facility operators and staff can remotely diagnose problems, even sometimes resolve issues via VPN access in lieu of an in person resolve, thereby reducing maintenance and operations costs.
- With most systems, changes to control parameters at the BAS can be reviewed to make sure maintenance personnel are making energy-wise decisions.

The BAS expansion includes training the maintenance staff on the use of the BAS, which will include at least one day of on-site scheduled training for maintenance personnel. During the commissioning process, maintenance personnel are invited to participate and gain hands-on system training as well.

New BAS Points List:

See the following pages for points list proposed for new BAS System.

Standards of Control

The BAS HVAC schedules shall be programmed in accordance with the HVAC Standards of Control as detailed at the back of this Control write-up.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Stirling Road Library – Points List

LOCATION									HA	RDW/	ARE										SOFTWAR	E		Communicat	ions	
Broward County - Wide			E	EMS O	UTPU	TS						EM	S INPL	ITS											#o Ma	
																									ppe	
9/17/2017		Ι.					16									06								TYPE	đ	
0/1//201/		-		4L		ANALC	10	_		JIGITA	NL.	_	- 1		ANA	100	- 1	_	-					ITFE D = DACost		
Stirling Read Library		76	8	8	R	Π.	Ŷ	P	끈	Ş	Q	2	1	2	2	- ຄ	≥	õ						L = LON		
ounning hadd Eibrary		elay	len	onta	H	T	10	ess	Ň	/itc	/err	irre	đ	glati	0	Ôġ	Ē	:her	Trend			Graphics:		M = Modbus		
Project Phase - IGA			oid	Cto	ans	ans	dc	ure	Swi	hс	ide	R.	era	ve	P	Sen	Ň	`	COS = Char	nge of state		F = Floor G	iraphics	N2 = JCI		COMMENTS AND SPECIAL FUNCTIONS
				-	duc	duc	Pr 4	Sw	ť,	lso		Wit	f	Ŧ	SIG	Sor	ĝ			0		U - Unit Gr	aphic	FLN = Siemens		
					٩	٩	-20	tch		re		с ,	10	nidi	9	×i.	5					S - Summa	ry Graphic	N = None		
							R							4	PSE	de L										
							ſ _								0	.eve										
Description	Point Name															9I/			Set Point	Schedule	Trend	Alarm	Graphic			
ECM-1 New BAS																										
					_																					
Building	0.17		_	-	-	-	_														1 /0 1		e			
Outside Air Temperature	UAI				-		-			_			1								1/2 nr		F, U			
Building Mater Meter	BLDG-DP	_	-	_	-		-		_	1				_	1	_	-	_			1/2 hr	-	r c			Controls Contractor to connect to dry contact pulse from water motor
Building Electric Meter	BLDG-KGAL		-	-	-	-	-		-	1	-					-	-	_			1/2 III 1/2 hr		r c		5	Controls Contractor to provide and install Veris Mater and man points
building Electric Weter	DEDG-RW			-										-		-	-				1/2 111				,	(kw/ kw/b A DE KV/AD)
				1		1	1											-								(KIY, KIYI), O, FT, KYON)
VAV AHU-1			1	1	1	1	1										-			1		1	1	i		With Optimal Start
Supply Fan Start/Stop	SF Cmd	1																		-	COS	1	U			
Supply Fan Status	SF Sts											1									COS	х	U			
Supply Fan VFD Speed	SFVFD Speed						1																U			With Static Pressure Reset
Duct Static Pressure	SSP														1						1/2 hr		U			
Mixed Air Dampers	MAD-C						1														1/2 hr		U			With DCV
Mixed Air Temp	MAT												1								1/2 hr		U			
DX Stage 1	DX Stg 1 Cmd	1																			COS		U			With OA Lockout
DX Stage 2	DX Stg 2 Cmd	1																			COS		U			
Supply Air Temp	SAT		_				_						1				_				1/2 hr		U			
Supply Air Diff Press	SA-DP			-	_	-	_								1		_				1/2 hr		U 			
Supply Air Flow	SA-CEM			-		-	-		-				1				1				1/2 hr		U	-		
Return Air CO2	BA CO2		-	-			-		-				1	_		1	-				1/2 III 1/2 hr		0			
Return Air Humidity	RA-CO2			-	-	1	-		-					1		1	-				1/2 m 1/2 hr	-	0			
Filter Status	E-DP			1		1	-	1						- 1			-	-			COS		U			
Fan Motor kW	SF-KW						1														1/2 hr	1	U			Controls Contractor to provide and install meter
RA Smoke Detector Alm	Smk Alarm									1											COS		U			
VAV Box w/Heat																										With Unoccupied Setback
Zone Damper	SAD-CMD						20														1/2 hr		U			
Supply Air Temp	SAT												20								1/2 hr		U			
Electric Heat Stage-1	Elec Htg Stg-1	20																			COS		U			
Zone Air Temp	ZAT		_				_						20								1/2 hr		F, U	-		With temp adjust and override
Supply Air Flow Set Point	CFM-SP		-				-										20				1/2 hr		U			Calculated
Supply AIT Flow Actual	CFIVI		-		-	+	+										20				1/2 nr	+	0		-	
VAV Box w/o Heat									-																	With Linoccupied Setback
Zone Damper	SAD-CMD		t	1		1	7										+	-			1/2 hr	1	υ			man enoccupica setuller
Supply Air Temp	SAT						<u> </u>						7								1/2 hr	1	U			
Zone Air Temp	ZAT												7								1/2 hr		F, U			With temp adjust and override
Supply Air Flow Set Point	CFM-SP																				1/2 hr		U			Calculated
Supply Air Flow Actual	CFM																7				1/2 hr		U			
Exhaust Fans																										
Exhaust Fan Stop/Start	EF-1 Cmd	1	1	I		I	<u> </u>														COS		U			
Exhaust Fan Status	EF-1 Sts		L	<u> </u>		<u> </u>	<u> </u>				<u> </u>	1									COS		U			
Exhaust Fan Stop/Start	EF-2 Cmd	1		<u> </u>		<u> </u>	<u> </u>				—						-+		L		COS	<u> </u>	U	l		
Exhaust Fan Status	EF-2 Sts		⊢	<u> </u>	-	<u> </u>	-					1					-+	_			COS	-	U			
Lighting Donal			┣──	<u> </u>	-	–	-		-		-			_		_		_					I	L		
Exterior Lights		1	-	+	-	+	+										-+	_			COS	<u> </u>				
Corridor Lights		1	1	1	1	1	1	-									+	-			cos		ŭ			
				1	1	1	1										+	-				1	ľ –			
Totals		27	0	0 0	0	0	30	1	0	2	0	3	58	1	3	1	28	0				1	1		5	
		'				. ×					ı v			-	,	-		5								

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in July, 2017. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Public Safety Building – Points List

LOCATION									HAR	DWAR	RE										SOFTWAR	E		Communicat	ions	
Broward County - Wide			E	EMS O	UTPUT	rs						EMS	S INPL	JTS											# o Ma Pte	
		1	_	_	1	_	Г	_		_		T		_	_		_	_							ppe	
0/17/2017			DICIT				~		DI	CITAL														70/05	đ	
8/1//201/		-	DIGITA	AL.	A	INALUG	3	1		GITAL	T	-	-		ANA	LUG		1						R = RACost		
Public Safety Building		R	S	0	P	-	o.	P	7	ş	ò	2	7	Re	70	- 0	≥	0						L = LON		
Fublic Salety Building		elay	blen	onta	E.	Ŧ	10	ess	WO	vito	vern	ırre	due	elati	, 9	A b	F	the	Trend			Graphics:		M = Modbus		
PDA			oid	icto	ans	ans	dc	ure	SMI I	hс	ide	nts	era	ive	P	Sen V	Ŵ	<u>٦</u>	COS = Char	nge of state		E = Floor G	Franhics	N2 = ICI		COMMENTS AND SPECIAL FUNCTIONS
				ā.	duo	ď	9 4	wS	t,	losu		¥it.	ture	Ч	SIG	Sor 1	(CF					U - Unit Gr	raphic	FLN = Siemens		
					٩	٩	-20	itch		re		<u>G</u>	τ ρ	nidi	9	0X İ	S					S - Summa	ry Graphic	N = None		
							Ā							4	PSE	de L										
															Ŭ	eve				-						
Description	Point Name															÷.			Set Point	Schedule	Trend	Alarm	Graphic			
ECM-1 New BAS																										
Outside Air Temperature	OSA Temp							_			_		1								1/2 hr		F, U			
Supply Ean Start/Stop	SE Cmd	1					-	-	-	-	_	-	-			-				1	cos					with Optimal start
Supply Fan Status	SF Sts	-		-	-			-	-	-	-	1				-					cos	x	U U			
Supply Fan VED Speed	SEVED Speed						1	-			-	-				-					005	X	U			
Duct Static Pressure	Duct SP						-	-				-			1						1/2 hr		U			
Mixed Air Damper	MA Damper						1																U			Replace pneumatic actuator with electric
Mixed Air Temp	MAT												1								1/2 hr		U			
CHW Coil Valve	CHW Valve						1														COS		U			Replace pneumatic actuator with electric
Supply Air Temp	SAT												1								1/2 hr		U			
Return Air Temp	RAT												1								1/2 hr		U			
Filter Status	Flt Sts							1													COS		U			
SA Smoke Detector Alm	Smk Alarm									1											COS		U			
RA Smoke Detector Alm	Smk Alarm				_					1											COS		U			
VAV Box w/Heat	711 Damage		_	_				_																		
Zone Damper	ZN Damper		-	-			ð						0								1/2 br		0			
Supply Air Temp	SAT Elec Htg Stg-1			-	-			-	-	_	-		8			-			-		1/2 nr		U			
Zone Space Temp	ZN-1 Space Temp	- C	, 	-	-			_	_	-	_	-	8								1/2 hr	-	E.U			With temp adjust and override
Pressure Transducer	PT		1	1			-	-		-		-	Ű		8						1/2 hr		u			
VAV Box Clg Only			1	1																	ľ.	1	1			
Zone Damper	ZN Damper						15																U			
Zone Space Temp	ZN-1 Space Temp												15								1/2 hr		F, U			With temp adjust and override
Pressure Transducer	PT														15						1/2 hr		U			
VAV AHU-2																				1						With Optimal Start
Supply Fan Start/Stop	SF Cmd	1																			COS		U			
Supply Fan Status	SF Sts		_	_			4	_				1									COS	х	U			
Supply Fan VED Speed	SEVED Speed		-	-			1								1						1/2 br		0			
Mixed Air Damper	MA Damper		-	-	-		1	-		-	-	-	-		1	-	_				1/211		0			Penlace pneumatic actuator with electric
Mixed Air Temp	MAT						-	-				-	1								1/2 hr	-	U			Replace predmatic actuator with electric
CHW Coil Valve	CHW Valve						1	-		_	-	-	-								COS		U			Replace pneumatic actuator with electric
Supply Air Temp	SAT		1	1				t		ľ			1								1/2 hr	ľ	U	l		
Return Air Temp	RAT												1								1/2 hr		U			
Filter Status	Fit Sts							1													COS		U			
SA Smoke Detector Alm	Smk Alarm									1											COS		U			
RA Smoke Detector Alm	Smk Alarm									1											COS		U			
VAV Box w/Heat																										
Zone Damper	ZN Damper						9																U			
Supply Air Temp	SAT		_	_									9								1/2 hr		U			
Electric Heat Stage-1	Elec Htg Stg-1	9	-	 		\vdash		_	-+		-		-			-					I	1	1			
Electric Heat Stage-2	Elec Htg Stg-2	- 3	-	<u> </u>		\vdash		_	-+		-		0			-					1/2 hr		6.11			With town adjust and everyide
Pressure Transducer	pt	-	1	1			-	-	+	-	-	-	9		0						1/2 m	1	1,0	1	-	with temp adjust and overhoe
VAV Box Clg Only		-	+	+		\vdash		-	+	+	-	-	-		3			-			1/2111	1		1		
Zone Damper	ZN Damper		1	1			15	+	-		- †		-			-					1	1	υ	1		
Zone Space Temp	ZN-1 Space Temp		1	1				+	-				15		_						1/2 hr	1	F, U	1		With temp adjust and override
Pressure Transducer	PT		1	1				1					-		15						1/2 hr	1	U	1		
							_																			
Totals		22	0	0	0 0	0	53	2	0	4	0	2	71	0	49	0	0	0							0	

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

LOCATION									HA	RDWA	.KE										SOFTWAR	E .		Communicat	ions	
Broward County - Wide			E	MS O	UTPUT	'S						EM:	S INPL	JTS			SUFIWARE							1	₽ 5 *	
																									, abb	
																									ē	
8/17/2017		DIGITAL ANALOG				G		D	IGITAI	L				ANA	LOG								TYPE			
		_	1.0	-	_	_		_	_		~	~		_	_			-						B = BACnet		
Public Safety Building		Rela	Sole	Con	ΈT	PT	2-10	ores	ş	wit	Ove	E C	[en	Rela	jS,	I A C	ĥ	Oth						L = LON		
		~	no	tac	ran	ran	Nd a	Sur	ŝ	ch	rrid	ent	Ipe	tiv	٩	Se on	ō.	er	COS = Change of state F = Floor Graphics					M = Modbus		
PDA			d	ion i	sdu	sdu	9	e S	đ	8	e	ŝ	atu	Ξ	Sd	Sus 2	â						iraphics	N2 = JCI		COMMENTS AND SPECIAL FUNCTIONS
					icei	icei	4	Nite	-	Sure		/itcl	IFe	ъ	Ģ	ч й	Ξ					U - Unit Gr	aphic	FLN = Siemens		
					`	•	10	5		τp		2		ditj	Ϋ́р	xid	~					S - Summa	ry Graphic	N = None		
							nΑ								as	Ē										
	Doint Nomo															ve			Cohodulo	Cohodulo	Trond	Alorm	Crophia			
Description	FUILINAITIE							_								/			Scriedule	Scriedule	Trenu	AldIIII	Graphic			
VAV A101 2						_																				With Orthogon Chart
VAV AHU-3	CE Card		-														-			1	606					with Optimal Start
Supply Fan Start/Stop	SF Cma	1	-									-									COS	v	0			
Supply Fan Status	SF SIS											1									CUS		0			
Supply Fan VFD Speed	SEVED Speed				_		1								1		_				1/2 hr	-	0			
Mixed Air Damper	MA Damper		-				1	-			-	-			1	-					1/2 11		0			Replace preumatic actuator with electric
Mixed Air Temp	мат		1				-						1								1/2 hr				1	Replace phedmatic actuator with electric
CHW Coil Valve	CHW Valve		1			_	1	-			-		1			-	-				COS		0		1	Replace pneumatic actuator with electric
Supply Air Temp	ς ΔΤ		1				-	-			-	-	1			-	-				1/2 hr		U U			hepace preamate actuator with electric
Return Air Temp	RΔT		1					-			-	-	1			-					1/2 hr		U U			
Filter Status	Fit Sts							1			-	-	-			_	-				COS		U			
SA Smoke Detector Alm	Smk Alarm							-		1											cos		Ŭ			
RA Smoke Detector Alm	Smk Alarm									1											COS		Ū.			
VAV Box w/Heat										-						-							-			
Zone Damper	ZN Damper						5																U			
Supply Air Temp	SAT		1										5								1/2 hr		U			
Electric Heat Stage-1	Elec Htg Stg-1	5																								
Zone Space Temp	ZN-1 Space Temp												5								1/2 hr		F, U			With temp adjust and override
Pressure Transducer	PT														5						1/2 hr		U			
VAV Box Cig Only																										
Zone Damper	ZN Damper						8																U			
Zone Space Temp	ZN-1 Space Temp												8								1/2 hr		F, U			With temp adjust and override
Pressure Transducer	PT														8						1/2 hr		U			
VAV AHU-4																				1						With Optimal Start
Supply Fan Start/Stop	SF Cmd	1																			COS		U			
Supply Fan Status	SF Sts											1									COS	х	U			
Supply Fan VFD Speed	SFVFD Speed						1																U			
Duct Static Pressure	Duct SP														1						1/2 hr		U			
Mixed Air Damper	MA Damper						1																U			Replace pneumatic actuator with electric
Mixed Air Temp	MAI		-										1								1/2 nr		0			
CHW Coil Valve	CHW valve		-				1														COS		0			Replace pneumatic actuator with electric
Supply Air Temp	SAT												1								1/2 nr		0			
Return Air Temp	RAT												1				-				1/2 nr		0			
Filter Status	FIL SIS Cmk Alarm		-			_		1		1											COS		0			
BA Smoke Detector Alm	Silik Aldriii									1						_	_				005		0			
VAV Box w/Heat	STIIK AIdTIII		-		_			-		1						-	-				cos		0			
Zone Damner	7N Damper		1				8	-			-	-				-	-						11			
Supply Air Temp	SAT						Ŭ	-			-	-	8			_	-				1/2 hr		U U			
Electric Heat Stage-1	Flec Htg Stg-1	8	t								-	-	0			_	-				1/2 11		0			
Electric Heat Stage-2	Flec Htg Stg-2	1																								
Zone Space Temp	ZN-1 Space Temp		1	1									8							l	1/2 hr	1	F, U	1	1	With temp adjust and override
Pressure Transducer	PT		1	1									-		8					İ	1/2 hr	1	U	1	1	
VAV Box Clg Only			1	1																l –	1	1	1	1	1	
Zone Damper	ZN Damper		1	1			9													1	1	1	U	1	1	
Zone Space Temp	ZN-1 Space Temp												9								1/2 hr		F, U			With temp adjust and override
Pressure Transducer	PT														9						1/2 hr		U			
											T						T									
Totals		16	0	0	0	0	36	2	0	4	0	2	49	0	32	0	0	0							0	

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in July, 2017. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

LOCATION									HA	RDWA	IKE										SOFTWAR	E .		Communicat	ions	
Broward County - Wide			E	MS O	UTPUT	'S						EM	S INPL	JTS											9 ⊴ ‡	
																									app	
																		ē								
8/17/2017		DIGITAL ANALOG				G		D	DIGITA	L				ANA	LOG								TYPE			
		_	1.0	-	_	_	~	_	_					_	_			-						B = BACnet		
Public Safety Building		Rela	Sole	Con	ΈT	PT	2-10	Pres	ş	wit	Ove	Curr	[en	Rela	,IS	I A C	ĥ	Oth						L = LON		
		~	no	tac	ran	ran	Vd	Sur	ŝ	ch	rrid	ent	Ipei	tiv	9	Se on	ō.	er	Trend Graphics:					M = Modbus		
PDA			d	ion i	sdu	sdu	9	es	đ	8	e	ŝ	atu	Ŧ	PS	Sus 2	â		COS = Change of state F = Floor Graphics					N2 = JCI		COMMENTS AND SPECIAL FUNCTIONS
					icei	icei	4	wite	-	sure		/itcl	Ire	3	Ģ,	ч й	Ξ					U - Unit Gr	aphic	FLN = Siemens		
					`	•	20 г	9		(p		2		di∂	ΎΡ	xid	~					S - Summa	ry Graphic	N = None		
							ΠA							`	as	e Le										
Description	Point Name															vel			Schedule	Schedule	Trend	Alarm	Graphic			
Description	FUILINAITIE															/			Scriedule	Scriedule	Trenu	AldIIII	Graphic			
VAV A101 F																										With Octored Chest
VAV AHU-5	CE Card		-														-			1	606					with Optimal Start
Supply Fan Start/Stop	SF Cma	1	-																		COS	v	0			
Supply Fan Status	SF SIS						1					1									CUS		0			
Supply Fan VFD Speed	SEVED Speed				_		1						-		1		_				1/2 hr	-	0			
Mixed Air Damper	MA Damper		-				1	-					-	_	1	-					1/2 11		0			Panlace pneumatic actuator with electric
Mixed Air Temp	мат		1				1						1			-					1/2 hr					Replace phedinatic actuator with electric
CHW Coil Valve	CHW Valve		1				1	-					1			_	-				COS		0			Benlace ppeumatic actuator with electric
Supply Air Temp	ς ΔΤ		1				-	-			-		1			-	-				1/2 hr		U U			
Return Air Temp	RΔT		1					-			-		1			-					1/2 hr		U U			
Filter Status	Fit Sts							1					-			_	-				COS		U			
SA Smoke Detector Alm	Smk Alarm							-		1											cos		Ŭ			
RA Smoke Detector Alm	Smk Alarm									1											COS		Ŭ			
VAV Box w/Heat										_						-							-			
Zone Damper	ZN Damper						2																U			
Supply Air Temp	SAT		1										2								1/2 hr		U			
Electric Heat Stage-1	Elec Htg Stg-1	2	1																							
Zone Space Temp	ZN-1 Space Temp												2								1/2 hr		F, U			With temp adjust and override
Pressure Transducer	PT														2						1/2 hr		U			
VAV Box Cig Only																										
Zone Damper	ZN Damper						7																U			
Zone Space Temp	ZN-1 Space Temp												7								1/2 hr		F, U			With temp adjust and override
Pressure Transducer	PT														7						1/2 hr		U			
VAV AHU-6																				1						With Optimal Start
Supply Fan Start/Stop	SF Cmd	1																			COS		U			
Supply Fan Status	SF Sts											1									COS	Х	U			
Supply Fan VFD Speed	SFVFD Speed						1																U			
Duct Static Pressure	Duct SP														1						1/2 hr		U			
Mixed Air Damper	MA Damper					_	1														4 /0.1		U			Replace pneumatic actuator with electric
Mixed Air Temp	MAI		-										1								1/2 nr		0			
CHW Coil Valve	CHW valve		-				1														COS		0			Replace pneumatic actuator with electric
Supply Air Temp	DAT												1								1/2 hr	-	0			
Eilter Status			-					1					1			-					2/211		0			
SA Smoke Detector Alm	Fit 3ts Smk Alarm		-		-			1		1			-			-					cos		0			
PA Smoke Detector Alm	Smk Alarm		1							1											cos					
VAV Box w/Heat			1		-			-		1	-		-			-	-				005		0			
Zone Damper	7N Damper						9																U			
Supply Air Temp	SAT												9			-					1/2 hr		U			
Electric Heat Stage-1	Elec Htg Stg-1	9											÷			-							-			
Electric Heat Stage-2	Elec Htg Stg-2	0		1								-								Ì	1	1	1	İ		
Zone Space Temp	ZN-1 Space Temp		1	1									9							l	1/2 hr	1	F, U			With temp adjust and override
Pressure Transducer	PT		1	1											9					İ	1/2 hr	1	U			
VAV Box Clg Only				L																						
Zone Damper	ZN Damper						9																U			
Zone Space Temp	ZN-1 Space Temp												9								1/2 hr		F, U			With temp adjust and override
Pressure Transducer	РТ														9						1/2 hr		U			
			1																	ļ	I	1				
Totals		13	0	0	0	0	33	2	0	4	0	2	44	0	29	0	0	0							0	

LOCATION																				SOFTWARE					ions	
Broward County - Wide		EMS OUTPUTS										EM	IS INPU	JTS											₽ 5 3	
																									app	1
																									ē	
8/17/2017			DIGITA	AL.	A	NALO	G		D	IGITA	L				ANA	LOG								TYPE		
																								B = BACnet		
Public Safety Building		Rel	Sol	ç	Æ	Ŧ	0-1	Pre	Fo	Ŵ	Q	e c	Ter	Rel	ISd	IA Car	Air	율						L = LON		
		ay	enc	nta	Tra	Tra	8	ussi	S ×	itch	erri	rer	npe	ati	9	0,0	÷	ler	Trend			Graphics:		M = Modbus		
PDA			ĭd	đ	Insc	Insc	dc o	ire	N it	0	de	nt s	erat	/e ł	70	n N ien⊲	š,		COS = Change of state F = Floor Graphics			N2 = JCI		COMMENTS AND SPECIAL FUNCTIONS		
					luc	uc.	° 4	Swi	ch	nso		×it	ü	ú.	Ģ	ion	9					U - Unit G	raphic	FLN = Siemens		
					9	٩	-20	tch		re		S-	(D	nid	9	×.	5					S - Summa	ary Graphic	N = None		
							ā.	_						Ę.	Sd	de										
							9								0	2										
Description	Point Name															e!/			Schedule	Schedule	Trend	Alarm	Graphic			
VAV AHU-7																				1						With Optimal Start
Supply Fan Start/Stop	SF Cmd	1	L																		COS		U			
Supply Fan Status	SE Sts											1									COS	х	U			
Supply Fan VED Speed	SEVED Speed						1					_											U U	1		
Duct Static Pressure	Duct SP						_								1						1/2 hr		Ŭ			
Mixed Air Damper	MA Damper						1								_						-/		U			Beplace pneumatic actuator with electric
Mixed Air Temp	мат						_						1								1/2 hr		U U			
CHW Coil Valve	CHW Valve						1						-								COS		U U			Replace pneumatic actuator with electric
Supply Air Temp	CAT CAT				-		_	-		-			1	-							1/2 hr		U U	1		
Boturn Air Tomp	DAT							-					1				-				1/2 m 1/2 hr		0			
Eilter Status	Elt Ste				_			1					1	_							1/211	-	0			
SA Smoke Detector Alm	Cmk Alarm		-					-		1							-				COS		0			
BA Smoke Detector Alm	Silik Aldriii		-		_			_		1		-	-	-		-	-	-			005	-	0			
VAV Box w/Heat	SIIIK AldIIII		-					_		1				_			-				005		0			
Zono Domnor	7N Domoor		-				2										-					-				
Supply Air Tomp			-		_		2	-		-		-	2	-		-					1/2 hr	-	0			
Supply All Tellip	SAI	-											2								1/211	-	0			
Zone Snace Temp	ZN-1 Space Temp	2	-										2	_							1/2 hr	-	E 11			With temp adjust and override
Prossure Transducer	рт		-		-										2		-				1/2 m 1/2 hr	-	1,0		1	with temp adjust and overnue
VAV Box Clg Only	F 1																-				1/211	-	0	1	1	
Zone Damper	7N Damper		-				0	-					_	-		_	_					-				
Zone Snace Temn	ZN-1 Snace Temn						Ŭ						8								1/2 hr	-	E II			With temp adjust and override
Pressure Transducer	PT														8						1/2 hr		U			
																					-/		-			
VAV AHU-8																				1						With Optimal Start
Supply Fan Start/Stop	SF Cmd	1	L																		COS		U			
Supply Fan Status	SF Sts											1									COS	х	U			
Supply Fan VFD Speed	SFVFD Speed						1																U			
Duct Static Pressure	Duct SP														1						1/2 hr		U			
Mixed Air Damper	MA Damper						1																U			Replace pneumatic actuator with electric
Mixed Air Temp	MAT												1								1/2 hr		U			
CHW Coil Valve	CHW Valve						1														COS		U			Replace pneumatic actuator with electric
Supply Air Temp	SAT												1								1/2 hr		U			
Return Air Temp	RAT												1								1/2 hr		U	I		
Filter Status	Flt Sts							1													COS		U			
SA Smoke Detector Alm	Smk Alarm									1											COS		U			
RA Smoke Detector Alm	Smk Alarm									1											COS		U			
VAV Box w/Heat																										
Zone Damper	ZN Damper						7																U			
Supply Air Temp	SAT												7								1/2 hr		U			
Electric Heat Stage-1	Elec Htg Stg-1	7	7																							
Electric Heat Stage-2	Elec Htg Stg-2	1	L																							
Zone Space Temp	ZN-1 Space Temp												7								1/2 hr		F, U			With temp adjust and override
Pressure Transducer	PT		1	<u> </u>		L									7		L	L		L	1/2 hr		U	I	<u> </u>	
VAV Box Clg Only			1	I		L											I	L		L	I		<u> </u>	l	<u> </u>	
Zone Damper	ZN Damper		<u> </u>	<u> </u>		L	7										<u> </u>	L		L		_	U		<u> </u>	
Zone Space Temp	ZN-1 Space Temp		<u> </u>	<u> </u>		<u> </u>	<u> </u>				<u> </u>		7				<u> </u>	<u> </u>			1/2 hr		F, U	ł	<u> </u>	With temp adjust and override
Pressure Transducer	21		<u> </u>	<u> </u>		<u> </u>	<u> </u>								7		<u> </u>	<u> </u>			1/2 hr		U	ł	<u> </u>	
			<u> </u>			<u> </u>								<u> </u>			<u> </u>	<u> </u>	ļ	ļ	 				<u> </u>	
			1	-		<u> </u>								-			-	<u> </u>			I		-			
			\mathbf{H}	-		<u> </u>	-					-					-	<u> </u>								
Totals		12		-	_		20	-	0		0	-	20		20		- A	· ^		-			-	1	- /	
TULAIS		12	. 0	. 0	. 0	. 0	- 30	2	0	4	0	2	- 39	0	20	0	1 0	1 U								

LOCATION		HARDWARE																SOFTWAR	E		Communicat	ions				
Broward County - Wide			E	EMS O	UTPUT	٢S						EM	S INPL	JTS										1	₽≦ *	
																									app	
																							ed			
8/17/2017			DIGITA	AL	A	NALO	G		D	IGITAI	L				ANA	LOG								TYPE		
			T																					B = BACnet		
Public Safety Building		Re	S	S	R	Ψ.	2	Pre	Ð	ş	Ş	5	Te	Re	Sd	- G	₽ï	9						L = LON		
		łay	len	nta	7	코	10	essi	×	îtc	ner r	rre	qm	lati	, 0	Óġ	÷	her	Trend			Graphics:		M = Modbus		
PDA			0id	oto	ans	ans	dc	ure	× S	hC	ide	at .	era	ve	P	Ser	×	· ·	COS = Char	nge of state		E = Floor G	ranhics	N2 = ICI		COMMENTS AND SPECIAL ELINCTIONS
			_	Ä	duo	ď	9	ŝ	itch	sol		SVI.	Ť	문	SIS		Ĝ		cos - chui	Be of state		II - Unit G	anhic	ELN - Siemens		
					Cer	er	4-2	/itc	-	ure		tch	e,	mio	, 0	, UO	ŝ					C Cumma	apriic ry Cronhic	PLIN - Siemens		
							0 R	-						ΪŤ	2	ide						5 - Julillia	ry Graphic	N - NONE		
							Ň								ő	Fe										
Description.	Point Name															vel			Schedule	Schedule	Trend	Alarm	Graphic			
Description	1 Onit I vanito	_		_									_			/	_		Ochequie	Ochedule	THEIR	Aidim	Oraphic			
VAV AHU-9																				1						With Optimal Start
Supply Fan Start/Stop	SF Cmd	1	-	_																	COS		U			
Supply Fan Status	SF Sts											1									COS	х	U			
Supply Fan VFD Speed	SFVFD Speed						1																U			
Duct Static Pressure	Duct SP														1						1/2 hr		U			
Mixed Air Damper	MA Damper						1																U			Replace pneumatic actuator with electric
Mixed Air Temp	MAT												1								1/2 hr		U			
CHW Coil Valve	CHW Valve						1														COS		U			Replace pneumatic actuator with electric
Supply Air Temp	SAT												1								1/2 hr		U			
Return Air Temp	RAT												1								1/2 hr		U			
Filter Status	Fit Sts							1													COS		U			
SA Smoke Detector Alm	Smk Alarm									1											COS		U			
RA Smoke Detector Alm	Smk Alarm									1											COS		U			
VAV Box w/Heat																										
Zone Damper	ZN Damper						3																U			
Supply Air Temp	SAT												3								1/2 hr		U			
Electric Heat Stage-1	Flec Htg Stg-1	2																			-,	1	-			
Electric Heat Stage-2	Flec Htg Stg=1	1	-																							
Zone Space Temp	ZN-1 Space Temp		-	-							-		2			-	-				1/2 hr		E 11			With temp adjust and override
Pressure Transducer	рт		1										5		2						1/2 m 1/2 hr	-	1,0			with temp adjust and overnoe
VAV Box Clg Only		_						-		-	-		_	-	J	-	_				1/211	-	0			
Zono Domnor	7N Domoor		-				2	-					-		_											
Zone Canpel	ZN Damper		-				~	-					2	-	_						1/2 hr		с II			With tome adjust and override
Drossuro Transdusor	DT DT	-	-										2		2		_				1/2 III 1/2 hr		r, u			with temp adjust and overhoe
Flessure fransuucei	ri -		-												2						1/2111		U			
VAV A101 40			-	-																						With Orthogon Chart
VAV AHU-10	68.0 I		-																	1	0.00					with Optimal Start
Supply Fan Start/Stop	SF Cmd	1															_				COS		U			
Supply Fan Status	SF StS			_								1									COS	X	U			
Supply Fan VFD Speed	SEVED Speed						1																U			
Duct Static Pressure	Duct SP														1						1/2 hr		U			
Mixed Air Damper	MA Damper						1																U			Replace pneumatic actuator with electric
Mixed Air Temp	MAT												1								1/2 hr		U			
CHW Coil Valve	CHW Valve		 	1		<u> </u>	1											<u> </u>	I	— —	COS	<u> </u>	U	l	I	керіасе pneumatic actuator with electric
Supply Air Temp	SAT												1								1/2 hr		U			
Return Air Temp	RAT												1								1/2 hr		U			
Filter Status	Flt Sts							1													COS		U			
SA Smoke Detector Alm	Smk Alarm									1											COS		U			
RA Smoke Detector Alm	Smk Alarm									1											COS		U			
VAV Box Clg Only																										
Zone Damper	ZN Damper						4																U			
Zone Space Temp	ZN-1 Space Temp												4								1/2 hr		F, U			With temp adjust and override
Pressure Transducer	PT														4						1/2 hr		U			
																										With temp adjust and override
			1	1						1												1		1		
			1	1														1			1	1	1	1	1	
			1	1		1												1			i i	İ.		Ì	1	
	i i		1	t –	i d													<u> </u>	1		1	1	1	İ		
			1	1														1			i –	1	İ	1	1	
			1	1	1													<u> </u>			1	1	i	I		
Totals		5	0	0 0	0	0	15	2	0	4	0	2	18	0	11	0	0	0				1			0	

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

LOCATION									rIAR	UVVA	nc.										JULIAK	E		communicat	IUIIS	I description of the second second second second second second second second second second second second second
Broward County - Wide			E	MS O	UTPUT	S						EM	S INPL	JTS											₽to	
	1											I							1					1	dde	1
																								1	ed	
8/17/2017		DIGITAL ANALOG				G		DI	GITAL	· .				ANA	LOG								TYPE	<u> </u>		
		-	6	~	-		_	-	-	6	~	~	_	-	-	_								B = BACnet		
Public Safety Building		tela:	olei	iont	Ť	PI	10	res	Š.	×.	Ver	μ,	ém	tela:	ŝ,	Jarb IAO	Ξ.	The	Trend			Crachia		L = LON	1	
		~	noi	tact	rang	ran	Ndc 1	sure	vS/	ch (rid	ent	iper	tive	9	Se	No	4	irend			Graphics:		M = Modbus	1	COMMENTS AND SDECIMI SUMSTIONS
PDA			۵.	٩	sdu	sdu	9	ŝ	/itch	Sol	۶D	Swi	atu	H	SIG	Mo	â		COS = Change of state F = Floor Graphics				raphics	NZ = JUI	1	COMMENTS AND SPECIAL FUNCTIONS
			1	1	cer	cer	4-20	vitc	-	ure		tch	ſe	mid	, o	٦ ño x	š.					S - Summa	apfile ry Granbie	N = None	1	
							8	7				_		lity	- PS	ide	-					5 - Summa	iry Graphic	N - NOTE		
							Þ								Ð	5										
Description	Point Name															/el/			Schedule	Schedule	Trend	Alarm	Graphic			
		-						-	-	-	-	-	-													
VAV AHU-11												_	_							1						With Optimal Start
Supply Fan Start/Stop	SF Cmd	1																			COS		U			
Supply Fan Status	SF Sts											1									COS	х	U			
Supply Fan VFD Speed	SFVFD Speed						1																U			
Duct Static Pressure	Duct SP														1						1/2 hr		U			
Mixed Air Damper	MA Damper						1																U			Replace pneumatic actuator with electric
Mixed Air Temp	MAT		<u> </u>	<u> </u>									1							L	1/2 hr	L	U	I	<u> </u>	
CHW Coil Valve	CHW Valve		I	I			1										<u> </u>	<u> </u>			COS	ļ	U		<u> </u>	Replace pneumatic actuator with electric
Supply Air Temp	SAT		<u> </u>	<u> </u>									1				-	L			1/2 hr		U	l	<u> </u>	
Return Air Temp	RAT		<u> </u>	<u> </u>									1		<u> </u>		-	-		L	1/2 hr		U		<u> </u>	
Filter Status	Fit Sts							1		_							_				COS		U			
SA Smoke Detector Alm	Smk Alarm					_			_	1	_		_				-				COS		0			
KA Smoke Detector Alm	Smk Alarm									1			-				-				cos	-	0			
Zone Damper	7N Damper					-	0	-	-	-	-	-	-	_			-						11			
Supply Air Temp	SAT						0	-	-		-		8				-				1/2 hr		U U			
Electric Heat Stage-1	Elec Htg Stg-1	8				-			-	-	-	_	Ű								1/2 11		0		1	
Zone Space Temp	ZN-1 Space Temp	1						-	-	-	-	-	_								1/2 hr		F. U			With temp adjust and override
Pressure Transducer	РТ												8								1/2 hr		U			
VAV Box Clg Only	1														8									1		
Zone Damper	ZN Damper																						U	1		
Zone Space Temp	ZN-1 Space Temp						9														1/2 hr		F, U			With temp adjust and override
Pressure Transducer	PT												9								1/2 hr		U			
															9											
VAV AHU-12																				1						With Optimal Start
Supply Fan Start/Stop	SF Cmd	1																			COS		U			
Supply Fan Status	SF Sts											1					_				COS	х	U			
Supply Fan VFD Speed	SFVFD Speed						1										_				4 /0 /		U			
Duct Static Pressure	Duct SP														1		_				1/2 nr		0			
Mixed Air Damper	MA Damper						1		_	_	_		1				_				1/2 hr		U			Replace pneumatic actuator with electric
CHW Coil Volvo	CHW Value					-	1	-	_	_			1	_			-				1/211		0			Poplace provinctic actuator with electric
Supply Air Temp	CHW Valve					-	1	-	-	-	-	-	1				-				1/2 hr		0			Replace predmatic actuator with electric
Return Air Temp	RAT	-	1	1		_		-	-	-	-		1		-		1	<u> </u>			1/2 hr	1	ŭ	1	1	
Filter Status	Flt Sts	-	1	1				1	-	-	-		-			-	1	1			cos	1	U	1		
SA Smoke Detector Alm	Smk Alarm		1	1				-		1							1	1			cos	1	U	1	1	
RA Smoke Detector Alm	Smk Alarm		1	1						1							1	<u> </u>		1	cos	1	U	1	1	
VAV Box w/Heat			1	1													1	i –		i –		1	1	1	1	
Zone Damper	ZN Damper						8																U			
Supply Air Temp	SAT												8								1/2 hr		U			
Electric Heat Stage-1	Elec Htg Stg-1	8																								
Electric Heat Stage-2	Elec Htg Stg-2	1																								
Zone Space Temp	ZN-1 Space Temp				LI								8								1/2 hr		F, U			With temp adjust and override
Pressure Transducer	РТ		I	I											8		<u> </u>	<u> </u>			1/2 hr	L	U	I	I	
VAV Box Clg Only	[<u> </u>	L			L	ļ		I		
Zone Damper	ZN Damper		<u> </u>	<u> </u>			9										-	ļ					U		<u> </u>	
Zone Space Temp	ZN-1 Space Temp		<u> </u>	<u> </u>			\vdash		_				9				-				1/2 hr	+	F, U	ł	<u> </u>	With temp adjust and override
Pressure Transducer	21	—	<u> </u>	<u> </u>		_		_	-	_			_		9		+	<u> </u>			1/2 nr	+	U		<u> </u>	
		—				_	$ \rightarrow $		\rightarrow	_		_	_		-	—	+	<u> </u>				+	<u> </u>	l		l
	1		-	-		_		-	-	-		_	-		-		+	<u> </u>			l	+		1		
		-	1	1		_		-		-	-	_	_			-	1	-		<u> </u>		+	1	1	1	
Totals		20	0	0	0	0	40	2	0	4	0	2	56	0	36	0	0	0						1	0	
					-	-		_	-		-	_							-							

OPTERRA An excele company
Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

LUCATION									nAr	NDVVA	INE										SOFIWAR	\C		Communicat	10115	
Broward County - Wide			E	MS O	UTPUT	'S						EM	1S INP	UTS											₽ ≤ 1	
-					r i								r												app	
																									oed	
8/17/2017			DIGITA	L	А	NALO	G		D	IGITA	L				ANA	LOG								TYPE		
.,,			T	- -			-		Ē	1	_	1		T I			1	1						R = RACost		
Public Safety Ruilding		2	S	0	P	-	o.	P	ш	Ś	0	Ω	7	2	2	- C	≥	0						L - LON		
Fublic Safety Building		ela	ler	ont	E E	Ť	10	es:	Ŵ	Ť	Ver	JTL .	B	a	,e	Аg	-	the	Trond			Cranhice		M = Modbur		
		~	DO.	act	an:	an:	Vdc	sun	٨S	5	rid	ent	per	τ έ	٩	Se	No V	ä	rrend			Graphics:				
PDA			۵.	٩	sdu	sdu	9	ŝ	îti	÷	æ	٨S	atu	Ξ	S	nsc M	à		COS = Cha	nge of state	2	F = Floor	Graphics	N2 = JCI		COMMENTS AND SPECIAL FUNCTIONS
					ice	ice	4	Si	-	Sur		/itc	re	E	Ģ	r no	Ξ					U - Unit G	iraphic	FLN = Siemens		
							20	5		e		ч		dit	٩	Ř	=					S - Summ	ary Graphic	N = None		
							m/							~	Š	e										
							-								Ŭ	.es										
Description	Point Name															e!			Schedule	Schedule	Trend	Alarm	Graphic			
			1		-	-	-																			
		-			_	_		-			_						-					-	-		-	With Ontimal Start
Gurah Fas Chart (Char	of our d		-		-	-							-				-			-		-				with optimal start
Supply Fan Start/Stop	SFCMd	- 1	-											_			-				CUS		U			
Supply Fan Status	SF Sts											1									COS	х	U			
Supply Fan VFD Speed	SFVFD Speed						1																U			
Duct Static Pressure	Duct SP														1						1/2 hr		U			
Mixed Air Damper	MA Damper						1																U			Replace pneumatic actuator with electric
Mixed Air Temp	MAT												1								1/2 hr		U			
CHW Coil Valve	CHW Valve		1				1											1	1	1	cos		U	1		Replace pneumatic actuator with electric
Supply Air Temp	SAT												1								1/2 hr		ii.			
Return Air Temp	PAT		-		-						-		1				-				1/2 hr		U U	1		
Filter Status	Elt Sta	-	-		_	-		1			_		1	-		-	-				2/211	-	0		-	
Filter Status	FIL SLS							1	-					-			-				005	_	0			
SA Smoke Detector Alm	Smk Alarm									1							_				COS		U			
RA Smoke Detector Alm	Smk Alarm									1											COS		U			
VAV Box w/Heat																										
Zone Damper	ZN Damper						8																U			
Supply Air Temp	SAT												8								1/2 hr		U			
Electric Heat Stage-1	Elec Htg Stg-1	8	1																		1					
Zone Space Temp	ZN-1 Space Temp	1																	1		1/2 hr		F. U			With temp adjust and override
Pressure Transducer	PT												8								1/2 hr		U.			
VAV Box Clg Only		-	-		-	-					-		Ŭ		0	-					1/2111			1		
Zono Dompor	7N Domoor		-												°		-				-					
Zone Damper	ZN Damper		-				0														1/2 5 4		5.11		-	settede Annound a Minute and announded
Zone space remp	ZN-1 Space Temp						9							_							1/2 nr	_	F, U			with temp adjust and override
Pressure Transducer	PT												9								1/2 hr	_	U			
															9											
VAV AHU-14																				1	L					With Optimal Start
Supply Fan Start/Stop	SF Cmd	1																			COS		U			
Supply Fan Status	SF Sts											1									COS	х	U			
Supply Fan VFD Speed	SFVFD Speed						1																U			
Duct Static Pressure	Duct SP														1						1/2 hr		U			
Mixed Air Damper	MA Damper						1														ľ.		ii.			Replace pneumatic actuator with electric
Mixed Air Temp	MAT						-			-			1								1/2 hr	-	Ŭ.			
CHW Coll Value	CHW/ Value		-				1				-		-			-	-				COS	-	U U	1		Peoplese proumptic actuator with electric
Supply Air Tomp	CAT		+		-	-	Ţ				-			 	-		-	-	 	1	1/2 hr	+	ŭ	ł	+	reproce predmatic actuator with electric
Boture Air Tome	DAT		 										1	1	-		-	-		+	1/2 III	+	5	ł	-	
Recurn Air Temp	nai en o	-	<u> </u>										1	-	-		-				1/2 nr			1		
Filter Status	FIT STS		<u> </u>					1						L			L	L			COS		U	I		
SA Smoke Detector Alm	Smk Alarm		I							1				I			L		L		COS	_	U	I	<u> </u>	
RA Smoke Detector Alm	Smk Alarm									1									I		COS		U			
VAV Box w/Heat																										
Zone Damper	ZN Damper						8																U			
Supply Air Temp	SAT												8						1		1/2 hr		U			
Electric Heat Stage-1	Elec Htg Stg-1	8	1															1	1	1	ľ.		1	1		
Electric Heat Stage-2	Elec Htg Stg-2	1																								
Zone Snace Temp	7N-1 Space Temp		1										0				1	1	1	1	1/2 hr	1	E LI	1	1	With temp adjust and override
Pressure Transducer	DT		1		-			-	-				- °	1 -			1	+		1	1/2 hr	+	., 0	1	1	with temp adjust and overhide
VAV Poy Cla Only	r 1	-	-		-	_			$ \rightarrow $		-			 	- ⁸		-	-			1/2111	+	5	+	-	
VAV BOX LIG UNIY	3 1 - 0	<u> </u>	<u> </u>						$ \rightarrow $					┣──	<u> </u>		<u> </u>	-	I	<u> </u>	I	4	<u> </u>			
Zone Damper	ZN Damper		ļ				9							L			<u> </u>	-			<u> </u>		U	L		
Zone Space Temp	ZN-1 Space Temp		I										9				L	I	L	1	1/2 hr	_	F, U	I	L	With temp adjust and override
Pressure Transducer	PT														9						1/2 hr		U	I		
									L																	
																									1	
Totals		20	0	0	0	0	40	2	0	4	0	2	56	0	36	0	0	0						1	(
	-																									

1

-

LOCATION

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

LUCATION									HAN	DWA	ne –										SOLIVAL	\C		Communica	IUIIS	
Broward County - Wide			E	MS O	UTPUT	'S	T					EMS	S INPU	JTS										1	₽ ≤ 1	
							- 1					1	-						1						de o	
																			1						bed	
8/17/2017			DIGITA	a	Α	NALO	G		DI	GITAI					ANA	10G								TYPE	_	
			T	- -					T	T	- 1	-	1					1						R - RACoot		
Public Safety Pullding		æ	S	0	P	Ξ.	o.	P	2	S	0	Ω	7	2	7	- Q	⊳	0						L - LON		
Fublic Safety Building		elay	ler	ont	E.	Ť	10	es:	٩ ٧	N.	ĕ,	17	m	elat	,≅	δæ	-	the	Trond			Cranhice		M = Modbur		
		~	DO:	act	an:	an:	٧dc	Sup	Š	5	-Ti-	ent	per	ťve	4	Se S	Ň	а Т	Trend			Graphics:				
PDA			۵.	٩	sdu	sdu	9	ŝ	đ	E .	æ	ş	atu	Ŧ	ISd	s s	à		COS = Chai	nge of state		F = Floor	Graphics	N2 = JCI		COMMENTS AND SPECIAL FUNCTIONS
					ice	ICe	4	ş.	-	Sun		/itc	re	Э	Ģ	Υğ	ŝ					U - Unit G	iraphic	FLN = Siemens		
							20	5		æ		-		dit	P F	ă	-					S - Summ	ary Graphic	N = None		
							ΠA							<	as	e –										
															-	eve eve										
Description	Point Name															1			Schedule	Schedule	Trend	Alarm	Graphic			
							1													1				1		
VAV AHU-15																				1						With Optimal Start
Supply Fan Start/Stop	SE Cmd	1																			COS		U			
Supply Fan Status	SF Sts							-		- 1		1									COS	x	-			
Supply Fan VED Speed	SEVED Speed						1	-		-	-	-	-								005	~				
Duct Static Processo	Duct SP		-				1	-		-	-	-	-		1	-					1/2 hr		U U			
Mined Air Deserver	MA Damas	-	-		-			-		-	-	-	-	-	1	-					1/2 11	-				
Mixed Air Damper	MA Damper				_		1			_			-								4 /0.1	-	0			Replace pneumatic actuator with electric
Mixed Air Temp	MAI												1								1/2 nr	_	U			
CHW Coil Valve	CHW Valve						1														COS		U			Replace pneumatic actuator with electric
Supply Air Temp	SAT												1								1/2 hr		U			
Return Air Temp	RAT												1								1/2 hr		U			
Filter Status	Flt Sts							1													COS		U			
SA Smoke Detector Alm	Smk Alarm									1											COS		U			
RA Smoke Detector Alm	Smk Alarm									1											COS		U			
VAV Box w/Heat																										
Zone Damper	ZN Damper						8																U			
Supply Air Temp	δΔΤ		1				-	-		- 1			8								1/2 hr		-			
Electric Heat Stage 1	Elos Htg Stg 1							-		-	-		Ť			-					1/2 11	-	0		-	
Zono Space Temp	ZNI 1 Conco Tomo	1	·		-			_		-	-		-			-					1/2 br		E 11			With tomp adjust and querride
Zone space remp	ZN-1 Space remp		-								-										1/211		r, u			with temp adjust and overhue
Pressure transducer	P1				_					_			8								1/2 nr	-	U			
VAV Box Clg Only															8							_				
Zone Damper	ZN Damper																						U			
Zone Space Temp	ZN-1 Space Temp						9														1/2 hr		F, U			With temp adjust and override
Pressure Transducer	PT												9								1/2 hr		U			
															9											
VAV AHU-16																				1						With Optimal Start
Supply Fan Start/Stop	SF Cmd	1																			COS		U			
Supply Fan Status	SF Sts											1									COS	х	U			
Supply Fan VFD Speed	SFVFD Speed						1																U			
Duct Static Pressure	Duct SP														1						1/2 hr		U			
Mixed Air Damper	MA Damper						1	_		-	_	_				-					-/					Replace preumatic actuator with electric
Mixed Air Temp	мат				-		-	-		-	-	-	1		_	-					1/2 hr	-	0			Replace priedmatic actuator with electric
Curve Call Value	CINALISIS	-	-		-			-		-	-	-	-	-		-					2/211	-				Deplementation and a second second second
CHW Coll Valve							1	_		_						_					0.03	_	0			
Supply Air Temp	DAT		I					_	_	-	-	_	1	_		_		<u> </u>			1/2 fir	+	0		l	
Return Air Temp	KAI												1								1/2 nr	_	U			
Filter Status	FIt Sts							1													COS		U			
SA Smoke Detector Alm	Smk Alarm		1							1										L	COS		U	L		
RA Smoke Detector Alm	Smk Alarm									1											COS		U			
VAV Box w/Heat																										
Zone Damper	ZN Damper						8																U			
Supply Air Temp	SAT												8								1/2 hr		U			
Electric Heat Stage-1	Elec Htg Stg-1	8	1																		ĺ.					
Electric Heat Stage-2	Flec Htg Stg-2	1	1				-			-	-					-		1	1	1	1	1		1	1	
Zone Space Temp	ZN-1 Space Temp	-					-			-		-	0								1/2 hr		E 11			With temp adjust and override
Pressure Transducer	DT		1		-			-	-	-		-	3	-				-		l	1/2 hr	1	., 0	1	1	when temp sugast and overhoe
VAV Per Cla Only			-		-				_	-					8		\vdash	-			1/2111	+	5	1	-	
VAV BOX LIG UNIY			<u> </u>							_								-				+	1.	+	-	
Zone Damper	ZN Damper		ļ				9													L	<u> </u>		U	I		
Zone Space Temp	ZN-1 Space Temp		L							_			9					L		L	1/2 hr		F, U	1	<u> </u>	With temp adjust and override
Pressure Transducer	PT		I												9			L	l	ļ	1/2 hr	1	U	l	I	
			1																		1					
																								1		
Totals		20	0	0	0	0	40	2	0	4	0	2	56	0	36	0	0	0		i i i i i i i i i i i i i i i i i i i	1	1	1	1	(

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

LOCATION									HA	RDWAI	RE										SOFTWAR	E		Communicat	ions	
Broward County - Wide			E	EMS O	UTPU	TS						EMS	S INPL	JTS											₽≦ *	
																									app	
																									ed	
8/17/2017			DIGITA	AL	A	ANALO	G		D	IGITAL	_				ANAL	OG								TYPE		
			1	1		1																		B = BACnet		
Public Safety Building		Re	8	8	R	-9	Ŷ	P		Ş	9	2	5	Re	23	- _ຄ	≥	0						L = LON		
		ilay.	len	ňt	E.	÷.	10	ess	×	Ìč	/eri	176	Ë,	lat		5 7	2	:he	Trend			Graphics		M = Modbus		
004		~	0i	acte	ans	ans	/dc	üre	۸S	5	ride	ň,	ĕ	Ne.		ŝ	ş	7	COS - Char	one of state		E = Eloor (ranhice			COMMENTS AND SPECIAL EUNCTIONS
PDA			<u> </u>	Ÿ	du	ď	9	ŝ	itc	00		Š	ť	Ŧ	Si	5 5	^o		CO3 – Chai	ige of state		F - FIUUT C	arapines	NZ - JCI		CONVINIENTS AND SPECIAL FUNCTIONS
					ce	ce	4	Nite:	2	u i		itc	re	3	ι, G	5	Ξ					U - Unit G	raphic	FLN = Siemens		
						1 ·	0	5				_		di i	P P	ä	~					S - Summa	ary Graphic	N = None		
							nΑ								S.	-										
																eve										
Description	Point Name															-			Schedule	Schedule	Trend	Alarm	Graphic			
VAV AHU-17																				1						With Optimal Start
Supply Fan Start/Stop	SF Cmd	1																			COS		U			
Supply Fan Status	SF Sts											1									COS	Х	U			
Supply Fan VFD Speed	SFVFD Speed						1																U			
Duct Static Pressure	Duct SP														1						1/2 hr		U			
Mixed Air Damper	MA Damper						1																U			Replace pneumatic actuator with electric
Mixed Air Temp	MAT												1								1/2 hr		U			
CHW Coil Valve	CHW Valve				1		1			-			-		-						COS		U			Replace pneumatic actuator with electric
Supply Air Temp	δΔΤ		1							-			1			-					1/2 hr		U.			
Boturn Air Tomp	BAT		-	-	-								1			-	-				1/2 hr	-	0		-	
Filter Status	NAI Elt Sto		-		-		-	1		-			1			_	-				1/211		0			
CA Caralia Data ata a Alas	Fit StS		-					1		1			-				_				003		0			
SA Smoke Detector Alm	Smk Alarm			_	-	-	-			1			-			_	_	_			CUS		0			
RA Smoke Detector Aim	Smk Alarm		-							1											COS		U			
VAV Box w/Heat																										
Zone Damper	ZN Damper						8																U			
Supply Air Temp	SAT												8								1/2 hr		U			
Electric Heat Stage-1	Elec Htg Stg-1	8	1																							
Zone Space Temp	ZN-1 Space Temp	1																			1/2 hr		F, U			With temp adjust and override
Pressure Transducer	PT												8								1/2 hr		U			
VAV Box Clg Only															8											
Zone Damper	ZN Damper																						U			
Zone Space Temp	ZN-1 Space Temp						9														1/2 hr		F, U			With temp adjust and override
Pressure Transducer	PT												9								1/2 hr		U			
															9											
VAV AHU-18																				1						With Optimal Start
Supply Fan Start/Stop	SF Cmd	1																			COS		U			
Supply Fan Status	SE Sts		1									1				_					COS	х	U			
Supply Ean VED Speed	SEVED Speed				1		1			-		-	-		-								U			
Duct Static Pressure	Duct SP		1							-			-		1	-					1/2 hr		U.			
Mixed Air Damper	MA Damper						1	-		-	-	-	-		-	-	-				1/2 11					Replace preumatic actuator with electric
Mixed Air Temp	MAT						1	-	_	-	-	-	1		-	-	-				1/2 hr		11			Replace predmatic actuator with electric
CHW Coll Value	CHW Value		-			-	1	-		-			-			-	-	-			1/211					Poplaco provinctio actuator with electric
Control Control Valve	CAT	-	-		-		1		-			-	4			-	-				1/2 hr					Replace priedmatic actuator with electric
Boture Air Temp	DAT		 	+	+	 	<u> </u>					-	1		-	-	-+	-			1/2 III	1	U.	1	-	
Filter Ctetus	The Car		I	+	-	-		_		-		-	1			-	-				1/2 111	1	ŭ	l		
Finter Status	FIL DIS Carely Alexand		 	 	 	-	├──	1					_	_			-				cos	+	U		<u> </u>	
SA Smoke Detector Alm	Smk Alarm					_				1			_			_					COS		U			
RA Smoke Detector Alm	Smk Alarm				_					1											COS		U			
VAV Box w/Heat				_																						
Zone Damper	ZN Damper						8																U			
Supply Air Temp	SAT												8								1/2 hr		U			
Electric Heat Stage-1	Elec Htg Stg-1	8	t i																							
Electric Heat Stage-2	Elec Htg Stg-2	1																								
Zone Space Temp	ZN-1 Space Temp												8		I						1/2 hr		F, U			With temp adjust and override
Pressure Transducer	PT														8						1/2 hr		U			
VAV Box Clg Only																										
Zone Damper	ZN Damper		1				9																U			
Zone Space Temp	ZN-1 Space Temp		1	1	1	1							9							1	1/2 hr	1	F, U	1		With temp adjust and override
Pressure Transducer	РТ		1	1	1	1							- 1		9					l –	1/2 hr	1	U	1	1	
	I		1	1	1	1											-	-		1		1	1	1		
	1		1	1	1	1				-								-		t –	1	1	1	1		
	1		1	1	1	1				-					-	-	-	-		1	1	1	1	1	-	
		-	1	1	1	1		-		-	-		-		-	-	-	-				1	1	1		
Totals		20	0		0	0	40	2	0	4	0	2	56	0	26	0	0	0			-	-		1		
TULdIS		20	, U	γ U	- U	. 0	40	2	U	4	U	2	20	U	30	U	U	U							. 0	

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in July, 2017. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

LOCATION									HAKL	WAR	E									SOFIWAR	E .		Communicat	ions	
Broward County - Wide			E	MS O	UTPUT	'S						EMS IN	NPUTS	5										₽ 5 *	
																								, abb	
																								ē	
8/17/2017			DIGITA	AL.	A	NALO	G		DIG	ITAL				A	ANALO	G							TYPE		
																							B = BACnet		
Public Safety Building		Rel	Sol	ç	PE.	Ŧ	2	Pre	8	ŝ	Q 6	C e	1 R		A IS	Car	ę						L = LON		
		ay	eno	ntac	Tra	Tra	8	uss	N S	in l	erri e	npe	1	-	s o	bo Fo	ler	Trend			Graphics:		M = Modbus		
PDA			ā	ð	nsd	nsd	lc o	re	Ni C	2	de 5	f and	c c		P S	N N		COS = Cha	nge of state		F = Floor G	iraphics	N2 = JCI		COMMENTS AND SPECIAL FUNCTIONS
				·	luce	luce	4	Swi	3			ure ure	9		G P	on Fr					U - Unit Gr	aphic	FLN = Siemens		
					4	4	20	ťch	-	5	1	÷	ā	1	9	×i È					S - Summa	ry Graphic	N = None		
							m,						~		ISG	de L									
							-								~	.eve									
Description	Point Name															1		Schedule	Schedule	Trend	Alarm	Graphic			
CV AHU-19																			1						With Optimal Start
Supply Fan Start/Stop	SF Cmd	1																		COS		U			
Supply Fan Status	SF Sts											1								COS	Х	U			
Mixed Air Damper	MA Damper						1															U			Replace pneumatic actuator with electric
Mixed Air Temp	MAT												1							1/2 hr		U			
CHW Coil Valve	CHW Valve						1													COS		U			Replace pneumatic actuator with electric
Supply Air Temp	SAT												1							1/2 hr	1	U			
Return Air Temp	RAT												1							1/2 hr		U			
Filter Status	Flt Sts							1												COS	1	U			
SA Smoke Detector Alm	Smk Alarm									1										COS		U			
RA Smoke Detector Alm	Smk Alarm									1										COS		U			
RTU-1																									With Optimal Start
Supply Fan Start/Stop	SF Cmd	1																		COS		U			
Supply Fan Status	SE Sts									-	_	1								COS	x	Ŭ			
DX Compressor Stage 1	DX Stg 1 Cmd	1						-		-	_	-								COS		Ŭ			
DX Compressor Stage 2	DX Stg 2 Cmd	1						-									-			COS		U.			
Elec Heat Stg-1	ZN-1 Flec Htg Stg-1	1						-	_	-	_				-	_	-			COS		U U			
Elec Heat Stg-2	ZN-1 Flec Htg Stg-2	1						-		-						-				COS		U.			
Supply Air Temp	ZNL1 SAT							-	-	-	_	-	1		-	_	-			1/2 hr					
Space Temp	ZN-1 Snace Temp					_	-	-	-	_		-	1	-	-	_	-			1/2 m 1/2 hr		6 II			With temp adjust and override
Space remp	ZN-1 Space Temp							-		_	-	-	-	-	-	_	-			1/2 111		1,0			with temp adjust and overnue
PTIL 2								-		-	-		-		-	-	-							1	With Ontimal Start
Supply Ean Start/Stop	SE Cmd	1						-	-	-	_		-	-	-	-	-			005		11			with Optimal Start
Supply Fan Status	SF Chiu	-	-					-		_	-	1		-	-	_	-			cos	v				
Supply Part Status	DV Charl Canal						-	-		-		-		_	_	_	-			cos	^	0			
DX Compressor Stage 1	DX Stg 1 Cillu		-					_		_		-	-		_	_	-			cos		0			
DX Compressor Stage 2	DX Stg Z Cmd		-		_			_		_	-	-	_	-	-	_	-			COS		0			
Elec Heat Stg-1	ZIN-1 Elec Hig Sig-1	_	-	-			-	-		-		_		_	_	_	-			cos		0			
Elec Heat Stg-2	ZN-1 EIEC Htg Stg-2		-					_		_	_	_	-	_		_	-			1/2 hr		0			
Supply Air Temp	ZN-1 SAT				_			_	_	_		_	1	_	_	_	-			1/2 nr		0			Attable services and the service of an example of a
Space remp	ZN-1 Space Temp						-			_	_	_	1	_		_	-			1/2 nr		F, U			with temp adjust and override
0711.2	l						<u> </u>	_		_	_		+	+	_		-	I	<u> </u>	<u> </u>	<u> </u>	<u> </u>			Mish Orderel Grat
Supply Eap Start/Stor	SE Cond	-	<u> </u>	-			<u> </u>	-		_	_		+		_		-		 	005	1			l —	with optimal start
Supply Fan Starty Stop	or cilla	- 1		 			<u> </u>	_		_	_	-	+	+	_	+	_	I	<u> </u>	cos				<u> </u>	
Supply Fan Status	DV Che 1 Cand	<u> </u>	<u> </u>	<u> </u>			<u> </u>	_		_	_	1	+	+	_	_	_	I	<u> </u>	cos	^			<u> </u>	
DX Compressor Stage 1	DX Stg 1 Cmd		-	<u> </u>		$ \square$	\vdash	_		_		-	+	+	_	+	_	 		COS	+	0		<u> </u>	
DX Compressor Stage 2	DX Stg 2 Cmd	1	-					_		_	_	_	_	_		_	_			COS		U			
Elec Heat Stg-1	ZN-1 Elec Htg Stg-1	1											_	_		_	_			COS		U			
Elec Heat Stg-2	ZN-1 Elec Htg Stg-2	1	-					_			_		_	_		_	_			COS		U			
Supply Air Temp	ZN-1 SAT										_	_	1	_	_	_	_			1/2 hr		U			
Space Temp	ZN-1 Space Temp												1			_				1/2 hr		F, U			With temp adjust and override
																_	_								
RTU-4			I															I		L	1	I		I	With Optimal Start
Supply Fan Start/Stop	SF Cmd	1	-															I		COS	1	U		<u> </u>	
Supply Fan Status	SF Sts		I									1						I		COS	Х	U			
DX Compressor Stage 1	DX Stg 1 Cmd	1	-															<u> </u>		COS	1	U			
DX Compressor Stage 2	DX Stg 2 Cmd	1	<u> </u>	l														ļ		COS	L	U		<u> </u>	
Elec Heat Stg-1	ZN-1 Elec Htg Stg-1	1	-															I	<u> </u>	COS	I	U		I	
Elec Heat Stg-2	ZN-1 Elec Htg Stg-2	1																I		COS		U			
Supply Air Temp	ZN-1 SAT		L										1					1		1/2 hr	1	U			
Space Temp	ZN-1 Space Temp		I										1					I		1/2 hr	1	F, U			With temp adjust and override
Totals		21	. 0	0	0	0	2	1	0	2	0	5	11	0	0	0	0 0)						0	

Exhibit 1

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in July, 2017. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

LOCATION									HAI	RDWA	.RE										SOFTWAR	E		Communicat	ions	
Broward County - Wide			E	MS O	UTPUT	٢S						EM	S INPL	JTS											Ma Ma	
																									dde	
																									e	
8/17/2017			DIGITA	AL.	A	NALO	G		D	IGITAI	L				ANA	LOG								TYPE		
																								B = BACnet		
Public Safety Building		Rel	Sol	G	PE	Ψ.	0-1	Pre	Fo	٧S	Ŷ	e c	Ter	Rel	Sd	⊢ A	Air	Ott						L = LON		
		ay	enc	nta	Tra	Tra	2	ussi	S M	itch	erri	rer	npe	ati	9	Оğ	÷	her	Trend			Graphics:		M = Modbus		
PDA			ĭd	đ	insc	insc	dc o	ire	N it	0	de	t S	erat	/e ŀ	78	ien v	š,		COS = Char	nge of state		F = Floor G	iraphics	N2 = JCI		COMMENTS AND SPECIAL FUNCTIONS
					duc	uc	¥ 4	Ŵ	:ch	ISO		Nit.	Ϋ́	É	G	1 on	G					U - Unit Gr	aphic	FLN = Siemens		
					er	e,	-20	itch		Ire		Ch	ro.	nid	9	×.	3					S - Summa	ry Graphic	N = None		
							3	-						τř	S	de							/ /			
							₽								•	5										
Description	Point Name															e!/			Schedule	Schedule	Trend	Alarm	Graphic			
			1		-						-	-				-										
Chiller 1 thru 3																						1				Communication with chiller
CHLR1-STOP/START	CHUR CMD	1										-									COS		11			
CHIR1-STATUS	CHW ISO VALVE	-						-		1		-									cos		U U			
CHLP1-CHW/SOV/JV	CHW ISO VALVE	1								-											cos		U U			
CHIR1-CWISOVIV	CW ISO VALVE	1						-		-	-	-									cos		0			
CHIP1-A	CHIRALARM		-							-	-	-											U U		1	
CHILL DH C AMAD			-																						1	
CHL1.PH.C.AMP	PH.C.AWP							-					_										0		1	
CHI 1 DH A AMD	DH A AMD	-	1	-	-			-	-	-	-		-	\vdash	<u> </u>	<u> </u>	\vdash				-	1	ŭ	1	1	
CHL1.FR.A.AWF	ATD CUD		1	-											-	-	\vdash					+			1	ł
CHL1.WIK.CUK	CIA/S TEMP		+	-	-					-		_				-	\vdash						0		1	
CHL1.CD31	CAND TEMP	-	-	-						-		_			<u> </u>	<u> </u>					<u> </u>		5			
CHLICORI	CWR TEIMP																						0		1	
CHL1.OIL.PRS	OIL.PRS																						0		1	
CHLI COPR	CWD TEIMP																						0		1	
CHL1.EVPR	CWP TEMP																						0		1	
CHLI.CHRI	CWR TEMP																						U		1	
CHL1.CHST	CWS TEMP																						U		1	
CHLI.PUR.PRS	PUR.PKS																					-	0		1	
CHL1.OIL.I	UIL.I																						0		1	
CHL1.DISCH.I	DISCH.I																						U		1	
CHLI.CD.SAT.T	CD.SAT.T																						0		1	
CHLI.EVAP.SAT.T	EVAP.SAT.T								-													-	0		1	
CHLI.CUR.SP	CUR.SP																						0		1	
CHLLCH31.3P	C A VOLT												-									-	0		1	
CHILL B C VOLT	P.C.VOLT							-	-				_								-	1			1	
CHLLA B VOLT	A R VOLT																						0		1	
CHLLA-B.VOLT	A-B.VOLT		-					-					_										0		1	
CHL1 SAFETY CODE	SAFETY CODE	-	1										-									-			1	
CHILLOR CODE	OR CODE		1																			-			1	
CHLLOP.CODE	OP MODE		1					-						_								-	U U		1	
CHL1 ANTI RECYCL	ANTI RECYCL		1					-		-	-	-											U U		1	
CHL1-kW	kW							-		-	-	-											U U		1	
CHI 1-FLOW	FLOW-GPM																						ŭ		1	
																							-		-	
																						1				
			1																			1				
			1																							
			1																							
	1	1	1	1											1	1				Ì	1	1	1	1	1	
	1	1	1												1	1				İ	1	1	1	1	1	
	1	1	1	1											1	1				İ	1	1	1	1		
	1	1	1	1											1	1				1	1	1	1	1	1	
	1	1	1	1											1	1				1	1	1	1	1	1	
	1	1	1	1																1	1	1	1	1		
			1												1	1										
			1																							
Totals		3	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0			1	1			29	

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

LOCATION	I								HA	RDWA	ARE										SOFTWARE			Communicat	ions	
Broward County - Wide			E	MS O	UTPUT	٢S						EM	IS INPL	JTS										1	₽ ≦ 1	
																									, abb	
		1			1																				ē	
8/17/2017			DIGITA	AL.	A	NALO	G		C	DIGITA	L.				ANA	ALOG								TYPE		
																								B = BACnet		
Public Safety Building		Rel	Sol	õ	PE -	Ŧ	0-1	Pre	Fo	Swi	ş	Ω.	Ter	Rel	Sd	IA G	Αï	Oth						L = LON		
		aγ	eno	ntac	Tra	Tra	0	nss	s	itch	erri	rer	npe	ativ	9	0 S	Fo	ler	Trend			Graphics:		M = Modbus		
PDA			ā	to	nsd	nsd	IC O	re	₹	C.	de	S ti	rat	r T	23	en M	<		COS = Char	nge of state		F = Floor G	iraphics	N2 = JCI		COMMENTS AND SPECIAL FUNCTIONS
				•	luce	uce	4	Swi	5	nsc		wite	ure	un	ູດ	or n	£					U - Unit Gr	aphic	FLN = Siemens		
					9	۳	·20	tch		re		7		hidi	٩	Xic	3					S - Summa	ry Graphic	N = None		
							πA							¥	1SG	de L										
							-								Ŭ	.eve										
Description	Point Name															1			Schedule	Schedule	Trend	Alarm	Graphic			
CHLR2-STOP/START	CHLR CMD	1																			COS		U			
CHLR2-STATUS	CHW ISO VALVE									1											COS		U			
CHLR2-CHWISOVLV	CHW ISO VALVE	1	-																		COS		U			
CHLR2-CWISOVLV	CW ISO VALVE	1																			COS		U			
CHLR2-A	CHLR ALARM																						U		1	
CHL2.PH.C.AMP	PH.C.AMP																						U		1	
CHL2.PH.B.AMP	PH.B.AMP																						U		1	
CHL2.PH.A.AMP	PH.A.AMP																						U		1	
CHL2.MTR.CUR	MTR.CUR																						U		1	
CHL2.CDST	CWS TEMP																						U		1	
CHL2.CDRT	CWR TEMP																						U		1	
CHL2.OIL.PRS	OIL.PRS																						U		1	
CHL2 .CDPR	CWD TEMP																						U		1	
CHL2.EVPR	CWP TEMP																						U		1	
CHL2.CHRT	CWR TEMP																						U		1	
CHL2.CHST	CWS TEMP																						U		1	
CHL2.PUR.PRS	PUR.PRS																						U		1	
CHL2.OIL.T	OIL.T																						U		1	
CHL2.DISCH.T	DISCH.T																						U		1	
CHL2.CD.SAT.T	CD.SAT.T																						U		1	
CHL2.EVAP.SAT.T	EVAP.SAT.T																						U		1	
CHL2.CUR.SP	CUR.SP																						U		1	
CHL2.CHST.SP	CHST.SP																						U		1	
CHL2.C-A.VOLT	C-A.VOLT																						U		1	
CHL2.B-C.VOLT	B-C.VOLT																						U		1	
CHL2.A-B.VOLT	A-B.VOLT																						U		1	
CHL2.CYC.CODE	CYC.CODE		1																				U		1	
CHL2.SAFETY.CODE	SAFETY.CODE																						U		1	
CHL2.OP.CODE	OP.CODE																						U		1	
CHL2.OP.MODE	OP.MODE																						U		1	
CHL2.ANTI.RECYCL	ANTI.RECYCL								_				_										U		1	
CHL2-kW	kW																						U		1	
CHL2-FLOW	FLOW-GPM	i –	1	1											1	1					1	1	U	Ī	1	
																							-		-	
	İ	1	1	1											1	1					1	i i	1	İ	1	
																									1	
											-															
	1	1	t	1		1						-		-	t –						1	1	1	1	1	
								-					-													
		1	1	1		-		-				-			-			-				1	1		1	
	1	1	1	1		-		-				-										1	1			
	1	1	1	-		-									-								1		-	
	1	1	1	1		<u> </u>		-				-			t –					1		1	1		1	
	1	1	1	1		<u> </u>	+ 1					-			-								1	1	<u> </u>	
	1	1	1	-		-								-	-								1	1	-	
	1	1	1	1		-					-			-	-			_					1	1	1	
		1	1	-		-						-			-			_					<u> </u>		-	
Totals				0		0	0	0	0	1	0	0	0	^		0	0	0							20	
10(0)3			, U	• U	. 0	• U		0	. 0	. 1		U U	. 0	. U		• U		0						-	• / 9	

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

LOCATION								H	ARDW	ARÉ										SOFTWARE	E		Communicat	ions	
Broward County - Wide			E	MS O	UTPUT	S					EM	S INPL	JTS											₽≦	
																								app	
																								ē	
8/17/2017			DIGITA	۱L	A	NALOG			DIGIT	AL				ANA	LOG								TYPE		
			l				_																B = BACnet		
Public Safety Building		Rela	Sole	Con	Ē	9	Pre 0-1	Floy	Swi	Q€	Сц.	Ten	Rela	PSI,	A G	Air	0fh						L = LON		
		aγ	one	itac	Fra	Fra	Dv0	s,	tch	rrie	ren	npe	ativ	9	2 6	ē	ler	Trend			Graphics:		M = Modbus		
PDA			ā.	tor	nsd	nsd	IC o	vite	0	de	It S	rat	е́н	ß	n M r	~		COS = Char	nge of state		F = Floor G	raphics	N2 = JCI		COMMENTS AND SPECIAL FUNCTIONS
					uce	uce	r 4	3	u S		Nito	ure	in i	Ģ	e e	3					U - Unit Gr	aphic	FLN = Siemens		
					ä	ä	20		e		÷		idit	9	Xic	3					S - Summa	ry Graphic	N = None		
							mA						~	GS	le L										
							-							Ŭ	eve										
Description	Point Name														1/			Schedule	Schedule	Trend	Alarm	Graphic			
CHLR3-STOP/START	CHLR CMD	1																		COS		U			With Optimal Start
CHLR3-STATUS	CHW ISO VALVE								1	L										COS	Х	U			
CHLR3-CHWISOVLV	CHW ISO VALVE	1																		COS		U			
CHLR3-CWISOVLV	CW ISO VALVE	1																		COS		U			
CHLR3-A	CHLR ALARM								_												Х	U		1	
CHL3.PH.C.AMP	PH.C.AMP								_													U		1	
CHL3.PH.B.AMP	PH.B.AMP		<u> </u>					_													L	U		1	
CHL3.PH.A.AMP	PH.A.AMP		<u> </u>																		ļ	U		1	
CHL3.MTR.CUR	MTR.CUR		<u> </u>					_													ļ	U		1	
CHL3.CDST	CWS TEMP		<u> </u>					_													L	U		1	
CHL3.CDRT	CWR TEMP		I					_	_												<u> </u>	U		1	
CHL3.OIL.PRS	OIL.PRS		<u> </u>					_	_	-										L	L	U		1	
CHL3 .CDPR	CWD TEMP		<u> </u>						_	1										L		U		1	
CHL3.EVPR	CWP TEMP		<u> </u>					_	_	-										L		U		1	
CHL3.CHRT	CWR TEMP		<u> </u>					_	_	-										L		U		1	
CHL3.CHST	CWS TEMP		<u> </u>					_	_	-										L	L	U		1	
CHL3.PUR.PRS	PUR.PRS							_		_												U		1	
CHL3.OIL.T	OIL.T							_	_	_												U		1	
CHL3.DISCH.T	DISCH.T							_	_													U		1	
CHL3.CD.SAT.T	CD.SAT.T							_	_													U		1	
CHL3.EVAP.SAT.T	EVAP.SAT.T							_	_	-												U		1	
CHL3.CUR.SP	CUR.SP							_	_	-												U 		1	
CHL3.CHST.SP	CHST.SP					_		-	-							_						0		1	
CHL3.C-A.VOLT	C-A.VOLT				-	-		-	-	-						_						0		1	
CHL3.B-C.VOLT	A R VOLT							_	-	-												0		1	
CHL3A-B.VULT	A-B.VOLI							_	_	-												U		1	
CHL3 SAFETY CODE	SAFETY CODE					_		-	-	-			_		_	_						0		1	
CHL3 OR CODE	OR CODE		-			-		-	-	-					-	-					-	0		1	
CHL3 OR MODE	OP MODE					-		-	-	-					-	-					-	0		1	
CHL3.ANTLRECYCI	ANTLRECYCI	-	1			-			-	1						-	-				1	ŭ		1	
CHI 3-kW	kW	-	1			-	_	-	-	1					-		-				1	ŭ		1	
CHI 3-ELOW	FLOW-GPM	-	1			-		+	+	1					-		-				1	ŭ		1	
			1			-				1										1	1	l ⁻			
			1			-		-		1										1	1	1			
			1					-		1										1	1	1			
			1				-			t											1				
			1							1										i i	1	i			
	l		1			-				1										l l	Ì				
	l		1							1										i	İ	1			
			1							1										i	1	1			
			1							1										1	1	l –			
			1							1										1	1	l			
			1							1										1	1	1			
			1							1										1	1	l –			
	i		1						1	1											1	1		1	
			1							1											1	1			
										L															
										1											<u> </u>				
Totals		3	0	0	0	0	0	0	0 1	L 0	0	0	0	0	0	0	0				1			29	

Total Mapped Points for This Sheet

0

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Total Mapped Points for This Building

LOCATION						HARDWARE TDUTS EMSINPLITS												SOFTWARE			Communicat	ions				
Broward County - Wide			E	MS O	UTPU	٢S						EMS	INPUT	ŝ											Ma #o	
																		1							ppe	
0/43/0043									_									1						Tr. 10.5	ä	
8/1//201/			JIGITA	۱L.	-	INALO	10	μ.	D	IGITAL		_	- 1	-	INALUG	<u> </u>	-							IYPE B = BACost		
Public Cofety Puilding		R	S	S	P	Ŧ	o.	P	7	ş	Q.	2	1 2	72	- 5	ວ ≥	0							B = BACHEL		
Fublic Safety Building		elay	len	onta	E	Tr	10	ess.	Ň	Ť.	vern	Inte	elat		A S	F F	the	Trend				Graphics:		M = Modbus		
		-	oid	acto	ans	ans	dc	ure	wS	hC	ïde	ä.	Pr Pr		Ser	S S S		cos = c	^hange	e of state		F = Floor G	ranhics	N2 = ICI		COMMENTS AND SPECIAL FUNCTIONS
- DA			_	¥	duc	duc	or 4	š	ltch	los		Swit		Sie	ISOF	n (005-0	and inge	c or state		U - Unit Gr	aphic	FLN = Siemens		comments and si comentations
					ær	ær	1-20	itch		Ire		ťch	° nid	9		ž 3						S - Summai	ry Graphic	N = None		
							a	-					4	3	2	10										
							2							0		P.										
Description	Point Name														-	2		Sched	ule S	Schedule	Trend	Alarm	Graphic			
																		1								
CHW Pump-1 Start/Stop	CHWP-1-CMD	1																			COS		U			
CHW Pump-1 Status	CHWP-1-STS											1									COS	Х	U			
CHW Pump-2 Start/Stop	CHWP-2-CMD	1																			COS		U			
CHW Pump-2 Status	CHWP-2-STS											1									COS	х	U			
CHW Pump-3 Start/Stop	CHWP-3-CMD	1																			COS		U			
CHW Pump-3 Status	CHWP-3-STS											1									COS	Х	U			
CHWS Temp	CHWS-TEMP												1	_	_	_					1/2 hr		U			
CHWR Temp	CHWR-TEMP												1					-			1/2 hr		U			
CW Pump-1 Start/Stop	CWP-1-CMD	1													_						COS		U			
CW Pump-1 Status	CWP-1-STS											1		_	_						COS	х	U			
CW Pump-2 Start/Stop	CWP-2-CMD	1											_		_	_		_			COS		U			
CW Pump-2 Status	CWP-2-STS											1		_	_	_	_	_		1	COS	х	0			
CW Pump-3 Start/Stop	CWP-3-CMD	1		_								4	_	_	_	_	_	_			COS	v	U			
CW Pump-3 Status	CWP-3-STS			_	-							1	1	-	_	_	_	-			1/2 hr	x	0			
CWB Temp	CW3-TEIVIP								-	_	-	_	1		-	_	_	-	_		1/2 III 1/2 hr		0			
Tower Ean-1 Start/Ston	TWR FAN-1 CMD	1								_	-	-	-		-	-		-			1/2 III COS	v	0			
Tower Fan-1 Sneed	TWR FAN-1 SPEED	1					1				_	-									05	^	0			
Tower ran-1 Speed	TWICTAN-1 SPEED						-		-	-	-	-	-	-		-	-		_							
																			_							
Exhaust Fans 1 thru 20																										
Exh Fan-1 Start/Stop	EXHFAN CMD	20																			COS		U, S			
Exh Fan-1 Status	EXHFAN STS											20									COS	х	U, S			
Space Temp	SPACE TEMP												10								1/2 hr	Х	U, S			
Smoke Dampers 1 thru 20																										
Damper Open/Close	DAMPER CMD	20																			COS		U, S			
Damper Position	DAMPER STS									20											COS	х	U, S			
														_	_	_	_									
										_		-	_	+	_	_	_	_	_							
										_			_	-	-	_	-	-	_							
										-		-	_	+	+	+	+	+	+			-				
			\vdash						-		-			+-	+		+	1	-+							
				-					-		_		+		-	+		+							-	
					-			\vdash	-		-				+	+	-	1	-+							
		-																1								
											- 1							1	-							
															1			1								
											_	T						1								
																		_								
																		_								
														_			_	_								
														_	_											
														_	-	_	_	-								
			\vdash							_		_		+	+	_	_	+	_							
										-				+	+	_	_	+	-							
Totals		47	0	^	0	0	1	0	0	20	0	26	14	0	0	0	0	0			_					
100015		4/	0	0	0	0		J	J	20	5	20	74	~	~	5	J.	~1								
Total Hardware Points for Thi	is Sheet	108					Total	Hardu	are Po	unte fr	or Thic	Buildir	a		14	45										

Exhibit 1 Page 44 of 490

87

ECM C-2: Energy Efficient Upgrades to Existing Building Automation System (BAS)

ECM Description:

In general, the majority of County facilities have a Building Automation Systems (BAS) installed and most were found to be in good working order. These existing systems are typically designed by various engineers with vastly different budget constraints. During the site assessments, OpTerra determined that select BAS Systems could benefit from the implementation of energy efficient control strategies. These upgrades include modifications to the control logic, sequence of operation, and the installation of specific control sensors and/or devices. These modifications will help improve the overall energy performance of the buildings.

Below are descriptions of the recommended modifications which is followed by site-by-site tables that illustrate which energy efficient control strategies are recommended for each site.

Energy Efficient Control Strategy Descriptions

Optimal Start

The Optimal Start control strategy determines the most energy efficient time to start the HVAC equipment to bring the building to the occupied set point temperature prior to the occupied period. The BAS software monitors space temperature sensors to "learn" when to start the equipment based on the outside air temperature. If deemed appropriate, Optimal Start can be replaced with operator determined start/stop schedules. While bringing the building to the occupied temperature, the outside air dampers will be closed until the occupied schedule start time. Any CHW or HW systems/loops must be changed from scheduled start/stop to demand based enabling/disabling where a call for heating or cooling enables the plant to operate.

Unoccupied Temperature Setback/Setup

The HVAC equipment operates to maintain space temperature set point during the occupied schedule. When the facility is unoccupied and the HVAC systems are in the cooling mode, the space temperature set point is setup (moved higher) to reduce the cooling load. When the facility is unoccupied and the HVAC system is in the heating mode, the space temperature set point is setback (moved lower) to reduce the heating load on the HVAC system. When the building is unoccupied, outside air dampers are closed, exhaust fans are turned off, and AHU supply fans are turned off unless there are HVAC requirements for 24/7 operation. If necessary to reduce odors, etc., the BAS will purge the building air before the occupied schedule by briefly running AHUs with outside air dampers set to 100% open. Any CHW or HW systems/loops must be changed from scheduled start/stop to demand based enabling/disabling where a call for heating or cooling enables the plant to operate.

Outside Air Lockout

Disabling heating equipment when the outside air temperature is greater than a user-defined set point (typically 55°F) saves energy by reducing overheating in the buildings. Disabling the cooling system until the outside air temperature exceeds a separate user-defined set point (typically 60°F) saves equipment runtime and energy. These adjustable system enable/disable set points prevent simultaneous cooling and heating system operation.

Demand Controlled Ventilation

Many existing air handling units provide a fixed quantity of outside air (OA) set by a prescriptive method that determines the amount of fresh air required to maintain Indoor Air Quality (IAQ) during design conditions. It is also permissible to set the OA flow by a performance method that allows the OA flow rate to be adjusted as needed to meet the actual occupancy as represented by a tracer gas, such as CO2.

During the unoccupied period, the OA dampers can be closed or OA fans turned off. If the OA dampers are left open or fans are energized, it can contribute to unnecessary high humidity levels. Disabling OA during the unoccupied period will lower the humidity level in the space and result in a more comfortable space.

If no existing CO2 sensors or motorized dampers/actuators are installed, these sensors and devices will be install for a fully functional sequence.

Static Pressure Reset for VAV Systems

Variable air volume (VAV) systems typically have a supply fan motor with a variable frequency drive (VFD) which varies fan speed to maintain a supply duct static pressure at a fixed set point. Instead of maintaining a fixed duct static pressure, a control algorithm will monitor the damper positions of each VAV box connected to a given AHU, adjust fan speed to maintain space temperature set points, and minimize the number of VAV dampers in the minimum position. Duct static pressure will be allowed to vary instead of being fixed (as in the present operation) and fan energy can be reduced by up to 20%.

If no existing static pressure sensors are installed, these sensors will be installed for a fully functional sequence.

Chilled Water Supply Temperature Reset

If no CHW DP reset is being utilized, the CHWST Reset shall be adjusted based on a linear OA Reset Schedule. If CHW loop DP reset is being utilized, CHWST Reset shall only begin to operate when CHW pump speed is at minimum speed.

Chilled Water Loop DP Reset

For Variable Flow CHW Loops, the CHW Pump speed shall be modulated between maximum flow and minimum flow set points (Determined by the required for to meet all loads simultaneously and minimum flow for pump operation per manufacturer and TAB). In this range, SP shall be reset based on interval polling of CHW valve position to maintain at least one CHW valve at a position of 90% open, or higher. If this position is not meet, then the static pressure set point is reset upwards, thus reducing pump speed and CHW flow, ultimately increasing CHW valve position.

Outside Air Control

When a unit is enabled during an unoccupied period to maintain an unoccupied temperature set point, this control strategy shall disable outside air by either closing the outside air damper or by disabling the outside air fan associated with the unit.

Humidity Control

This strategy adds a high humidity limit to the control logic for a particular unit. This shall force a unit to provide cooling, regardless of space temperature, in an effort to reduce humidity levels in the space. Any unit that is to have humidity control, must have a form of reheat (electric strip,

hot gas reheat, etc.) available to keep spaces within the occupied or unoccupied temperature range.

Applicable Energy Efficient Control Strategies (by Site)

Site Name:	African Ar	nerican Library	_						
Existing BAS:		JCI							
Equipment Type	Qty	Optimal Start	Unoccupied Temperature Setback/Setup	Outside Air Lockout	Demand Controlled Ventilation	Static Pressure Reset for VAV Systems	CHW Supply Temperature Reset	CHW Loop Static Pressure Reset	Humidity Control
Chiller(s)	1			Х			х		
CHW Pump(s)	2							Х	
SZ Air Handling Units (CHW)	5	Х	Х		х				AHU-5 Only
VAV Air Handling Units (CHW)	4	Х			Х	Х			
Fan Coil Units (CHW)	3	Х							
Split DX Systems	2	Х	Х	х					
VAVs	27		Х						
Fans (OA/Exh/etc)	9	Х							

*For VAV AHUs, Unoccpied Setbacks are determined at the VAV Zone Level. AHUs enable/disable based up zone needs.

Site Name:	Dan Pearl (Sunrise) Library
Existing BAS:	JCI w/Siemens Overlay

			Unoccupied		Demand	Static Pressure	CHW Supply		
			Temperature	Outside Air	Controlled	Reset for VAV	Temperature	CHW Loop Static	Humidity
Equipment Type	Qty	Optimal Start	Setback/Setup	Lockout	Ventilation	Systems	Reset	Pressure Reset	Control
SZ Air Handling Units (DX)	1	х	х	х					
VAV Air Handling Units (DX)	1	Х	Х	Х					
VAVs	7		х						
Fans (OA/Exh/etc)	4	Х							

*For VAV AHUs, Unoccpied Setbacks are determined at the VAV Zone Level. AHUs enable/disable based up zone needs.

Existing Conditions:

- It is assumed that all existing control devices are functional. If the control devices are nonfunctional, any repairs required to make these devices functional will be the responsibility of the County.
- Configuration for sites with Johnson Controls N2 ASC controllers may be limited. PMI and GPL must be available at site for modification.

O&M Impact/Benefits:

There are many benefits with implementing energy efficient control strategies, which include:

- Reduced equipment operating time.
- Elimination of excess ventilation which will reduce moisture infiltration into the buildings.
- Reduction in fan noise inside the building.

ECM C-3: System Check-Out of Existing BAS

ECM Description:

As discussed previously, many of Broward County's facilities utilize an existing Building Automation System to control HVAC equipment. During the site assessments, issues were identified which are a result of the existing BAS not operating to is original design intent. The existing BAS systems were designed by various engineers, installed by different controls contractors, and maintained by a large facilities maintenance department. As a result, set points have been changed, many schedules have been removed, points have been locked, sequences changed, etc. All these changes result in inefficient building operation, an increase in annual utility consumption, and a decrease in occupant comfort.

OpTerra engineers assessed the existing BAS and identified many areas for improvement:

- Graphics: Graphical User Interface (GUI) could be improved for better operator control and improved ability to diagnose issues and/or modify critical points.
- Scheduling: Pieces of HVAC equipment (AHUs, Fans, RTUs, S/S, etc.) have schedules that are not current, incomplete, or missing altogether.
- Sensor Calibration: At some locations, room temperature sensors were found to be off by two or more degrees.
- Sensor Location: Select sensors were located behind large copiers or storage units which leads to unstable temperature control.
- Sequence of operation: Several units were not performing as expected during the time OpTerra was on-site.

Below are examples of some of the deficiencies observed during the site assessments which is followed by site-by-site tables that illustrate the included equipment and Not-To-Exceed labor hour allocations by both OpTerra commissioning engineers and Certified BAS programmers.

Improper Location of Temperature Sensor Meeting Room

Significant Over-Cooling of

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Inaccurate Temperature Sensor

VFD in Bypass Mode (Hand)

As part of the System-Check Out, existing primary HVAC equipment controlled through the BAS will be reviewed according to the following retro-commissioning process:

• Analog Input

The analog input points will be tested in two steps, first for the actual point name and location. This will entail removing a wire for the remote point and waiting for the system to show a non-responsive sensor. Then, the point will be tested for the actual temperature, pressure or other type of sensor point. This test will entail using a sensor of the type required and that the specified accuracy of the sensor falls into the acceptable range.

Analog Output

The analog output points will be tested for the actual point verification and functionality in one test. This will entail driving the end device to three specific points with an observation that the end device has responded to that command. There will be signals sent for 0% output, 50% output and 100% output. The critical point of this test is to assure the accuracy of the 50% command, since this will assure the drive timing and analog output calibration are correct.

• Digital Input

The digital input points will be tested in two steps. First, the point will be changed from its current state to assure that the point is correctly labeled and wired. The second test will confirm the point by cycling the monitored field device and observing the status change through the BAS.

Digital Output

The digital output points will be tested in one step. The point will be tested for the name, location and functionality by commanding the end device to on or off, and ensuring that the end device functions in the appropriate manner.

• Summary of Testing

OpTerra will identify any existing HVAC equipment that is found during the BAS commissioning not to be functioning properly, and notify the County in writing.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

• Simple Verification of Sequences (Functional Test)

The functional test will have two separate stages the first stage will be the observation of specific temperature and pressures. The technician will repair the temperatures or pressures to specific points and watch the reaction of the system. This will verify the basic sequence of operation for cooling and heating conditions, where applicable.

• Endurance Test

The second part will be considered the endurance test. This test will be focused on trending the system points for a period of two weeks and then reviewing these trends for correct sequence of operation. Once these systems are operating appropriately, the reports will be presented to the County personnel.

• General Functions of the BAS

This section will describe the functions and sequences that will be utilized when establishing the recommissioning approach being performed at the building.

Additional Tasks OpTerra Will Perform

- Utilize control engineer(s) and control programmers to update, modify, and checkout the existing BAS.
- Update graphics for existing equipment and floor plans.
- Revise and update schedules including groups, equipment, holidays, events, and priority level designations.
- Verify Sequences of Operation, make necessary changes to ensure optimal system operation.
 - Sequence changes will be made to the original engineered control sequence of operation, or standard industry practice.
- Identify system deficiencies by creating a log of potential hardware, software, and equipment issues. The equipment to be checked includes sensors, dampers, actuators, controllers, valves, etc. The resulting list of system deficiencies gives Broward County FMD improved ability to request HVAC and BAS service and repairs within their current service agreements.

Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Applicable System Check-Out Included Labor Hours (by Site)

Site Name: **Existing BAS:** African American Library ICI

•			101

		Included Labor Hours (Not-to-Exceed							
Equipment Type	Qty	OpTerra Engineer	Controls Engineer						
Chiller(s)	1	3	3						
CHW Pump(s)	2	4	4						
SZ Air Handling Units (CHW)	5	9	10						
VAV Air Handling Units (CHW)	4	7	10						
Fan Coil Units (CHW)	3	4	5						
Split DX Systems	2	3	3						
VAVs	27	36	41						
Fans (OA/Exh/etc)	9	9	9						
TOTAL		75	85						

Site Name: Existing BAS: West Regional Library JCI

		Included Labor Hou	urs (Not-to-Exceed)			
Equipment Type	Qty	OpTerra Engineer	Controls Engineer			
Chiller(s)	2	5	5			
Cooling Tower Fan(s)	2	4	4			
CHW Pump(s)	2	4	4			
CW Pump(s)	3	6	6			
VAV Air Handling Units (CHW)	7	12	17			
Fan Coil Units (CHW)	1	2	2			
VAVs	66	86	99			
Fans (OA/Exh/etc)	18	17	18			
TOTAL		136	155			

Site Name:

Northwest Regional Library

Existing B	AS:
------------	-----

JCI

		Included Labor Hours (Not-to-Excee							
Equipment Type	Qty	OpTerra Engineer	Controls Engineer						
Chiller(s)	2	4.6	4.6						
CHW Pump(s)	2	3.4	4						
SZ Air Handling Units (CHW)	3	5.1	6						
VAV Air Handling Units (CHW)	2	3.4	4.6						
Split DX Systems	2	2.6	2.8						
VAVs	31	40.3	46.5						
Fans (OA/Exh/etc)	10	9	10						
TOTAL		68.4	78.5						

Site Name:

Existing BAS:

Weston Library	
JCI	

		Included Labor Hours (Not-to-Exceed)							
Equipment Type	Qty	OpTerra Engineer	Controls Engineer						
Chiller(s)	1	2.3	2.3						
CHW Pump(s)	2	3.4	4						
VAV Air Handling Units (CHW)	3	5.1	6.9						
Split DX Systems	3	3.9	4.2						
VAVs	49	63.7	73.5						
Fans (OA/Exh/etc)	6	5.4	6						
TOTAL		83.8	96.9						

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in July, 2017. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

 Site Name:
 Margate

 Existing BAS:
 JCI

		Included Labor Hours (Not-to-Exceed)							
Equipment Type	Qty	OpTerra Engineer	Controls Engineer						
Chiller(s)	1	2.3	2.3						
CHW Pump(s)	1	1.7	2						
VAV Air Handling Units (CHW)	2	3.4	4.6						
VAVs	21	27.3	31.5						
Fans (OA/Exh/etc)	6	5.4	6						
		40.1	AC A						

Site Name: Existing BAS: Government Center West Carrier CCN

		Included Labor Ho	urs (Not-to-Exceed)		
Equipment Type	Qty	OpTerra Engineer	Controls Engineer		
Chiller(s)	2	4.6	4.6		
Cooling Tower Fan(s)	2	3.2	3.6		
CHW Pump(s)	2	3.4	4		
CW Pump(s)	2	3.4	4		
VAV Air Handling Units (CHW)	12	20.4	27.6		
Rooftop/Packaged DX Units	2	3.4	4		
Split DX Systems	3	3.9	4.2		
VAVs	143	185.9	214.5		
Fans (OA/Exh/etc)	6	5.4	6		
TOTAL		233.6	272.5		

O&M Impact/Benefits:

A comprehensive system check-out of the exiting BAS System will greatly improve building energy performance and result in fewer maintenance work orders for the Facilities Maintenance Department.

- Facility operators will have an improved, user-friendly system, featuring front end software with Graphical User Interface (GUI).
- Facility operators will have improved base schedules to schedule mechanical equipment per occupancy for each area, improving comfort and efficiency.
- Facility operators can better establish standardized policies such as temperature setbacks and set points and enforce them remotely, improving comfort and efficiency.
- Facility operators have improved ability to troubleshoot equipment and maintain the individual components of the BAS.
- Facility operators have improved ability to identify potential HVAC or BAS problems that can then be covered by the current service agreement.

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM C-11: Optimize HVAC Schedules and Set Points

ECM Description:

It was observed during the audit and inspection of the HVAC schedules that were provided to OpTerra that many of the existing HVAC systems operate much longer than the building occupied period. Significant energy savings could be realized by implementing unoccupied temperature setbacks for applicable HVAC equipment. During periods when the building is occupied, per the building occupancy schedule, the HVAC systems operate normally to maintain an occupied cooling or heating set point. However, during unoccupied times (typically overnight and weekends) those temperature set points are permitted to drift 8-10 degrees either higher or lower depending on season.

In situations where Optimal Start is not utilized, it is typically sufficient to start the HVAC systems two hours prior to the building normal start of business and set back to unoccupied temperatures immediately following the building normal close of business. In applications with Optimal Start, the software determines the HVAC start time based upon recent trends and the scheduled building occupancy start time.

In conjunction with County Staff, OpTerra has created the Schedule of Control tables below. These table illustrate the current building occupancy schedules, existing HVAC schedules, and the proposed HVAC schedules as a result of this ECM. It is imperative that the County review, understand, and adhere to these proposed schedules. Any changes to these schedules will result in a necessary adjustment to the savings calculation and guaranteed savings.

Weston Library Example

Existing HVAC Schedule Significantly Exceeds Building Occupancy Schedule

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in July, 2017. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

African American Library Example

Existing HVAC Schedule Significantly Exceeds Building Occupancy Schedule

AHU-1 SST 🛅 🗖 🛛	🖉 🗁 AHU-2 SST
Run Normal	Start Normal
Schedule Focus	Schedule Focus
F 49	
Eoit	Edit
Attribute Value	Attribute Value
Operation And Display	Operation And Display
Effective Period any month any date any year - any month any date any year	Effective Period any month any date any year - any month any date any year
Schedule Output Type Derived from Key Item	Schedule Output Type Derived from Key Item
Default Schedule Command Release	Default Schedule Command Release
States Text Run Stop	States Text Stop Start
Display Mode Weekly Schedule	Display Mode Weekly Schedule
00:00 06:00 12:00 18:00 23:59	O0:00 06:00 12:00 18:00 23:59
Monday 🕨 Stop 🕨 Run 🕨 Stop	Monday Stop Start Stop
Tuesday Stop Run	Tuesday Stor
Mednesdav	
	Start Stop
Thursday Stop	Thursday Stop Start Stop
Friday Stop Run	Friday Stop Start
Saturday Run Run	Saturday Stop Start Start
Sunday Run Run	Sunday
AHU-6 SST 🔭 🗖 🗖 🛛	AHU-7 SST
AHU-6 SST 🗅 🖸	AHU-7 SST On Normal
AHU-6 SST Concerning C	AHU-7 SST On Normal Schedule Focus
AHU-6 SST Constant Unreliable	AHU-7 SST On Normal Schedule Focus Edit
AHU-6 SST Constant Unreliable	AHU-7 SST On Normal Schedule Focus Edit Attribute Value
AHU-6 SST Constant Unreliable	AHU-7 SST On Normal Schedule Focus Edit Attribute Value Operation And Display
AHU-6 SST Concerning Start Unreliable Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year	AHU-7 SST On Normal Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year
AHU-6 SST Constant Unreliable Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item	AHU-7 SST On Normal Schedule Focus Edi Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item
AHU-6 SST Start Unreliable Schedule Focus Edit Attribute Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule	AHU-7 SST On Normal Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key item Display Mode
AHU-6 SST Start Unreliable Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule	AHU-7 SST On Normal Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule
AHU-6 SST Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item	Altu-7 SST On Normal Schedule Focus Edit Altribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 06:00 12:00 18:30 23:59
AHU-6 SST Start Unreliable Schedule Focus Edit Attribute Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 00:00 06:00 12:00 18:00 23:59 Monday Stop	AHU-7 SST On Normal Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 00:00 06:00 12:00 Monday Off On
AHU-6 SST Start Unreliable Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 00:00 06:00 12:00 18:00 23:59 Monday Stop Start Stop	AHU-7 SST On Normal Schedule Focus Edt Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 00:00 06:00 12:00 18:00 23:59 Monday Off On Off Tuesday Off On Off
AHU-6 SST Start Unreliable Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 00:00 06:00 12:00 18:00 23:59 Monday Stop Start Stop Start	AHU-7 SST On Normal Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 00:00 06:00 12:00 18:00 23:59 Monday Off On Off Veedeastayt On Off On
AHU-6 SST Start Unreliable Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 00:00 06:00 12:00 18:00 23:59 Monday Stop Start Stop	AHU-7 SST On Normal Schedule Focus Edit Attribute Value Value Operation And Display Effective Period Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule Off On Off On Off On Off On Off On Off On Off On Off On Off On Off On
AHU-6 SST Start Unreliable Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key item Display Mode Weekly Schedule 00:00 06:00 12:00 18:00 23:59 Monday Stop Start Stop Start Stop	AHU-7 SST On Normal Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key item Display Mode Weekly Schedule 00:00 06:00 12:00 18:00 23:59 Monday Off On Off On Off On Off
AHU-6 SST Start Unreliable Schedule Focus Edit Attribute Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 00:00 06:00 12:00 18:00 23:59 Monday Stop Start Stop Start Stop Start Stop Start Stop Start Stop	AHU-7 SST On Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 00:00 06:00 12:00 18:00 23:59 Monday Off On Off Thursday Off On Off Output Off On Off
AHU-6 SST Start Unreliable Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 00:00 06:00 12:00 18:00 23:59 Monday Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start	AHU-7 SST On Normal Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 00:00 06:00 12:00 Monday Off On Tuesday Off On Vednesday* Off On Staturday Off On
AHU-6 SST Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 00:00 12:00 18:00 23:59 Monday Stop Start Stop Start Stop Friday Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop	AHU-7 SST On Normal Schedule Focus Edit Attribute Value Operation And Display Effective Period any month any date any year - any month any date any year Schedule Output Type Derived from Key Item Display Mode Weekly Schedule 00:00 06:00 12:00 12:00 18:00 23:59 Monday Off On Vednesday Off On Vietesday Off On Vietesday Off On Statuday Off On Sunday Off On

Energy Savings:

Optimizing the HVAC schedules to closely align with the building schedules, will reduce the heating and cooling loads experienced by the HVAC equipment, thus reducing the annual energy consumption and expenditures.

O&M Impact/Benefits:

A reduction in the amount of HVAC operating time will reduce the wear on the fans, pumps, motors, and ancillary HVAC equipment, and consequently, prolong the service life of the unit.

Standards of Control Tables are on the following pages. These are applicable to all sites that are receiving any Controls upgrades.

1/17/2018

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

		EXISTING							20	_	-		PROPOSED					
				1			H	eating	Co	paling	1		1	1 1	He	ating	Co	aling
		-	-		Opt	-							Opt					
Building/Area Served	Schedule	Equipment	Start	Stop	Start	Days	Occupied	Unoccupied	Occupied	Unoccupied	Start	Stop	Start	Days	Occupied	Unoccupied	Occupied	Unoccupied
West Lake/Annu Kolb MC		-	-	-			-	1	1	-	-		1 1	-	-	1		-
Visitor Cantor	2	AHITA	24/7	24/7		M.S.	70	86	.73	NGA.	9:00	19:00	Yes	MIT	.70	50	74	90
							1	-			5.00	1800		Ba Su				
the second second second second second second second second second second second second second second second s		ANELOI	-			-			-		0.00	116.000				-		10
Alatra Cautal	100	Artes	2401	4.972	+ +	NP-30	- 70	-60	12	1104	6.00	19/00	185	Sa Su	nu .	- 60	74	- 50
			1				1		-		6,000							
Mang the fail		ARX3	247	24/7		Mise	70	65.	73	Nie.	\$ 00	1900	280	M-F	.70	60	- 11	30
	-		+		+ +	_		-	-	-	610	14/00	-	39,30	-	-	-	
Mang ove Hail	4	A)-01.4	24/7	2A//		Millio	70	65.	. 73	\$17a	5:00	19.00	Tes	M-F	70	60	73	
			-					-	1		6,00	19,00		59,91	1.			
Smitht Pall		29105	3407	74/2		MAG	.70	84	14	71/2	8/0	1200	For	24-F	201	80	23.	an
		12 10 2		1.00						10-5	3.00	19:00		3.SI	- 10			
11 I.	1.000.00						-			1	11111		1	1.1.1		in course 18	11	
S inibit Hall	8	ANUE	24/7	24/7		MiSu	70	- 85	13	MA	- 600	1900	-Yee	M-F	70	-60	74	30
			-				1	-		-	2,00	1233	-	212	-			
African American Library	-					-		-			-	-						1
Stago		861	9.00	20:00		M	- 52	ONF -	TO	Qff	10.00	20:00	105	M,W	70	60	7.1	310
	-		BEDU	Michight_		Tur	95	OFF 1	70-	087	- 6100	1600	-	14,187,54,54	70-	- 60	- 74	30.
1			BCO	16:00		The		OFF	70	OFF	1		-	-	-	1	1	
1			2407	2A/7		SUSA	- 35	OFF	70	OFF	1			1		1	1	
		120402	2000	20.00			- 20	1000	-		20200	703.005	- 91.2	marc	703	100		205
waatounam		MPANZ	8.00	Menula	+ +	TUE	50	OFF	70	ofe	10100	16:00	105	Ty Th F Sara	70	60	74	
	1		Midwight	213/17		W	63	OFF	70	DEF			· · · · ·	-			1 - 0	
			8/10	1,500		Jb.	頭	- QLF	/10	OFF	i						1 A	
			- 24/7	2417		10,00	00	- nor	- 70	OFF				-			-	
Seminar	3	AHU-3	24/7	24/7	M,T	u,W,Th,F,Sa	68	OFF	71	OFF	10.00	20.00	Yes	M,W	70	60	74	80
											8:00	18:00		Tu, Th, F, Sa, Su	70	60	74	80
Labby		ALELA	310	24/7	1 117	WTEC.	70	OFF	70	OFF	10.00	30.00	Yes	MW	70	60	74	80
LODDY	-	700/4	2.40	2411	1 1	0,14,111,104	10	orr	16	orr	8:00	18:00	165	Tu,Th,F,Sa,Su	70	60	74	80
													1. C		-			
Exhibit Hall	5	AHU-5	24/7	24/7	M,T	u,W,Th,F,Sa	63	OFF	63	OFF	24/7	24/7	M	Tu,W,ThF,Sa	70	OFF	70	OFF
			-	1	+			-		-	-	<u> </u>					-	
Exhibit Hall	6	AHU-5A (Backup)	OFF	OFF	M,T	u,W,Th,F,Sa	,Su										2	
				2			-	-		0					-		2	
Dressing Room	7	AMU-6	8:00	20:00		м	70	OFF	70	OFF	10:00	20.00	Yes	MW	70	60	74	80
			8.00	Midnight		Tu	70	OFF	70	OFF	8.00	18.00	-	Tu, Th.F. Sa, Si	70	60	74	80
	<u> </u>		Midnight	20.00		W	70	OFF	70	OFF		1.00.00	-				8	
	+ +		910	22:00	+ +	F.Sa	70	OFF	70	OFF	-					-	-	
			Off	Qff		Du								-				
							2				10.00							
Youth Services	0	A29,J-7	8.00	20:00 Midnight	+ +	TuF	70	OFF	72	OFF	8:00	18:00	162	M,W Tu Th E Sa Si	70	60	74	80
			Midnight	20:00		W	70	OFF	72	OFF	0.00	10.00		at the broken				
			8.00	18.00		Th	70	OFF	72	OFF				- 2		2	2	<u></u>
		-	4100	Mignight	+ +	58,50	70	UPP	12	UPP	-				-		1	
General Collection	9	AHU-8	8.00	20:00		М	70	OFF	71	OFF	10:00	20:00	Yes	M,W	70	60	74	80
			8:00	Midnight		Tu,F	70	OFF	71	OFF	8:00	18.00		Tu.Th.F.Sa.Si	70	60	74	80
	-		Midnight 8:00	20:00	+	Th	70	OFF	71	OFF		-		-			-	
			4.00	Midnight		Se	70	OFF	71	OFF							2	
			4.00	23:00		Sa	70	OFF	71	OFF						5	3	
Archives	10	AHELO	74.0	24/7	1 Nº 9	WTHES	121	OFF	10	OFF	24/7	74/7	M	To WITH F Sa	20	OFF	20	OFF
-34010 VV		11079	2417		1	ates 11/1/10/0	-					2417		101111111111111111		Sett		
							L						1			1	3	<u> </u>
Archives	11	AHU-9A (Backup)	OFF	OFF	MT	u,W,Th,F,Sa	,50	-			-	-			-		2	
			-				-						-				-	

STANDARDS OF CONTROL - APPLICABLE SITES

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in July, 2017. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

			EXISTING							PROPOSED								
The second of T			EXISTING Heating Cooling					oolina		-	1	-	PROPOSED Heating Copling					
Building/Area Served	Schedule	Equipment	Start	Stop	Opt Start	Days	Occupied	Unoccupied	Occupied	Unoccupied	Start	Stop	Opt Start	Days	Occupied	Unoccupied	Occupied	Unoccupied
West Regional Library																		
AHU-R1 Grad FL West	1	AHLART, R2, R3, R4	8.00	22.60	-	M - Tai W Th Sa Sh	68.70	65	7274	78	BDC	2040	.T05	M-W Th-Sh	70	ED 150	78-	80
AHU-R3: 2nd FL SW			7:00	20:00		(The second sec	63-70	115	7274	.70	0.00		1	11111004	181	Lu .		0.0
ANU R4: 2011 FL SE	-	10100.00	2.06	20.00		0.7	26.26		70.74		0.00	30.00				20		50
AHU-SS: 2nd FL North		AND HO	8.30	20.00	-	W.Th Sa Su	68.70	65	7374	78	0.00	18:00	105	Th+Su	70	60	74	60
AHU RE AHU RE DA			730	26.00		F	68.70	65	7374	78						-		
Yahaan	3	GAR-0, 2, 3, 4, 5, 5 & EF-1, 2, 3, 4, 5, 6, 8, 9, 10		-		-			-		10:00	20-00	bla	M-92 Th-Sh-				
			-	-		-	-	-			-		-			-		
Northwest Regional Library		DOT / L	1 240	1 348	-	11.0	100.00		L 25.14		8.00	- 300.000	1 200		70		r	
Clearly 1st Plass		Area	-2.40	240	-	M-00	and-co.		1.214	-	900	18:00	105	Thr-Su	70	BU	74	90
					1							-	-					
Risconnig 1st Flater	2	AHU-2	839	20:15		M/W TV	68-70	65	7274	78	8:00	20.00	Yes	M-W	78	ED	74	26
			5.45	1815		Th	6870	85	7274	.78	0.002		-	10150	08	88		Cita:
			830	18:15		F.Se.50	-88-70	85.	7.174	78		-	-					
Multis Plannese 1st Floor		AVE	830	20.16	-	147	60.70	25	22.78	75	0.00	20.00	Yes	M. W.	70	80	75	30
india i angli da i da i da		198	8.00	2049	-	9	68.70	65	73.76	78	8.00	38.00	10.2	16-50	10	10	76	80
-			300	20:30	-	Su	E8-70	85	7274	.73		-	-					
Library Zniti Filter	4	ANU-4	24/7	24/7	-	M-Su.	. 6870	65	72-74	.78	00 B	20:00	Yes	M-W Th-Su	70 70	60 60	74 78	00 00
		1.018		-	-										-			
STATIVIDARE THE FIGOR	0	AUTUA	545	20.00	-	Tu	68.70	55	7276	78	8.00	18.00	TRS	M-W Th-So	70	03	73	00
			016	20.00		W	6870	B5	7274	78			-				1	
			610	18.00	-	Th.	6870	65	73.74	78		-	-	-		-		
	1		300	10.00	-	F 34 30	- WHYN -	10	7.0474		10000	-						· · · · · · ·
Mariany.	E	9F-1,2 & EF-134&78		-		_	2		-	-	10:00	20.00	No	M-W Th Su				
Westin Linary						-	_				-							-
TaFlow	- 1 - 1	AHIL1	5.00	22.00		MAE.	68-70	85	7274	.78	RIU	20.00	YAS	M-W	70	60	74	- FID.
			9.00	22.00	-	Sat	68-70	65	7274	78	8:00	18.00	-	Th St.	70	03	74	90.
			- Off	ON		Juli					- Oit.		-	- 30				
1d Flom	- 2 - 1	AHUU	5.00	2200		-M-F	68-70	BS	7374	78	8.00	50/00	YHS	M-W	70	BU	- 74	30
			300	2210	-	Sun	68-70	55	1214	-78	00	00	-	Th-54 Sec	70	60	74	-50.
													-	_				
2nd Flogs	1	ANDI	5.00	22:00	-	MAE	68.70	65	7374	78	5:00	32.00	Yes	MF	70	EO	- 11.	80
-			Off	01	-	Sun	-B0-7-07	00	1219	. (a	Jun:	01	-	24-00	-			
						1.02	-				Tarat	-						
Vanjuts		EmplosiFanz-1-4	5.90	2200	-	531	68-70	85	7376	78	10.00	20:00	Na	M-54	70	EQ	- 14	-05-
			Off	Off		Son	Sale Fills		1.6.1.4.	.nat	-	-		-				
-		-	-		-	-	-		-			-	-	-	-			
Lauderdale Lakes Ethraty			-															
Main Linipity	- 1	AHILLI	7530	1900	-	MWSa DUP	E9.70	60	72.74	42	8.00	19.00	Vac	MWF Sal-	70	60	74	63
			730	TED	1	E	68-70	EQ	7274	32	QIE	01	-	Sa		La.	14.	Mc.
			011	DIK		- 51	-			A	-						1	1
Malt-Parness Pooto		APENZ	5.30	23.00	-	Millio	28-70	60	7274	102	-8100	22/0	Ter	M-Su		60	74	-2020-
							1					-						
Vanau		Br-11BP-2	interlaterd v	ath Light Swis	1			-			10:00	16.00	Ne	MWEST		-		
			1	-	-				-		.017	Off	-	Sa.	-			-
					-		1	1	1				1			1		-

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in July, 2017. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

-					_		-WINGING -			_			_					
1			-	0		-	EXISTING	ating	Co	aling		-	-	1	He	ating	00	olina
Building/Area Served	Schedule	Equipment	Start	Stop	Opt Start	Days	Occupied	Unoccupied	Occupied	Unoccupied	Start	Stop	Opt Start	Days	Occupied	Unoccupied	Occupied	Unoccupied
Library	1	APU-1	24/7	345		M-Su	6870		7274	_	8.00 10.00 0ff	18400 20100 	Tés	So M.F.Sa Tu,Tb W	70	60 60	78 74	80 80
Variance	.2	₩-9,6F-2	infétionise d'vé	dh Light Switz	6						10.00 (200 0#	36101 20200 - ON	tto	M,WF,Sa Tu,Th Ba				
Dan Pearl Libeary Mian Library	- 1	AHULT	2477	38//		M-Su.	E8-70		-7294		B100 10:00	18.00 20:00	Ŷĸs	M,Th.F.S.a Tu.W	70. 70.	80 80	74 74	90. 80
Mult-Purpose Noum	7	AHUUD	94/T	34%		MiSu	-68-70	-	7374		BIOD 10.00	1R00 20:00	Nev	M,Th F,Sa Tq,W Sun	70 70	60 50	74 74	90: 90:
Winnus.	3	15-1, 7, 3 X DAF-1	Teberlücked w	dh AHU m Lig	st Swiith						10.60 12.00 - 011	1600 2000 Off	Na	M.Th.F.S.s. To,W Son				
				·	· · · · ·	-			-				-	-	··		4	1
Margate Library Main Library	- 1	днелт	2817	3407		M-Su	70		-17		8:00 10:00 '0//	18 00 20,00 - 0ff	Yes	M,WF,Sa Tu,Th Su	70 78	60 60	78 78	80 80
Mult-Parprise Room	2	AM3-2	24/7	ME		M-Su	68.70		12		8:00 10:00 -01	18:00 20:00 00	Yes	M,WF,Sar Tu,Tb Sar	70. 70	ED EQ	78.	80 80
Manour	3	EF 2, 3, 4 & OAF 12	Interlocko'd w	ah AHU .			-				10:00 12:00 0if	116.00 201/00 CIM	310	M,WF,Ss Tu,Tb Sb	_			
Enver Rosches Library and	anily Succes	a Center					-						-		-			
Caver Ranches Library	1	AHU1	9:10 1001 0ff	20:00 11:00 -0ft		M.W To.Th.T.Sa Sa	70	85	72	78	10:00 B:00 0ff.	20:00 16:00 0ff	Yes	M.W To,Th,F.Sa Su	78	80 80	75 75	00 00
Carver Ranches Library	-2	OAF5& TEF-1,2	Wall Switch o	r Interlock with	Light,Sw	itzh			-		12:00 10:00 .0#	20:00 18:00 10#	No	M.W Tu,Th,F,Sa Sa				
Family Success Center	-1-1	RIU(AU)	2417	24/7		M-Su		_	32		7.00 7.00 .0ff	17:00 18:30 Off	Yes	M,WF Tau,Th Sa,Sa	70 70	60 60	- <u>14</u> 74	80 80
WPompane Dranch Lilicary							_					_						
Mam Libeary		AHU4	6.30 6:30 7.30	2100 19.00 19.00		M,W Tu,Th,F Se,Su	-70	63	-72	78	10.00 9.00 .011	20.00 (8.00 Off	Yes	M,97 Tu,ThE,Sa Su	70.	EU 50	78- 74	06
Vanaus		EF1.280AF1	interlected w	th AHO or Lig	ht Smith				-		12:00 10:00 01	20:00 10:00 00	Na	MW Ju,ThF,Sa				
			-	-					-				-		-		1	
Wannus Wännus	1	Akul 1, 2, 5, 9, 10 Josournes serve HVAD Sch - an SROM	630 01	10:00 10:00		M. F 59,80	70	65	13	30	6.00 . Off.	15.00 311	Tos	M.F Sizu	-70-	Ð.	13.	30
VENDUE	2	амьэ, 4, 6, 7, 9, 11, 12, 13, 14, 16	24/7	34.6		Misu	70	65	115	105	6.00 Cif	19.00 EM	Tes	M-F SéSu	75	ED	н	au.
Märinne	3	0AF-1,2,3,4,5,5,4 EF-1,2,3,4,5,5,8,9,10						-	-		eitti QTI	19,00 Ø1	T4n	M.F. SuSu				

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in July, 2017. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

	-		_							-								
1			-	r	-	-	EXISTING	ating	L Co	alina	-	-	-	-	H	ating	Co	oling
Building/Area Served	Schedule	Equipment	Start	Stop	Opt Start	Days	Occupied	Unoccupied	Occupied	Unoccupied	Start	Stop	Opt Start	Days	Occupied	Unoccupied	Occupied	Unoccupied
Government Center West 148 FL West	1	APE/1	603 10	19:00 Off		M-F SejSu	10	OFF	74	OFF	6:00 Qff	19:00 Qff	766	M-F Sa,Su	70	60 60	78	80 00
and FL West	2	AHOQ	5:00	19:30 Off		M 1 54,54	70	001	74	30FF	R-DO OTC	19-00	Yes.	M F SejSa	70	80 60	74	00.
Brd FL Wess	3	AHU3	5 00 6:30	22/30 14/30		M . F Sa,Su	70 .70	OFF	74 74	OFF OFF	6/00 .0ff	19:00 10#	Yes	M F Sa,Su	70	60 10	74	06 100
4th FL West	4	AHU-4	530 630	21/30 13/30		M - F Sa,Su	70 70	OFF OFF	74 74	OFF	6.00 Off	19:00 Off	Yes	M - F Sa,Su	70	<u>60</u>	74	80 80
Tet FL East	5	AHU-5	5:00 5:30 Off	19.30 19.00 Off		M - F Sa SJ	70 70	OFF OFF	74 74	OFF OFF	6:00 Off	19:00 Off	Yes	M - F Sa,Su	70	60 60	74	80 80
2nd FL East	6	AHU6	5:00 6:00	22.30 18.30		M - F Sa,Su	70 70	OFF OFF	74 74	OFF OFF	6:00 Off	19:00 Off	Yes	M - F Sa,Su	70	60 60	74	80 80
3rd FL East	7	AHU-7	5.00	20.00		M - Su	70	OFF	74	OFF	6:00 Off	19:00 Off	Yes	M - F Sa,Su	70	60 60	74	80 80
4th FL East	8	AHU-8	5:30 Off	21:30 Off		M - F Sa,Su	70	OFF	74	OFF	6:00 00:3	19:00 Off	Yes	M - F Sa,Su	70	60 60	74	80 80
Lobby/Arium	9	AHU9, AHU-10, AHU-11, AHU-12	6:00 7:00 Off	20.00 18:00 Off		M - F Sa Su	70 70	OFF OFF	74 74	OFF OFF	00:3 0ff	19:00 Off	Yes	M - F Sa,Su	70	60 60	74	80 80
OA Chases	10	RTU-1,RTU-2	5:30 7:30 Off	20:30 18:30 Off		M - F Sa Su	70 70	OFF OFF	74 74	OFF OFF	00:30 011	19:00 Off	Yes	M - F Sa,Su	70	60 60	74	80 80
Public Safety Complex Pul	Ge Salaty Bai	ding					-						1					
Tra FL NE Quadrant	1	ARCA	2477	24/7		Misu	70	70	72	- 72	E.00 Cff	1200 Off	Yes	M F SaSu	70	60 80	74	
14 FL-SE Gowdrant	3	AHUQ.	24/7	24/7		Mistu	-70	- 70	-12	-12	6100	23.00 23.00	Yes	M - F Sa/Su	76	60 60	-741	80 80
lat#L.West	3	ANU.3	24/7	7411		MiStu	70	20	12	72	6:00 .00	22:00 08	Yes	M-F Sa,Sa	70	60 E0	74	100. EID
1 d FL West (Records) 7Ph Statute A 247 Ame	4	AHU4	24/7	347		MiSu	70	70	72	72	240	24/7	Na	M-Su	76	70	76	74
2nd FL Bad Keaktors Et al 5-30PM	. 5.	AMU-6	24/7	24.9		M-Su	70	70	72	72	6:00 01	19400 Off	Yes	M-F Sá,Si	70	60 60	11	05 05
Ind FL East "Loopedoni Off of F-111Pat	6	AHUG	2477	2477	-	M-Su	70	70	72	72	- 6:00 .00	19:00 Off	Yes	M-F Sa,Si	70	60 60	- 74	05 05
2nd FL Wed They why of we sprik	7	APILI7	2477	24/7		M-Su.	70	-79	72	.72	6:00 ,0ff,	15.00 Off	Yes	M-F Sə,Si	70	50 50	74.	30. 80.
2nd FL-Weid "Escentions Off at 9:30PW	8	A4143	24/7	24/2		M+Siu	TU.	78	-72	- TI	6.00	19:00 Off	Yes	M+E 59,50	- 18	60	34	08 08
2nd FL West *Escelators Off at 6:30PM	9	AHU.9	24/7	24/7		M-Su	70	.70	72	72	6:00 Off	19:00 Off	Yes	M - F Sa,Su	70	60 60	74	80 80
2nd FL West *Esceletors Off at 6:30PM	10	AHU-10	24/7	24/7		M-Su	70	70	72	72	6.00 Off	19:00 Off	Yes	M - F Sa,Su	70	60 60	74	80 80
3rd FL East	11	AHU-11	24/7	24//		M-Su	70	70	72	72	6:00 6:00	19:00 Off	Yes	M - F Sa,Su	70	60 60	74	80 80
3rd FL East	12	AHU-12	24/7	24/7		M-Su	70	70	72	72	6.00 Off	19.00 Off	Yes	M - F Sa,Su	70	60 60	74	80 80
3rd FL West	13	AHU-13	24/7	24/7		M-Su	70	70	72	72	6.00 M	19:00 Off	Yes	M - F Sa,Su	70	60 60	74	90 80

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in July, 2017. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

-			1	_	_		EXISTING		S			-	_		PROPOSED			
				P			н	eating	Ce	poling		-	-		He	ating	Co	oling
Building/Area Served	Schedule	Equipment	Start	Stop	Opt Start	Days	Occupied	Unoccupied	Occupied	Unoccupied	Start	Stop	Opt Start	Days	Occupied	Unoccupied	Occupied	Unoccupied
Public Salety Complex Put Brd FL Welt	ic Saluty Bulld	AHU-16	24/7	24/7	-	M-Su	76	70	72	72	6.00 Q#	19:00 Off	766	M-F SaSu	76	60 60	78	80 00
4th FL West	15	WHD-15	24//	34/7		MiSu	70	70	12	72	6.00 010	19-00	Yes.	M F SalSa	20	80	74	00. 00.
4th FL West	-16	AH0.16	-24//	24/7		Mau	70	70	72	72	600	19:00	Yes	M F	70	60	14	80
5th FL West	17	AHU-17	24/7	24/7		M-Su	70	70	72	72	6.00	19.00	Yes	M - F	70	60 60	74	80
5th FL West	18	AHU-18	24/7	24/7		M-Su	70	70	72	72	6.00	19:00	Yes	M - F	70	60	74	80
1 st FL West	19	AHU-19	24/7	24/7		M-Su	70	70	72	72	6.00	19.00	Yes	M+F	70	60	74	80 80
2nd FL Roof	20	RTU-1	24/7	24/7		M-Su	70	70	72	72	0ff 6:00	Off 19:00	Yes	Sa,Su M - F	70	60 60	74	80 80
5th FL Roof	21	RTU-2	24/7	24/7		M-Su	70	70	72	72	6:00	Off 19:00	Yes	S#,Su M - F	70	60 60	74	80
5th FL Roof	22	RTU-3	24/7	24/7		M-Su	70	70	72	72	0ff 6.00	Off 19:00	Yes	Sa,Su M - F	70	60 60	74	80
5th FL Roof	23	RTU-4	24/7	24/7		M-Su	70	70	72	72	6:00	19:00	Yes	Sa,Su M - F	70	60	74	80
Various	24	EF-1 thru EF-38	-	Inter	nded to In	terlock with V	arious other HN	AC Components/	Schedules		On	01	Re-establ	sh interlocks	and functionality	to original design	intent.	00
5th and 3rd FL Plints	3	CAUS-1 time CAUE-10	-			Tabil	infinities IT Ca	netheo1						Land	Control Hig IT Dep	adment		
and FL Roat	-26	Filmen MAU-1/3-3		-		La	cal Control at Pl	bod			5.00 D#	17:00 01	tia:	M-1 59,51	TEA TEA	TUA TUA	HUR TUR	16% NGA
Public Safety Complex Log	ectics Warehou	se		1		-	tt	1			-					-		-
Entire Balding	1	ABUT	24/7	784	No	MiSu	.70		7274		6:00 : :0FF	20:00 OFF	Ng	M-T SajSa	20 20	60 60	74 28	700 800
Public Safety Complex - Tec	licel Training B	adding		-		-	ţ				-							
Training Anna	1	ALC: A	24/7	24/1	No	Misiu	70		7374	_	6:00 OFF	20:00 OFF	Yes	M F Sk,Su	- 70. 70.	60 03	75	30 30
Aumin Arisa	2	840-2	24/7	24/7	140	M-Su	. 70		7274	_	6.00 017	20.00 OFF	Yes	M.F. Swight	70. 10	60 60	74	06
South Ares 1	3	RTEN	24/1	34/7	No	M-Su	70		7274		B:DE OFF	20:00 OFF	Yes	M-F Sa Su	70	60 60	74	90°
South Area 2	4	RTW2	(24/7)	- 24/7	No	M.Su	70		7374		6:00 OFF	20:00 0FF	Yes	M F 56,54	70 20	60 80	74 74	00 90
Public Safely Longilas - Ler	ural Supply Bu	Ming							-		-							
Entire Bailding	1	ARUT	340	24//	No	MiSu	70		7274	-	B:DC OFF	20:00 OFF	Yes	M F Se,Su	70 70	60 60	74 74	90. ap
-			-	-	-	-	-	-			-	-		-	-	-	-	-

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in July, 2017. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

-	1		EXISTING							PROPOSED								
(10 million + 1)				1			H	ating	C	poling					He	ating	Co	oling
Building/Area Served	Schedule	Equipment	Start	Stop	Opt Start	Days	Occupied	Unoccupied	Occupied	Unoccupied	Start	Stop	Opt Start	Days	Occupied	Unoccupied	Occupied	Unoccupied
Public Salety Complex BSO	Warahoung								_									
1st FL Wast (Office Area)	1.	BTG1	-2477	24/7	Na	MSu	70		71	-	6.00 001	20:00	Yes	M F Sa Su	- 70 - 70	60 80	74 74	00-00-00-00-00-00-00-00-00-00-00-00-00-
1 of FL Northe aid (Detention)	2	RT14-2	24/7	340	tto	M-Su	70		71		\$4.7	248	210	Miŝu	70	_	74	
1:0 FL Simhwast (DU)	3	RTU-S	2477	24/7	Nu	Misu	70		71		24//	247	Na	M.Su	70		74	
2nd Fu Northwest	4	RTG-I	24/7	24/7	140	M-Su	-70		71		6:00 OFF	20:00 OFF	Yes	M - F Sa, Su	20- 70	63 60	74 74	30 80
2nd FL Southeast	5	RTUS	24/7	24//	No	M-Su	- 70		71		6:00 OFF	20:00 OFF	Yes	M - F Sa, Su	70 70	60 60	74	80 80
Various	6	EF-1,2,3,4,5,6,8,9,10,11		linter	nded to Int	erlock with 'v	arious other HV	AC Components/	Schedules				Re-estable	sh interlocks	and functionality	to onginal design	ntent.	

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in July, 2017. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

MECHANICAL UPGRADES

OpTerra performed an audit of all existing HVAC equipment and controls for the buildings identified in Group B. Much of the HVAC equipment consists of package roof-top units or split DX units. The larger facilities have air-cooled chillers and a few of the facilities have chilled water and hot water central plants. The existing equipment was evaluated and noted as to age, efficiency, and reliability. Once all equipment was evaluated, the OpTerra team then proceeded with developing practical solutions to fix any underlining problems and areas that stand out for potential energy savings.

During the audit, it was noted that the County's facilities are generally well-maintained and routine preventive maintenance is performed on a regular basis, which extends the service life of the equipment. However, some facilities had equipment that was very near, if not exceeding, its useful life and, where applicable, is recommended for replacement.

Benefits of these ECMs include:

- Reduction in electric consumption
- Improved occupant comfort
- Deferred maintenance benefits
- Operational savings
- Increased reliability
- Many support the 5-year CIP

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM M-1: Install New Chiller

ECM Description:

This ECM considers replacing older chillers that are approaching the end of their useful service lives with new similar-sized chillers that have a higher coefficient of performance and offer greater energy savings.

In some cases, the existing chillers are using older Chlorofluorocarbon (CFC) or Hydro-chlorofluorocarbon (HCFC) refrigerants that are more harmful to the Ozone layer - than newer, Hydrofluorocarbon (HFC) refrigerants. Furthermore, these same refrigerants are no longer produced for this very reason, and the

replacement cost of the refrigerant has risen steadily since going out of production. This proposal includes replacing the existing chillers with new, more efficient and environmentally refrigerant, R-134A chillers, in the same respective locations.

The installation of the new chiller will include the following scope of work:

- Provide and install a new same size (tonnage) replacement chiller in the same location.
- Provide water cooled chillers located at the NRCH with integrated variable frequency drive (VFD).
- Provide new air-cooled chillers at the Northwest Regional Library and Margate Library.
- Provide and install the necessary interconnecting chiller and condenser water piping to the new chiller.
- Reconnect the existing water treatment system for the new chiller.
- Reconnect the existing electrical power wiring to the new chiller.
- Provide and install control wiring from the new chiller to the existing building automation system (BAS).
- Connect and test chiller controls to BAS.
- Perform leak testing of the new installation.
- Perform factory start-up of the new chiller according to the manufacturer's requirements.
- Perform commissioning of the new chiller.

Energy Savings:

The new chillers offer higher efficiencies and better part-load operation than their predecessors. The selection of the new chiller and its options will be made after the building is modeled and profiles have been developed. Final selection of options will be made during design phase.

O&M Impact/Benefits:

The maintenance costs for chillers increases with age and generally becomes more significant as they approach the end of their useful life span. OpTerra recommends the installation of these new chillers to provide the building occupants with better comfort during times of extreme temperature conditions and improved chiller plant reliability.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Chiller replacements:

This ECM will replace each of the chillers listed below with new units matching the capacity (tonnage) and type (water or air-cooled) of the existing units. The new units will also meet or exceed current ASHRAE 90.1 and IECC efficiency standards. Additionally, units to be replaced use R-22 or R-11 refrigerants, which are harsher to the Ozone layer, and no longer produced, with new replacement chillers are less harmful to the Ozone layer, Hydrofluorocarbon (HFC) refrigerants.

Building	Tag	Manufacturer	Model	Serial	Туре	Tons	Refrigerant	Year
NRCH	CH-1	YORK	YT B1 B2 B3 - CG E	YGXM-561834	Centrifugal	200	R-11	1995
Margate Lib.	CH-1	Carrier	30RAN050K-E511AL	2304F38848	Air-Cooled	50	R-22	2004
NW Regional Lib.	CH-1	Trane	RTAA1004XL01A3D0BF0	U00D08427	Air-Cooled	100	R-22	2000
NW Regional Lib.	CH-2	Trane	RTAA1004XL01A3D0BF0	U00D08426	Air-Cooled	100	R-22	2000

Replacement Units (NRCH):

York water-cooled 200-ton centrifugal chiller model # YK2CRQ3 with VFD drive and R134A refrigerant.

The chillers feature: High efficiency- designed for maximum part load efficiency, Chlorine-free HFC-134a refrigerant, Improve Sustainability – Falling-film evaporator reduces refrigerant charge up to 40%, Easy Operation – The OptiView™ Control Center, OptiView Control Center panel can easily integrate with a BAS through a BACnet interface.

Warranty: One year from start-up or 18 months from shipment, Compressor limited warranty 5 years.

Replacement Unit (Northwest Regional Library and Margate Library):

Carrier 100-ton air-cooled chiller model #30RAP1006FC coated condenser coils and R410A refrigerant.

Carrier 50-ton air-cooled chiller model #30RAP0505FC coated condenser coils and R410A refrigerant.

The chiller features: Full-load EER values up to 10.5 and IPLV values up to 15.8, ASHRAE 90.1 compliant / AHRI 550/590 certified, High-efficiency rotary scroll compressors,

Warranty: One year from start-up or 18 months from shipment on all other parts.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM M-4: Install New Condenser Unit & Evaporator Coil

ECM Description:

This ECM will replace the R-22 (HCFC) cooling system by installing a new exterior condensing unit, new evaporator coil and associated expansion valve. These units are causing maintenance issues or no longer meet sufficient cooling requirements for the buildings. In addition, these condenser units are utilizing older refrigerants HCFC, which are gradually being phased out of the industry. Due to the life expectancy of the equipment and the type of refrigerant used, OpTerra recommends replacing these condenser units with newer, more energy efficient models that use R-410A HFC refrigerant. The Air Handling Units (AHU) on these systems were in relatively good condition - and by replacing only the evaporator coil, the system can operate on R-410A refrigerant.

The deterioration of these condensing units is

causing growing maintenance problems, and they no longer heat or cool as effectively as they once did. AHU reconditioning on these units was determined to offer a more economical alternative, rather than replacing the unit entirely.

OpTerra will perform the following scope of work with the replacement of the condenser unit and installing new evaporator coil & expansion valve.

- Demolish and remove the existing condenser unit from the site. Recover the existing refrigerant and properly dispose of it.
- Provide and install a same size (ton) condenser unit in the same respective location.
- Reconnect the existing refrigerant piping after the replacement condenser unit has been installed.
- Reconnect the existing power wiring after the replacement unit has been installed.
- Perform start-up of the new condenser unit to confirm proper operation.
- Demolish the existing evaporator coil and expansion valve.
- Install new evaporator coil and expansion valve at the AHU.
 Note: If the existing coil is in good condition and CU manufacturer accepts the coil of being capable of being used with the Condensing Unit (CU), then the coil is cleaned and reused. (This exception is for units listed below for TY Park, Fern Forest and Long key)
- Perform air balancing at the unit's fan upon installation.
- Start-up and commissioning of the AHU.

Energy Savings:

This ECM evaluated replacing existing condenser units that have exceeded their useful life expectancy, and/or, are not as efficient as current technology with newer, more efficient units. These savings will be achieved by installing new replacement units with a lower kilowatt (kW) per ton than the existing units. Furthermore, replacement of the existing evaporator coil at the corresponding AHU will also provide Broward County with increased energy savings.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

O&M Impact/Benefits:

Replacing dated and problematic condenser units, and old evaporator coils on selected units that are beyond their useful lives will reduce maintenance costs, improve system reliability, and use a more environmentally-friendly HFC refrigerant, such as R-410A.

Condensing Units & Evaporator coils be replaced:

This ECM will replace the HCFC - R-22 refrigerant cooling system by installing a new exterior condensing unit, new evaporator coil and associated expansion valve. The refrigerant lines will be reused, provided they are tested for leaks, flushed, and meet the size and pressure requirements for the new units. Verification from the equipment manufacturer will be obtained so that the existing line sizes and length will not void the new equipment warranty. The new unit's capacity shall match the existing unit and meet current ASHRAE 90.1 and IECC standards.

ID	Site	Building	Tag	Make	Model	Tons	Refrigerant	Year
BL26	Carver Ranches	Main	CU-1A	Trane	TTA240B300FA	20	R-22	2005
BL26	Carver Ranches	Main	CU-1B	Trane	TTA180B300FA	15	R-22	2005
BO28	Safety Building	Cntr Supply	CU-1.1	Carrier	38AKS016-K621	15	R-22	2008
BO28	Safety Building	Cntr Supply	CU-1.2	Carrier	38AKS016-K621	15	R-22	2008
BL16	Northwest Regional	Main	AC-1	Trane	TTP030D100A0	2.5	R-22	2000
BL16	Northwest Regional	Main	AC-2	Trane	TTP024C100A3	2	R-22	2000
BL17	Weston Lib	Main	ACCU-1	Rheem	13AJA18A01	1.5	R-22	2009
BL17	Weston Lib	Main	ACCU-3	Rheem	13AJA18A01	1.5	R-22	2009
BL20	North Lauderdale	Main	CU-1A	Trane	RAUCC404B	40	R-22	Unk
BL20	North Lauderdale	Main	CU-1B	Trane	RAUCC504B	50	R-22	Unk
BL23	Hallandale Lib.	Main	CU-2	Rheem	RAKB-060CAZ	5	R-22	2007
BL23	Hallandale Lib.	Main	CU-3	Ruud	RAWD-100CAZ	10	R-22	2005
BL23	Hallandale Lib.	Main	CU-4	Rheem	RAWD-091CAZ	7	R-22	2007
BH38	SATC	Main	CU-3	Ruud	UAKB060CAZ	5	R-22	2007
BH40	EAP Our House	Main	CU-1	Ruud	13AJA30A01757	2.5	R-22	2011
BR41	Mass Transit N	Bldg 2	CU-1	International Comfort	R2A360GHR200	3	R-22	2014
BR41	Mass Transit N	Bldg 4	CU-2	Trane	TTA120A400FA	10	R-22	2007
BR44	Mosquito Control	Office	CU-1	Rheem	RAWD-078CAZ	6.5	R-22	2007
BR45	South Maint Shop	Bldg A	CU-1	Goodman	СЦ60-1	5	R-22	2006
BR45	South Maint Shop	Bldg C	CU-1	Goodman	GSC030361DE	3	R-22	2007
BP2	TY Park	Maintenance	CU-1	York	H2RD0428068	3.5	R-22	2006
BP2	TY Park	Campground	CU-1	AAON	CA1277	6	R-22	2007
BP8	Fern Forest	Main	CU-1	Trane	2TTA2048A3000	4	R-22	2005
BP8	Fern Forest	Main	CU-2	Trane	2TTA2048A3000	4	R-22	2005
BP5	Long Key	Visitor Center	AC-3A	Carrier	24ABR342A610	3.5	R-22	2007
BP5	Long Key	Visitor Center	AC-3B	Carrier	24ABR342A610	3.5	R-22	2007
BP5	Long Key	Visitor Center	AC-4	Carrier	38ARD012-601	8.7	R-22	2007
BP5	Long Key	Visitor Center	AC-5	Carrier	38ARZ008-601	7	R-22	2007
BP5	Long Key	Visitor Center	AC-6	Carrier	38ARD024-601	18.1	R-22	2007
BP5	Long Key	Visitor Center	AC-7	Carrier	24ABR336A3	3	R-22	2007

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Replacement Units:

Carrier, Daikin or equal Commercial High Efficiency Condensing Unit (R-410A).

The condensing units feature: Energy-efficient compressor • Quiet operating top discharge • High-efficiency copper tube / aluminum fin coil • Brass liquid and suction service motor-compressor valves • High- and low-pressure switches • Factory-installed filter drier • Complies with ASHRAE 90.1-2007 • AHRI Certified; ETL Listed

Condenser Unit Warranty: One year from start-up or 18 months from shipment on all other parts. 4-year on motor-compressor parts.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM M-4B: Install New Condenser Unit & New AHU (Split Systems)

ECM Description:

During the survey of the buildings, OpTerra engineers observed that some of the existing condenser units and air handling units (AHUs) are beyond their useful lives and need replacement. The operating efficiency of these units has declined over time, and in some cases, no longer meet the cooling or heating requirements of the buildings.

Some of the condenser units are utilizing older refrigerants HCFC R-22, which are gradually being phased out of the industry due to their Ozone depleting factors. Due to the life expectancy of the equipment and the type of refrigerant used, OpTerra proposes to replace these condenser units and AHUs with newer, more energy efficient models that use more environmentally friendly, HFC R-410A refrigerant.

Furthermore, some of the existing AHUs are beyond their normal useful lives. These units were evaluated economically for reconditioning, but it was determined that replacing the condensing and indoor units was preferable.

OpTerra will perform the following scope of work during the replacement of these condenser and air handling units:

- Demolish and remove the existing condenser unit and AHU from the site. Recover the existing refrigerant and properly dispose of it.
- Provide and install a new same size (tons) condenser unit and AHU in the same respective locations.
- Reconnect the existing refrigerant piping after the replacement condenser unit has been installed. Replace the piping if required by the manufacture to maintain high efficiency rating and warranty.
- Reconnect the existing heater and ductwork after the replacement AHU has been installed.
- Reconnect the existing power wiring after the replacement units have been installed.
- Reconnect the existing control wiring after the replacement units have been installed.
- Perform start-up of the new condenser unit and AHU to confirm proper operation.

Energy Savings:

This ECM considers replacing existing condenser units and AHUs that have exceeded their useful life expectancy, and are not as efficient as current technology, with newer, higher efficiency units. These savings will be achieved by installing new replacement condenser units with a lower kW per ton efficiency than the existing units. In addition, replacement of the existing supply fan at the corresponding AHUs will also provide Broward County with increased energy savings.

O&M Impact/Benefits:

Replacing old and inefficient equipment will reduce maintenance costs, improve system reliability, and improve the overall comfort level in the building. Replacing these existing units will also reduce the amount of maintenance time and money spent on repairs inherent with older HVAC equipment.

Split DX units to be replaced:

This ECM will replace the below listed split DX units (Condenser & AHU) with new units matching the capacity of the existing units. The replacement units will meet current ASHRAE 90.1 and IECC efficiency standards. All units to be replaced use HCFC R-22 refrigerant, with new replacement units using more Ozone friendly HFC R-410A.

ID	Site	Building		Air Ha	andling Unit		Condensing Unit							
			Tag	Make	Model	Year	Tag	Make	Model	Tons	Year			
BP2	TY Park	Park Office	AHU-1	Rheem	RHGE-100ZL	2003	CU-1	Rheem	RAWD-100CAZ	10	2003			
BP2	TY Park	Park Office	AHU-2	Goodman	AR120AA	2008	CU-2	Goodman	GSC101203AB	10	2009			
BP6	West Lake / AK	Visitor Center	AHU-1	Carrier	40RM-012-B6	1996	CU-1	Carrier	38ARS012	10	2007			
BP6	West Lake / AK	Visitor Center	AHU-2	Carrier	40RM-012-B6	1996	CU-2	Carrier	38ARS012	10	2008			
BP6	West Lake / AK	AK Pump Rm	AHU-7	Rheem	RBHB-24J07	2015	CU-7	Rheem	RAKA-048JAZ	4	2002			
BP6	West Lake / AK	Marina	AHU-M	Carrier	40RM-008-B6	1996	CU-M	Carrier	N/A	7.5	1996			

Replacement Units:

Carrier, Daikin or equal Commercial High Efficiency Condensing and AHU Unit (R-410A).

The condensing units feature: Energy-efficient compressor • Quiet operating top discharge • High-efficiency copper tube / aluminum fin coil • Brass liquid and suction service motor-compressor valves • High- and low-pressure switches • Factory-installed filter drier • Complies with ASHRAE 90.1-2007 • AHRI Certified; ETL Listed

Warranty: One year from start-up or 18 months from shipment on all other parts. 4-year on motorcompressor parts.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM M-5: Install New RTU

ECM Description:

This ECM is replacing several rooftop units (RTUs) throughout Broward County that have exceeded their useful life expectancy with new higher efficiency models. These units will be replaced with units that incorporate the latest technology including:

 Supply fans will consist of direct-drive plenum or air foil type fans with EC motors instead of the traditional forward curved belt-drive fans with AC motors. These units will be controlled as variable air volume units, where applicable.

The new RTUs will have the same rated heating and cooling capacities (tonnage) as the existing units unless the load evaluation during design indicates the unit is significantly over- or undersized, in which case the capacity of the new unit will be adjusted accordingly.

The scope of work with the new RTUs will include the following:

- Demolition and removal of the existing rooftop units.
- Recover the existing refrigerant and properly dispose of it.
- Provide and install new packaged units with heating and cooling coils, as applicable, filter mixing box.
- Disconnect the power wiring during demolition and reconnect the wiring after the new units have been installed.
- Provide and install controls at the new units and integrate to the existing BAS or T-stats.
- Provide start-up and commissioning of the new units.

Energy Savings:

Energy consumption will be reduced by achieving efficiency gains with the new replacement DX cooling coil and supply fan relative to the existing RTUs.

O&M Impact/Benefits:

Replacing old and inefficient units will reduce maintenance costs, improve system reliability, and will use a more environmentally-friendly refrigerant, such as R-410A. Replacing these existing units will also reduce the amount of maintenance time and money spent on repairs inherent with older RTUs.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Roof top or Packaged units to be replaced:

This ECM will replace the below listed RTU or Package units with new units matching the cooling capacity (tonnage) of the existing units. The replacement units will be high efficiency meeting current ASHRAE 90.1 and IECC efficiency standards. All units to be replace use HCFC R-22 refrigerant, new replacement units are HFC R-410A.

ID	Site	Building	Tag	Manufacturer	Model	Tons	Refrigerant	Year
BP8	Fern Forest	Main	RTU-1	Trane	THC092A3RCA02D2	7.5	R-22	2005
BP8	Fern Forest	Main	RTU-2	Trane	THC092A3RCA1GA	7.5	R-22	2005
BP5	Long Key	Visitor Center	AC-1	Carrier	50HJ-006-V631	5	R-22	2007
BP5	Long Key	Visitor Center	AC-2	Carrier	50HJ-014-V651	12.5	R-22	2007
BL26	Carver Ranches	Main	RTU-2	International Comfort	PAE090H000AA	7.5	R-22	2005
BL26	Carver Ranches	Main	RTU-3	Rheem	RSKA-A060CK	5	R-22	2004
BL26	Carver Ranches	Main	RTU-4	International Comfort	PAS120H00AA	10	R-22	2006
BH35	Booher Bldg.	Main	RTU-1	McQuay	RRPS050CSY	50	R-22	2008
BH35	Booher Bldg.	Main	RTU-2	McQuay	RRPS050CSY	55	R-22	2008
BH35	Booher Bldg.	Main	RTU-3	McQuay	RRPS050CSY	50	R-22	2008
BH35	Booher Bldg.	Main	RTU-4	McQuay	RRPS050CSY	55	R-22	2008
BH37	Family Success Cntr	Main	RTU-3	Trane	Unknown	7	R-22	Unk
BH37	Family Success Cntr	Main	RTU-4	Trane	Unknown	3.5	R-22	Unk
BH37	Family Success Cntr	Main	RTU-5	Trane	TCC042F300BC	4	R-22	Unk
BH37	Family Success Cntr	Main	RTU-6	Trane	TCC048F300BD	7	R-22	Unk
BH41	Family Success Cntr	Main	RTU-7	Trane	Unknown	5	R-22	Unk
BO28	Public Safety Complex	PSB	1	Trane	TCD150D400BA	12.5	R-22	2007
BO28	Public Safety Complex	PSB	2	Trane	TSC060A1B0A002L	5	R-22	2007
BO28	Public Safety Complex	PSB	3	Trane	TSC036A4E0A002	3	R-22	2007
BO28	Public Safety Complex	PSB	4	Carrier	50TM-005V601	4	R-22	2007

Replacement Units:

Carrier, Daikin or equal Commercial High Efficiency RTU Unit (R-410A).

The RTU units feature: Energy-efficient compressor • copper tube / aluminum fin coil • Brass liquid and suction service motor-compressor valves • High- and low-pressure switches • Factory-installed filter drier • High efficiency evaporator fan, Complies with ASHRAE 90.1-2007 • AHRI Certified; ETL Listed

Warranty: One year from start-up or 18 months from shipment on all other parts. 4-year on motorcompressor parts.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM M-7: Chilled Water Coil Cleaning

ECM Description:

This ECM considers cleaning the chilled water coils on the AHUs at selected libraries to increase the efficiency of the cooling system. Dirty coils, both internally and externally, reduce the heat transfer from the chilled water to the supply air of the AHU. The reduction in heat transfer increases energy consumption for cooling and can lead to uncomfortable space conditions.

OpTerra will perform the following scope of work with the chilled water cleaning:

- Spray or power wash the existing cooling coils at a low pressure with a degreasing/cleaning agent to remove the excess contaminants.
- The existing chilled water piping and control valves will remain.
- Confirm chilled water coil operation after the cleaning.

Energy Savings:

Energy savings will be realized due to an increased heat transfer at the cooling coil, and consequently, less work is required by the chiller to cool the spaces. This improvement will also lead to a reduction in required chilled water pumping, since less chilled water will be needed to cool the space.

O&M Impact/Benefits:

This ECM will allow Broward County to proactively start a regular scheduled cleaning of the cooling coils to ensure that the system will maintain its cooling efficiency. Due to the current build-up of dirt on the coils now, routine maintenance will not effectively solve the problem. This will also positively impact the chiller in that it will increase the lifecycle of the chiller due to working less hard to maintain cooling setpoints.

AHU Coils to be cleaned:

The existing Air Handling Units are nearly 20 years old and the coils appear to have a buildup of contaminants. This ECM will clean the coils. Coils shall be chemically cleaned with a solution approved by the coil manufacturer.

							-
					Motor	Cooling	
ID	Site	Tag	Make	Model	ΗΡ	Туре	Year
BL16	NW Regional Lib.	AHU-1	Trane	MCCA050UB000A000U	25.00	CHW	2000
BL17	NW Regional Lib.	AHU-2	Trane	MCCA006HBE0C0A0S00000	2.00	CHW	2000
BL18	NW Regional Lib.	AHU-3	Trane	MCCA012HBE0C0B0S00000	7.50	CHW	2000
BL19	NW Regional Lib.	AHU-4	Trane	N/A	30.00	CHW	2000
BL20	NW Regional Lib.	AHU-5	Trane	MCC-08 Series	5.00	CHW	2000

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM M-8: Install New AHU

ECM Description:

This ECM is replacing AHUs that were identified for future replacement in Broward County's 2017, 5-year CIP project list. The units are now 23 years old and close to the end of their useful lives and need replacement. The operating efficiency of these units has declined over time, and in some cases, no longer meets the cooling or heating requirements of the buildings. These units were selected based on the age, condition, and in addition, are on the CIP replacement list.

Refurbishing of the units was considered, but it was determined that replacing these units was preferable.

OpTerra will perform the following scope of work with the replacement of these AHUs:

- Demolish and remove the existing AHU from the site.
- Provide and install same capacity AHUs in the same respective locations.
- Provide new AHU with VFD motor drive and with UV air purifier.
- Reconnect the existing CHW piping and ductwork after the replacement AHU has been installed.
- Reconnect the existing power wiring after the replacement unit has been installed.
- Reconnect the existing control wiring to new AHU controller.
- Perform start-up of the new AHU to confirm proper operation.
- Perform Test and Balance (TAB) for AHU (Total Supply, Total Return, and Outside Air).

Energy Savings:

This ECM considers replacing existing AHUs that have exceeded their useful life expectancy and are not as efficient as current technology, with newer, more efficient units. Replacement of the existing supply fan and control of outside air at the corresponding AHUs will also provide Broward County with increased energy savings.

O&M Impact/Benefits:

Replacing old and inefficient equipment will reduce maintenance costs, improve system reliability, and improve the overall comfort level in the building. Replacing these existing units will also reduce the amount of maintenance time and money spent on repairs inherent with older AHUs.
Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

AHU units to be replaced:

This ECM will replace the below listed AHU units with new units matching the capacity (tonnage) of the existing units. The replacement units will be high efficiency meeting current ASHRAE 90.1 and IECC efficiency standards. The AHU replacements will be performed in the same manner as previously replaced AHUs in the building. The project will use McQuay/Daikin AHUs with new controls for the AHU and integration to the existing building automation system (BAS).

						Motor	Cooling	Heating		Area
ID	Site	Building	Tag	Make	Model	HP	Туре	Туре	Year	Served
BO29	NRCH	Main	AHU-3	Trane	CCDB21D50M	15.00	CHW	Elect. In VAV	1995	Z3 - Property Appraiser
BO29	NRCH	Main	AHU-4	Trane	CCDB14E50M	10.00	CHW	Elect. In VAV	1995	Z4 - Revenue Collection
BO29	NRCH	Main	AHU-6	Trane	CCDB17HEOM	15.00	CHW	Elect. In VAV	1995	Z6 - 2nd floor
BO29	NRCH	Main	AHU-7	Trane	CCDB12E30OM	7.50	CHW	Elect. In VAV	1995	Z7 - Surplus
BO29	NRCH	Main	AHU-8	Trane	CCDB35ME0M	20.00	CHW	Elect. In VAV	1995	Z8 - Records
BO29	NRCH	Main	AHU-11	Trane	MCCA017LCD	5.00	CHW	N/A	1995	Z11 - Warehouse #2
BO29	NRCH	Main	AHU-12	Trane	MCCA030LCD	10.00	CHW	N/A	1995	Z12 - Warehouse #3
BO29	NRCH	Main	AHU-13	Trane	LPCAF08F2DOE	3.00	CHW	Elect. 20kW	N/A	Z13 - Storage

Replacement Units:

Carrier, Daikin or equal Commercial Air Handling Unit with same air flow and cooling capacity (tons).

The AHU units feature: Energy-efficient fan motor, VFD control for fan motor, copper tube / aluminum fin coil, UV air contaminate control, High efficiency filter section (low resistance), outside air control and CO2 monitoring, Complies with ASHRAE 90.1-2007 • AHRI Certified; ETL Listed

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Exhibit 1 Page 74 of 490 OPTERRA An **ENGIE** company

ECM M-12: Repair Duct Leakage

ECM Description:

OpTerra engineers noted failed ductwork at AHU-3 in the Ann Kolb Nature Center and in some locations of the Public Safety Complex. At AHU-3, the supply duct connection near the ceiling where it connects to the horizontal supply main has become loose and needs repair. The gap on the top ductwork has about a 10" wide opening exposed to the mechanical room.

The scope of work to repair this ductwork will include the following:

- Disassemble rectangular elbow section on top of discharge assembly.
- Repair the 90-degree elbow, or replace if necessary.

- Reattach the elbow to supply duct and discharge column. Reinforce the elbow attachment to horizontal supply duct to prevent any future damage.
- Tape the seams between the duct connections to eliminate any air leakage.
- Test the system for air leak.

Energy Savings:

The supply duct is leaking 20-30% of its air into the mechanical room. The mechanical room is a return plenum, so the air leaking from the supply ductwork short circulates directly back to the return. This leakage reduces the amount of supply air being delivered to the space and makes the AHU work harder to maintain the static pressure setpoint. By correcting this issue, Broward County will realize greater energy savings and better AHU performance.

O&M Impact/Benefits:

The repair of the duct leakage will improve the AHU performance and overall comfort level in the space.

Repair Duct Leakage:

This ECM will repair ductwork at the below listed AHUs and locations. The repair material selected for repair will meet SMACNA Standards for duct systems.

ID	Site	Building	Tag	Repair Location	Repair description
BP6	West Lake / AK	Mangrove Hall	AHU-3	Mech Room (AHU-3)	Supply duct elbow above AHU.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM M-12B: Repair Duct Leakage - Smoke Dampers

ECM Description:

OpTerra engineers noted leaky smoke dampers in mechanical rooms at the Public Safety Complex. The dampers in question are in mechanical rooms connected to smoke evacuation shafts.

The outside air dampers both on the AHUs and on the Outside Air mechanical chase leak to varying extents. This leakage allows unconditioned, moist air to enter the mechanical rooms which has resulted in rust and corrosion of the equipment, also adding to the cooling load of the building. To remedy the situation, this ECM will replace all dampers along the mechanical outside air chases and the fresh air dampers on the air handling units.

The scope of work to replace the leaky smoke dampers include the following:

- Disconnect damper actuator and remove the existing dampers.
- Clean and prepare frame opening to receive new damper.
- Install new ultra-low leakage damper.
- Seal damper frame to prevent frame leaks.
- Reconnect damper actuators.
- Test the damper operation.

Energy Savings:

The reduced leakage of outside air will reduce cooling load and moisture migration into the building. By correcting this issue, Broward County will realize greater energy savings and better AHU performance.

O&M Impact/Benefits:

The replacement of dampers will improve the AHU performance and overall comfort level in the building space. By replacing the dampers there will be less moisture damage (rust) in the mechanical rooms, thereby increasing the lifecycle of the equipment.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Repair Duct Leakage:

This ECM will replace dampers at the below listed AHUs and locations. The repair material selected for repair will meet SMACNA Standards for duct systems. Dampers will be Ultra Low Leakage AMCA Class 1A (3 CFM/SF at 1" wg) and installed per manufacturers recommendation to maintain leakage class rating.

		AHU Frest	n Air Intake	Mechanica	al Room Outisd	e Air Chase Da	mper Sizes	
Room	Equip Tag	Damper Size		Dam	per#1	Damper #2		
		Length (in)	Width (in)	Height (in)	Width (in)	Height (in)	Width (in)	
40.40	AHU-1	108	30		70		00	
1040	AHU-2	108	30	144	12	144	90	
1501	AHU-3	96	18	160	06			
1301	AHU-4	108	24	102	30			
2029	AHU-5	102	18	144	70	144	06	
2020	AHU-6	102	24	144	12	144	30	
2525	AHU-7	102	20	144	06			
2000	AHU-8	102	18	144	30			
2556	AHU-9	48	18	Not An		nlicable		
2000	AHU-10	76	18	Not Applicable				
2040	AHU-11	88	18	144	72	144	06	
3043	AHU-12	94	24	144	12	144	30	
2550	AHU-13	102	24	144	06			
3330	AHU-14	102	24	144	30			
4526	AHU-15	96	18	144	06			
4000	AHU-16	96	18	144	30			
5524	AHU-17	108	24	164	102			
5324	AHU-18	96	24	104	102			

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM M-13: Eliminate Uncontrolled Supply Air Diffusers in Mechanical Rooms

ECM Description:

OpTerra engineers noted very low temperatures in mechanical rooms at the Public Safety Complex. The cold temperatures cause condensation on metal surfaces and leads to corrosion issues. This ECM address over cooling in mechanical rooms.

The originally installed VAV Terminal Units that serve the mechanical rooms have been removed along with the associated ducting that ran from the main supply trunk to each VAV Box. This has resulted in uncontrolled cooling in the mechanical rooms leading to sub 65 degree Fahrenheit space temperatures, condensation, rusting, and corrosion inside the mechanical rooms. This ECM will demo existing diffusers, ducting, insulation, and supporting cables/rods where the VAVs used to be located. The openings will be capped by material matching the ovisting ductwork on the medium prossure su

matching the existing ductwork on the medium pressure supply ducts.

The scope of work to replace the leaky smoke dampers include the following:

- Remove any remaining VAV boxes and ductwork.
- Enclose the holes with matching material.
- Seal the capped opening.
- Install new insulation to match existing.

Energy Savings:

This renovation will reduce amount of supply air provided in the mechanical room and therefore will reduce cooling load of the building. By correcting this issue, Broward County will realize greater energy savings and better AHU performance.

O&M Impact/Benefits:

The capping of uncontrolled supply openings improves the AHU performance and overall comfort level in the building space. By implement this ECM there will be less moisture damage (rust) in the mechanical rooms.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Repair Duct Leakage:

This ECM will demo existing diffusers, ducting, insulation, and supporting cables/rods where the VAVs were located. The openings will be capped by material matching the existing ductwork. The repair material selected for repair will meet SMACNA Standards for duct systems.

ID	Site	Building	Repair Location
BO28	Public Safety	PSB	Mech Rm 1024
			Mech Rm 1561
			Mech Rm 2028
			Mech Rm 2535
			Mech Rm 2556
			Mech Rm 3049
			Mech Rm 3558
			Mech Rm 4536
			Mech Rm 5524

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

LIGHTING UPGRADES

Introduction

OpTerra performed a detailed audit of all existing lighting equipment and lighting controls for the buildings identified in Group B. The general finding was that most of the existing lighting consists of outdated technology and there are few lighting controls. The majority of the interior lighting is linear fluorescent or compact fluorescent lamps (CFL) and/or fixtures. OpTerra also identified incandescent, halogen, and HID (high-intensity discharge) lamps and/or fixtures. Most of the exterior lighting, including the sports lighting, features HID lamps and/or fixtures. These existing conditions offer a substantial amount of potential energy savings, along with the other added benefits from upgrading to the latest lighting technology. In both interior and exterior spaces, some of the existing lamps and/or fixtures have already been upgraded to light emitting diode (LED) technology.

Recommendations

OpTerra is making several recommendations for lighting upgrades that will result in energy savings and other benefits. The recommendations have been grouped into four different sections: interior lighting, exterior lighting, sports lighting, and lighting controls.

Overall, OpTerra recommends upgrading all existing lamps and/or fixtures to LED technology. There are three ways to go about upgrading lighting to LED: lamp replacement, fixture retrofit (replacing the lamp and ballast), or complete fixture replacement.

For the interior lighting, OpTerra recommends the following:

- Lamp replacements for existing fixtures that contains CFL, incandescent, or halogen lamps.
- Retrofitting existing fixtures by replacing the lamps and ballasts with new LED tubes and new LED drivers for existing fixtures that contain linear fluorescent T8 or T12 lamps.
- New LED exit signs to replace existing exit signs not already LED.
- New LED fixture replacements for existing fixtures that have deteriorated beyond their useful life, applications where it is more cost effective to replace the entire fixture instead of retrofitting, and applications where no retrofit product is available. For deteriorated fixtures, up to 2% of the total number of fixtures will be replaced.

For the exterior lighting, OpTerra recommends the following:

- LED Lamp replacements for existing exterior fixtures with CFL lamps.
- LED 'corn cob' style HID retrofits for existing exterior fixtures with HID lamps.
- New LED fixture replacements for exterior fixtures that are sufficiently deteriorated beyond useful life or applications where it is more cost effective to replace the entire fixture instead of retrofitting. For deteriorated fixtures, up to 2% of the total number of fixtures will be replaced.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

For lighting controls, OpTerra recommends the following:

 Installing new occupancy sensors in rooms where the lights remain on while the space is unoccupied for extended periods of time, including enclosed offices, conference rooms, and storage spaces. Approximately 20% of spaces were identified as benefitting from this technology.

Lighting products will be procured from reputable, American-based manufacturers with proven track records. The LED lighting products listed in the appendix will be installed, or their equivalent. All installed LED products will be UL listed and either Energy Star or DLC certified.

Benefits

Light-emitting diodes (LEDs) bring several advantages over the aforementioned existing light sources. These advantages include high efficiency and durability, zero mercury, and longlasting product lifetimes. This translates into significant energy savings, maintenance savings, and an overall reduction in the cost of ownership over the product's lifetime. LED products also emit a smaller amount of heat in comparison to their fluorescent and incandescent counterparts, providing air conditioning savings in spaces that are cooled.

Outside of energy and cost related savings, there are also intangible benefits provided by LED lighting. Workers often experience distraction, headaches, and other negative impacts related to obsolete technologies like fluorescent and incandescent lighting. Unlike LEDs, fluorescent lights can flicker, buzz, and overheat—especially when nearing end of life. By contrast, LEDs experience no irritating degradation symptoms—and when they do fail, they simply turn off, instead of humming or flickering. The LED lighting proposed for this group of buildings will create a more comfortable and better-lit working environment.

Improved light quality will make employee operations safer. Research has also shown that LED lighting can positively affect employees beyond simply brightening their workspace. For example, a 2012 study¹ demonstrated a correlation between LEDs and an 8.3% improvement in visual and cognitive tasks; faster reaction times; reduced fatigue; increased vigor/activity; and lower rates of depression. These factors may make a difference for employees striving for a zero-incident workspace.

¹ Hawes, B. K., Brunyé, T. T., Mahoney, C. R., Sullivan, J. M., & Aall, C. D. (2012). Effects of four workplace lighting technologies on perception, cognition and affective state. *International Journal of Industrial Ergonomics, 42*(1), 122-128.

Benefits of these ECMs include:

- Reduction in electric consumption
- Reduction in lighting maintenance costs
- Reduction in lighting recycling costs
- Improved working environment
- Safer daily operations
- Improved light bulb lifecycle

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Energy Savings

During the audit and development process, OpTerra gathered as much information as possible to limit the number of assumptions and to generate savings calculations that are as accurate as possible. At each individual site, the energy consumption data of the existing lighting equipment was observed and recorded. A sample of fixtures was opened to record the lamp and ballast information, and it was assumed that similar fixtures contain the same lamp and ballast types. The power consumption of each fixture was multiplied by the fixture quantity and then multiplied by the annual run hours to calculate annual energy usage. The proposed energy usage was then calculated by multiplying the same annual run hours by the power consumption of the proposed LED products. The total annual energy savings were calculated by subtracting the proposed usage from the existing usage.

The run hours for each building was obtained through a combination of site observations, feedback from building managers or on-site employees, and analyzing utility meter information. The run hours for different space types were separated within each building. The general space types most often found were hallways/lobbies, open office areas, enclosed offices, stairwells, exit signs, storage spaces, mechanical rooms, and exterior.

Occupancy sensors were assumed to reduce the annual run hours by 20% for the fixtures being controlled. This is true for both existing occupancy sensors and proposed occupancy sensors. A 2016 report from the U.S. Department of Energy² shows that occupancy sensor savings vary greatly by space type, thereby including an estimated reduction of 20%, our savings will be achievable - but conservative.

The maintenance savings were calculated based on the existing lamp and ballast types. Each existing lamp and ballast type was assigned a material cost and disposal cost based on current product prices. The average rated life for each lamp and ballast type was then divided by the annual run hours to determine the annual replacement quantity, which was then multiplied by the product costs to determine the annual cost savings. Labor savings were not included in the maintenance savings calculations.

There are some utility incentives available through Florida Power & Light Company's (FPL) current incentive program. Unfortunately, available incentives are limited and only apply to certain LED product types, which is why they are not available for every building. The incentives included in this report were current as of December 15, 2017, but could change depending on program changes from FPL.

²U.S. Department of Energy. (2016). Wireless Sensors for Lighting Energy Savings. https://energy.gov/sites/prod/files/2017/01/f34/wireless_occupancy_sensor_guide.pdf.

Installation Methodology & Assumptions

Following the execution of the project agreement, OpTerra will coordinate the installation schedule and timeline with the appropriate Broward County contact(s). It is expected that there will be a final design period of approximately 4 weeks following contract execution. Material lead time is expected to take up to 90 days and varies by product. The final installation schedule will vary depending on site access, crew size, and other factors, but will be finalized and agreed upon prior to starting.

An OpTerra project manager will be assigned to oversee the daily operations throughout the duration of the project and will act as the main point of contact for questions or potential issues

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

that may arise. The OpTerra project manager will coordinate installations performed by the electrical subcontractors, and all work will be scheduled with Broward County and approved prior to proceeding.

All labor has been quoted using Florida Prevailing Wage Rates. Any building that requires night work to avoid interrupting daily operations will be accommodated accordingly.

It is assumed that storage space will be provided within each building if available. OpTerra has budgeted for storage containers to be available as needed. It is assumed that space will be allocated at each site for the storage containers. It is assumed that an electrical permit will be required at each site undergoing a lighting retrofit project. It is assumed that Broward County will provide building escorts, badges, or keys that grant access to all areas within each building that are included within the project scope of work.

For sports lighting projects, OpTerra will provide a photometric layout for all areas that feature sports lighting.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM L-1: Interior Lighting Upgrade

ECM Description:

This ECM evaluated the existing interior lighting equipment at each building and recommends the installation of new lighting equipment based on the existing lamp and/or fixture type. The recommended lighting equipment will reduce current electrical consumption while - at minimum, maintaining or exceeding current light levels.

While there were many different types of lamps, ballasts, and fixtures observed, OpTerra has grouped them into categories of similar equipment to standardize the design approach and limit the types of different products installed.

Lighting equipment that was observed as already retrofitted to LED fixtures was listed as 'No Retrofit' and will remain unchanged. Fixtures that were observed to have an emergency battery back-up within the fixture were noted, and a new emergency battery back-up unit compatible with the specified LED product is included herein.

The installation of the new interior lighting products will include the following scope of work:

- Replacing existing incandescent, compact fluorescent, and halogen lamps with new LED lamps.
- Retrofitting existing linear fluorescent T8 and T12 fixtures with new LED Tubes and LED Drivers.
- Installing new LED fixtures in place of existing fixtures that cannot be retrofitted or that have degraded beyond their useful life.
- Installation of ceiling and wall mounted occupancy sensors in spaces where they offer significant savings.
- Cleaning of existing fixture lenses.
- Recycling removed lamps and ballasts.
- Disposing of removed fixtures.

Energy Savings:

The new lighting equipment consumes less power compared to the existing lighting equipment and will therefore reduce the amount of energy consumed by each building. The new sensors will reduce the annual run hours for the fixtures they control, which will further increase the energy savings.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

O&M Impact/Benefits:

The existing interior lighting equipment has a shorter average rated life than the recommended LED products, which requires them to be replaced more often. The existing lighting equipment also has strict recycling requirements that further increases maintenance costs. The new LED lighting equipment has a much longer rated life, and they come with a minimum 5-year manufacturer warranty that eliminates the material cost in the chance there is an early failure. Furthermore, another advantage to the this minimum 5-year life expectancy is that there are fewer fall incidents with regard to changing light bulbs.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Exhibit 1 Page 85 of 490 OPTERRA An ENGRE company

ECM L-2: Exterior and Site Lighting Upgrade

ECM Description:

This ECM evaluated the existing exterior lighting equipment at each building and recommends the installation of new lighting equipment based on the lamp and/or fixture type. The recommended lighting equipment will reduce the electricity consumption while at least maintaining or exceeding the current light levels.

Exterior lighting that was observed to have already been upgraded to LED was noted and listed as 'No Retrofit'.

As part of this ECM, OpTerra will perform the following scope of work:

- Replacing existing CFL, incandescent, or halogen lamps within exterior fixtures with new LED replacement lamps.
- Retrofitting existing HID exterior fixtures with LED 'corn cob' style lamps to replace metal halide and high-pressure sodium lamps. These fixtures will be re-wired to bypass the existing ballast and the ballast will be removed.
- New LED fixture replacements for exterior fixtures that are sufficiently deteriorated beyond useful life or for applications where it is more cost effective to replace the entire fixture instead of retrofitting.
- Cleaning of existing fixture lenses.
- Recycling removed lamps and ballasts.
- Disposing of removed fixtures.

Energy Savings:

The new lighting equipment consumes less power compared to the existing lighting equipment and will therefore reduce the amount of energy consumed by the exterior lighting.

O&M Impact/Benefits:

The existing exterior lighting equipment has a shorter average rated life than the recommended LED products, which requires them to be replaced more often – which not only results in fewer costs associated with new bulb replacement, but also results in less falls, etc., that often occur with changing bulbs at tall heights. The existing lighting equipment also has strict recycling requirements that further increase maintenance costs. The new LED lighting equipment has a much longer rated life, and they come with a minimum 5-year manufacturer warranty that eliminates the material cost in the chance there is an early failure.

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

WATER SAVING UPGRADES

OpTerra performed an audit of all existing water consuming equipment for each of the Group B buildings/sites. The following recommendations will reduce water consumption and related chemical and energy costs through either the replacement or retrofit of the existing plumbing fixtures, domestic water sourcing, mechanical equipment, water treatment technologies, irrigation, water heating systems, and chemical cleaning infrastructure.

ECM W1: Plumbing Fixture Upgrades

This ECM considers upgrading restroom plumbing fixtures to incorporate more efficient water closets (toilets and urinals), faucets and aerators, and showerheads.

Water Closets:

ECM Description:

- Tank style water closets utilize a tank fill valve on top of the bowl which uses gravity to drain large volumes of water into the bowl during evacuation. Pressure assisted tank valves use domestic water pressure to pressurize the tank water allowing for more forceful evacuations with less water volume.
- Flush Valve Water Closets were the most common found in the sites that were audited. Flush valves are designed to release precise volumes of water when activated. High efficiency flush valve and china combinations can enable a facility to greatly reduce its water consumption by reducing flush valve flow rates and the amount of water required for evacuation.
- Wall Mount Urinals: High efficiency flush valve and china combinations for urinals can enable a facility to greatly reduce its water consumption by reducing flush valve flow rates and the amount of water required for evacuation.
- Stall Floor Mount Urinals: Floor mounted urinals utilize high flow flush valves. These valves can be retrofitted to reduce water consumption.

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Energy Savings

Retrofitting water closets will lead to a substantial decrease in water consumption.

O&M Impacts/Benefits

There will be less maintenance required due to the fact there will be less mineral build up and less wear on flush valve equipment.

Equipment Replacements:

This ECM will install new plumbing fixture upgrades to reduce water consumption of water closets. The work will consist of replacing the fixtures, replacing or retrofitting the flush valves. Following tables show retrofit types and equipment (or equal) for each site that was selected for this ECM. The tables use following abbreviations:

Abbreviations used on water closet tables:

FM	FLOOR MOUNTED FLUSH VALVE WATER CLOSET,	UV	URINAL FLUSH VALVE
TT	TANK TYPE WATER CLOSET,	SS	SIDE SENSOR,
WM	WALL MOUNTED FLUSH VALVE WATER CLOSET,	TS	TOP SPUD
ADA	ADA COMPLIANT,	RS	REAR SPUD
VOR	VALVE ONLY RETROFIT	WSOFT	WATER SOFTENER

Proposed Equipment (or equal)

WATER CLOSETS	Manufacturer	Model
WALL MOUNT		
1.28 GPF Wall Mount Fixture Top Spud	Sloan	Model ST-2459
FLOOR MOUNT		
1.28 GPF Floor Mounted Fixture	Sloan	ST-2009
1.28 GPF ADA Compliant Floor Mounted Fixture	Sloan	ST-2029
TANK STYLE, PRESSURE ASSIST		
1.0 GPF ADA Compliant Tank Fill Valve Fixture	Kohler	K-4304
1.0 GPF PRESSURE ASSISTED TANK FILL VALVE	Kohler	K-4484
EB BOWL OF PLAS CLST SEAT WHIT		
WATERCLOSET FLUSHVALVES		
1.28 GAL EXP CLST FLUSH VALVE	Sloan	GEM-2 [®] Flushometers
OVER HANDLE RETROFIT AUTOFLUSH CLST & URL	Sloan	EBV 500A
URINALS		
0.125 GPF WALL MOUNTED URINAL	Sloan	SU-1209
URINAL FLUSHVALVES		
.5 GAL CONC URN FLUSH VLV	Sloan	GEM-2 [®] Flushometers
.125 GAL URN FLUSH VLV	Sloan	GEM-2 [®] Flushometers

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Broward Parks

Site	Location	Туре	QTY	Pre-Retrofit	Post Retrofit			
CD RE	CD REGIONAL							
BP1	Maintenance	Men	1	FM, ADA,RS,2 BOLT CHINA,1.6 GPF,WSOFT	1.28 GPF, VOR			
BP1	Maintenance	Women	2	FM, ADA,RS,2 BOLT CHINA,1.6 GPF,WSOFT	1.28 GPF, VOR			
BP1	Pool	Women	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Pool	Women	10	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Pool	Men	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Pool	Men	3	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Pool	Men	4	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,			
BP1	Shelter 1	Women	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Shelter 1	Women	4	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Shelter 1	Men	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Shelter 1	Men	2	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Shelter 1	Men	2	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,			
BP1	Shelter 4	Women	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Shelter 4	Women	2	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Shelter 4	Men	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Shelter 4	Men	2	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,			
BP1	RR 1	Women	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	RR 1	Women	1	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	RR 1	Men	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	RR 1	Men	1	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,			
BP1	RR 3	Women	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	RR 3	Women	1	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	RR 3	Men	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	RR 3	Men	1	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,			
BP1	Shelter 8	Women	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Shelter 8	Women	4	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Shelter 8	Men	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BP1	Shelter 8	Men	2	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Site	Location	Туре	QTY	Pre-Retrofit	Post Retrofit
CD RE	GIONAL (Cont.)	-	-		
BP1	Shelter 8	Men	2	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,
BP1	Stadium W	Men	4	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,
BP1	Stadium W	Men	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stadium W	Men	3	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stadium W	Women	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stadium W	Women	6	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stadium W	Unisex	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stadium W	Women	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stadium W	Women	6	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	West Lockers	Unisex	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,SS,	1.28 GPF, VOR
BP1	West Lockers	Unisex	1	FM, TS,2 BOLT CHINA,1.6 GPF,SS,	1.28 GPF, VOR
BP1	West Lockers	Unisex	1	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,
BP1	West Lockers	Unisex	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	West Staff	Men	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	West Staff	Women	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stadium East	Men	4	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,
BP1	Stadium East	Men	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stadium East	Men	3	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stadium East	Women	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stadium East	Women	6	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stadium East	Unisex	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stadium East	Women	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stadium East	Women	6	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	East Lockers	Unisex	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,SS,	1.28 GPF, VOR
BP1	East Lockers	Unisex	1	FM, TS,2 BOLT CHINA,1.6 GPF,SS,	1.28 GPF, VOR
BP1	East Lockers	Unisex	1	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,
BP1	East Lockers	Unisex	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	East Staff	Men	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	East Staff	Women	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP1	Stad. Lobby	Men	2	UV,TS,1.0 GPF,SS,	UV,TS,0.125 GPF,SS,
BP1	Stad. Lobby	Men	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,SS,	1.28 GPF, VOR
BP1	Stad. Lobby	Men	2	FM, TS,2 BOLT CHINA,1.6 GPF,SS,	1.28 GPF, VOR
BP1	Stad. Lobby	Women	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,SS,	1.28 GPF, VOR
BP1	Stad. Lobby	Women	5	FM, TS,2 BOLT CHINA,1.6 GPF,SS,	1.28 GPF, VOR

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Г

1

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Site	Location	Туре	QTY	Pre-Retrofit	Post Retrofit
EASTE	RLIN				
BP3	М	0	1	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,
BP3	М	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP3	М	0	1	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP3	W	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP3	W	0	2	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP3	М	0	1	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BP3	М	0	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP3	М	0	1	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP3	W	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP3	W	0	1	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP3	STAFF	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
Site	Location	Туре	QTY	Pre-Retrofit	Post Retrofit
HOLLY	WOOD NORTH I	BEACH			
BP11	М	0	2	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
TREE T	OPS				
BP4	SOUTH	0	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP4	SOUTH	0	2	BOLT CHINA,1.6 GPF,EXTRA LONG VACCUM	1.28 GPF, VOR
BP4	SOUTH	0	2	STALL STYLE URINAL,1.5 GPF,	STALL STYLE URINAL,0.5 GPF,
BP4	NORTH	0	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP4	NORTH	0	2	BOLT CHINA,1.6 GPF,EXTRA LONG VACCUM	1.28 GPF, VOR
BP4	NORTH	0	2	STALL STYLE URINAL,1.5 GPF,	STALL STYLE URINAL,0.5 GPF,
BP4	GATE	0	1	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP4	MARINA	0	1	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
LONG	KEY		•		
BP5	М	0	3	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BP5	М	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP5	М	0	2	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP5	STAFF	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP5	W	0	1	FM, ADA, TS, 2 BOLT CHINA, 1.6 GPF,	1.28 GPF, VOR
BP5	W	0	5	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP5	DRESSING1	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP5	DRESSING2	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP5	М	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BP5	W	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Libraries

Site	Location	Туре	QTY	Pre-Retrofit	Post Retrofit
LIBRAF	RY, HL, Hallandal	e			
BL23	М	0	1	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
LIBRAF	RY, CR, Carver Ra	inches			
BL26	W	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BL26	W	0	2	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BL26	М	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BL26	М	0	1	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BL26	М	0	1	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,
BL26	STAFFM	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BL26	STAFF W	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
LIBRAF	RY, MG, Margate				
BL22	М	0	1	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
LIBRAF	RY, CP, Century P	laza			
BL24	М	0	1	TT,ADA,3.5 GPF,	PRESS. ASSISTED TT,ADA,1.00 GPF
BL24	М	0	1	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BL24	W	0	1	TT,ADA,3.5 GPF,	PRESS. ASSISTED TT,ADA,1.00 GPF
BL24	STAFF	0	1	TT,ADA,3.5 GPF,	PRESS. ASSISTED TT,ADA,1.00 GPF
BL24	STAFF	0	1	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BL24	STAFF	0	1	TT,ADA,3.5 GPF,	PRESS. ASSISTED TT,ADA,1.00 GPF
LIBRAF	RY, NL, North Lau	derdale			
BL20	BL20	0	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR
BL20	BL20	0	2	FM, ADA,TS,2 BOLT CHINA, 1.6 GPF,	1.28 GPF, VOR
LIBRAF	RY, NW, Pompan	o Branch			
BL27	М	0	1	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Office and Court house

Site	Location	Туре	QTY	Pre-Retrofit	Post Retrofit		
North	North Regional Courthouse						
BO29	Jury Rooms	Men	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Jury Rooms	Women	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Jury Rooms	Men	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Jury Rooms	Women	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Jury Rooms	Men	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Jury Rooms	Women	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Jury Rooms	Men	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Jury Rooms	Women	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Judges Off.	Unisex	4	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Public West	Men	1	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,		
BO29	Public West	Men	2	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Public West	Women	3	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Public East	Men	1	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,		
BO29	Public East	Men	2	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Public East	Women	3	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Public Main	Men	2	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,		
BO29	Public Main	Men	2	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Public Main	Women	4	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Probation	Unisex	2	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Room 170	Unisex	2	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	State Atty	Unisex	2	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,		
BO29	Holding Cells	Inmate	2	STAINLESS COMBINATION WATER CLOSET,	PISTON VALVE, LOCK OUT CONTROL,		
Site	Location	Туре	QTY	Pre-Retrofit	Post Retrofit		
Govern	ment Center W	est	_				
BO30	1st Floor	Men	2	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,		
BO30	1st Floor	Men	2	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,		
BO30	2nd Floor	Men	2	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,		
BO30	2nd Floor	Men	2	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,		
BO30	3rd Floor	Men	2	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,		
BO30	3rd Floor	Men	2	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,		
BO30	4th Floor	Men	2	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,		
BO30	4th Floor	Men	2	UV,TS,1.0 GPF,	UV,TS,0.125 GPF,		

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Site	Location	Туре	QTY	Pre-Retrofit	Post Retrofit
Public	Safety Complex				
BO28	Gnd Floor	Men	6	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BO28	Gnd Floor	Men	5	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	Gnd Floor	Women	8	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	Gnd Floor	Men	4	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BO28	Gnd Floor	Men	2	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	Gnd Floor	Women	5	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	Gnd Floor	Men	1	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BO28	Gnd Floor	Men	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	Gnd Floor	Women	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	Gnd Floor	Men	4	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BO28	Gnd Floor	Men	2	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	Gnd Floor	Women	5	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	2nd Floor	Men	6	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BO28	2nd Floor	Men	5	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	2nd Floor	Women	8	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	2nd Floor	Men	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	2nd Floor	Women	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	2nd Floor	Women	6	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	2nd Floor	Men	4	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	2nd Floor	Men	5	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BO28	3rd Floor	Men	6	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BO28	3rd Floor	Men	5	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	3rd Floor	Women	8	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	3rd Floor	Men	2	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BO28	3rd Floor	Men	2	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	3rd Floor	Women	3	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	4th Floor	Men	6	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BO28	4th Floor	Men	5	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	4th Floor	Women	8	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	4th Floor	Men	2	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BO28	4th Floor	Men	3	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	4th Floor	Women	3	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	5th Floor	Men	6	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BO28	5th Floor	Men	5	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	5th Floor	Women	8	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	5th Floor	Men	2	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,
BO28	5th Floor	Men	3	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,
BO28	5th Floor	Women	3	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Site	Location	Туре	QTY	Pre-Retrofit	Post Retrofit				
PARK A	PARK Administration Complex								
BO32	М	0	1	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,				
BO32	М	0	2	FM, TS,2 BOLT CHINA,3.5 GPF,	FM, TS,2 BOLT CHINA,1.28 GPF,				
BO32	W	0	3	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR				
BO32	М	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR				
BO32	М	0	1	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR				
BO32	М	0	1	STALL STYLE URINAL,1.5 GPF,	STALL STYLE URINAL,0.5 GPF,				
BO32	W	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR				
BO32	W	0	2	FM, TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR				
BO32	W	0	2	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR				
BO32	М	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR				
TRAF E	NGN Administra	ation North							
BO31	М	0	2	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,				
BO31	М	0	2	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,				

Healt	lealth and Lab								
Site	Location	Туре	QTY	Pre-Retrofit	Post Retrofit				
PARK	PARK Administration Complex								
BO32	М	0	1	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,				
Boohe	r building								
BH35	Main Bldg.	Men	6	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,				
BH35	Main Bldg.	Men	5	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,				
BH35	Main Bldg.	Women	8	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,				
BH35	Main Bldg.	Men	4	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,				
BH35	Main Bldg.	Men	2	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,				
BH35	Main Bldg.	Women	5	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,				
BH35	Main Bldg.	Men	1	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,				
BH35	Main Bldg.	Men	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,				
BH35	Main Bldg.	Women	1	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,				
BH35	Main Bldg.	Men	4	UV,TS,1.5 GPF,	UV,TS,0.125 GPF,				
BH35	Main Bldg.	Men	2	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,				
BH35	Main Bldg.	Women	5	WM ,TS,4 BOLT CHINA,3.5 GPF,	WM ,TS,4 BOLT CHINA,1.28 GPF,				
EPD Er	vironmental Mo	onitoring Fa	cility &	Lab					
BH39	W	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR				
BH39	RR	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR				
BH39	М	0	1	TT.ADA.1.6 GPF.	PRESS, ASSISTED TT.ADA.1.00 GPF.				

Parking, Warehouse and Repair

Site	Location	Туре	QTY	Pre-Retrofit	Post Retrofit			
HIGH & BRDG Mosquito Control								
BR44	OFFICE M	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BR44	OFFICE W	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BR44	FLEET M	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			
BR44	FLEET W	0	1	FM, ADA,TS,2 BOLT CHINA,1.6 GPF,	1.28 GPF, VOR			

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Aerators & Faucets

ECM Description:

Most faucets utilize aerators to restrict the volume of water at the mouth of a faucet, (while simultaneously generating a more comfortable flow). However, the use of high efficiency aerators can even further reduce the flow rates from faucets, while still creating a comfortable flow for handwashing and cleaning. Restricting faucet flow rates with high efficient aerators and faucets, enables a facility to conserve water and reduce energy usage associated with heating water.

Energy Savings

There will be far less water consumed due to the reduced rate of overall water flows at each fixture. Additionally, when using hot water, there will be less energy consumed by the hot water heater due to this restricted flow of hot water.

O&M Impacts/Benefits

Less mineral buildup and wear and tear of fixtures and hot water heater, which then leads to less replacement costs. Aerators to be installed are also vandal proof, therefore eliminating the need to replace stolen and/or vandalized parts/pieces.

Equipment Replacements:

This ECM will install new aerators and flow head upgrades to reduce water consumption. The proposed changes are mainly replacing the aerators with low flow aerators. Following tables show retrofit types and equipment (or equal) for each site that was selected for this ECM. The tables use following abbreviation:

SHBC = SINGLE HANDLE BASE AND COCK,

Proposed Equipment (or equal)

FAUCETS		Manufacturer	Model
	0.5 GPM Single Handle Basin Cock	Moen	8894 (Chrome)
Aerators			
	0.5 GPM, needle spray, Female	Niagara	N3205NFTP-PC-T
	1.5 GPM, bubble spray, Female	Niagara	N3215BFTP-PC-T

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Broward Parks

ID	Location	Туре	Qty	Pre-Retrofit	Post Retrofit	
CD REG	CD REGIONAL					
BP1	Pool	Men	5	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP1	Stadium West	Men	4	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BP1	Stadium West	Unisex	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BP1	West Lockers	Unisex	3	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP1	West Lockers	Unisex	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP1	West Staff	Men	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BP1	West Staff	Women	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BP1	Stadium East	Men	4	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BP1	Stadium East	Unisex	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BP1	East Lockers	Unisex	3	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP1	East Lockers	Unisex	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP1	East Staff	Men	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BP1	East Staff	Women	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BP1	Stadium Lobby	Men	4	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BP1	Stadium Lobby	Women	5	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
EASTE	RLIN					
BP3	М	0	2	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP3	W	0	2	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP3	STAFF	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
HOLLY	WOOD NORTH BEACI	Н				
BP11	М	0	4	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP11	W	0	4	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP11	STAFF W	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP11	STAFF M	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
TREE T	OPS					
BP4	GATE	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP4	MARINA	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
LONG	KEY					
BP5	М	0	3	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP5	STAFF	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP5	W	0	3	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP5	DRESSING1	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP5	DRESSING2	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP5	KITCHEN	0	1	Kitchen Faucet Aerator, 2.5 GPM	Kitchen Faucet Aerator, 1.5 GPM	
BP5	KITCHEN	0	1	Kitchen Faucet Aerator, 2.5 GPM	Kitchen Faucet Aerator, 1.5 GPM	
BP5	М	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BP5	W	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,	

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Libraries

ID	Location	Туре	Qty	Pre-Retrofit	Post Retrofit
LIBRA	RY, HL, Hallandale				
BL23	М	0	3	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL23	W	0	3	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL23	STAFF M	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL23	STAFF W	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
LIBRA	RY, CR, Carver Ranche	es			
BL26	W	0	3	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL26	М	0	3	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL26	STAFF M	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL26	STAFF W	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
LIBRA	RY, MG, Margate				
BL22	W	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL22	М	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL22	STAFF	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
LIBRA	RY, CP, Century Plaza				
BL24	М	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL24	W	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL24	STAFF	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL24	STAFF	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
LIBRA	RY, NL, North Laudero	dale			
BL20	BL20	0	2	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL20	BL20	0	2	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
LIBRA	RY, NW, Pompano Bra	anch			
BL27	М	0	3	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL27	W	0	3	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL27	STAFF	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BL27	STAFF	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Office and Court

house

ID	Location	Туре	Qty	Pre-Retrofit	Post Retrofit
North I	Regional Courthouse				
BO29	Jury Rooms	Men	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Jury Rooms	Women	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Jury Rooms	Men	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Jury Rooms	Women	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Jury Rooms	Men	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Jury Rooms	Women	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Jury Rooms	Men	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Jury Rooms	Women	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Judges Offices	Unisex	4	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Public West	Men	2	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Public West	Women	2	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Jury Room	Kit	8	Kitchen Faucet Aerator, 2.5 GPM	Kitchen Faucet Aerator, 1.5 GPM
BO29	Public East	Men	2	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Public East	Women	2	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Public Main	Men	2	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Public Main	Women	2	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Probation	Unisex	2	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	Room 170	Unisex	2	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO29	State Attorney	Unisex	2	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
Govern	nment Center West				
BO30	1st Floor	Men	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	1st Floor	Women	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	1st Floor	Men	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	1st Floor	Women	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	2nd Floor	Men	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	2nd Floor	Women	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	2nd Floor	Men	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	2nd Floor	Women	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	3rd Floor	Men	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	3rd Floor	Women	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	3rd Floor	Men	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	3rd Floor	Women	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	4th Floor	Men	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	4th Floor	Women	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	4th Floor	Men	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	4th Floor	Women	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	Staff	Unisex	2	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO30	Staff	Unisex	5	Kitchen Faucet Aerator, 2.5 GPM	Kitchen Faucet Aerator, 1.5 GPM

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ID	Location	Туре	Qty	Pre-Retrofit	Post Retrofit
Public	Safety Complex				
BO28	Ground Floor	Men	6	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Ground Floor	Men	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Ground Floor	Women	8	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Ground Floor	Women	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Ground Floor	Men	5	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Ground Floor	Men	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Ground Floor	Women	5	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Ground Floor	Women	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Ground Floor	Men	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Ground Floor	Men	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Ground Floor	Women	2	SHBC FAUCET AERATOR.2.2 GPM.	SHBC FAUCET AERATOR.0.5 GPM.
BO28	Ground Floor	Women	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Ground Floor	Men	5	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Ground Floor	Men	1	FAUCET AERATOR.2.2 GPM.	FAUCET AERATOR.0.5 GPM.
BO28	Ground Floor	Women	5	SHBC FAUCET AERATOR.2.2 GPM.	SHBC FAUCET AERATOR.0.5 GPM.
BO28	Ground Floor	Women	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Second Floor	Men	6	SHBC FAUCET AERATOR.2.2 GPM.	SHBC FAUCET AERATOR.0.5 GPM.
BO28	Second Floor	Men	1	FAUCET AERATOR.2.2 GPM.	FAUCET AERATOR.0.5 GPM.
BO28	Second Floor	Women	8	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Second Floor	Women	1	FAUCET AERATOR.2.2 GPM.	FAUCET AERATOR.0.5 GPM.
BO28	Second Floor	Men	1	SHBC FAUCET AERATOR.2.2 GPM.	SHBC FAUCET AERATOR.0.5 GPM.
BO28	Second Floor	Women	1	SHBC FAUCET AERATOR.2.2 GPM.	SHBC FAUCET AERATOR.0.5 GPM.
BO28	Second Floor	Women	8	SHBC FAUCET AERATOR.2.2 GPM.	SHBC FAUCET AERATOR.0.5 GPM.
BO28	Second Floor	Men	5	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Third Floor	Men	6	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Third Floor	Men	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Third Floor	Women	8	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Third Floor	Women	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Third Floor	Men	3	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Third Floor	Men	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Third Floor	Women	4	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Third Floor	Women	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Fourth Floor	Men	6	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Fourth Floor	Men	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Fourth Floor	Women	8	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Fourth Floor	Women	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Fourth Floor	Men	4	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Fourth Floor	Men	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Fourth Floor	Women	6	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Fourth Floor	Women	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Fifth Floor	Men	6	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Fifth Floor	Men	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Fifth Floor	Women	8	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Fifth Floor	Women	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Fifth Floor	Men	4	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,
BO28	Fifth Floor	Men	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,
BO28	Fifth Floor	Women	6	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Exhibit 1 Page 100 of 490 OPTERRA An ENGRE company

Broward County

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

BO28	Fifth Floor	Women	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,		
PARK Administration Complex							
BO32	М	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,		
BO32	W	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,		
BO32	М	0	2	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,		

Health and Lab

ID	Location	Туре	Qty	Pre-Retrofit	Post Retrofit	
Booher building						
BH35	Main Building	Men	6	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Men	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Women	8	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Women	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Men	5	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Men	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Women	5	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Women	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Men	1	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Men	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Women	2	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Women	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Men	5	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Men	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Women	5	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Women	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,	
BH35	Main Building	Men	6	SHBC FAUCET AERATOR, 2.2 GPM,	SHBC FAUCET AERATOR,0.5 GPM,	
ΕΑΡ Οι	ur House					
BH40	ADMIN	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,	

Parking, Warehouse and Repair

ID	Location	Туре	Qty	Pre-Retrofit	Post Retrofit			
HIGH 8	HIGH & BRDG Mosquito Control							
BR44	OFFICE M	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,			
BR44	OFFICE W	0	1	FAUCET AERATOR, 2.2 GPM,	FAUCET AERATOR,0.5 GPM,			
BR44	FLEET M	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,			
BR44	FLEET W	0	1	FAUCET AERATOR,2.2 GPM,	FAUCET AERATOR,0.5 GPM,			

Showerheads

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM Description

High efficiency pressure compensating showerheads can greatly reduce shower flow rates while still creating a comfortable flow of water. Restricting shower flow rates enables a facility to conserve water and reduce energy usage associated with heating water, thereby decreasing the water heater's usage.

Energy Savings

Less water consumed and less hot water generated by the hot water heater.

O&M Impacts/Benefits

Increased lifecycle of hot water heater due to less water being produced, and increased showerhead lifecycle due to mineral buildup decaying the head itself.

Equipment Replacements:

This ECM will install new shower heads to reduce water consumption. The work consists of replacing existing shower heads with new low flow showers heads. Following tables show retrofit types and equipment (or equal) for each site that was selected for this ECM.

Proposed Equipment (or equal):

SHOWERS		Manufacturer	Model
	1.5 GPM Handheld Chrome Showerhead	Niagara	N2945CH
	1.5 GPM Chrome Vandal Proof	Niagara	N2150

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ID	Site	Location	Туре	Qty	Pre-Retrofit	Post Retrofit
001		W/act Lookara	Unisex	3	HAND HELD DOMESTIC	LOW FLOW HAND HELD DOMESTIC
BPI	CD REGIONAL	West Lockers			SHOWER HEAD,2.5 GPM,	SHOWER HEAD,1.5 GPM,
DD1		Westlackers	Unisex	1	HAND HELD DOMESTIC	LOW FLOW HAND HELD DOMESTIC
DP1	CD REGIONAL	West Lockers			SHOWER HEAD, 2.5 GPM,	SHOWER HEAD,1.5 GPM,
DD1		Fastlockors	11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	3	HAND HELD DOMESTIC	LOW FLOW HAND HELD DOMESTIC
DP1	CD REGIONAL	East LOCKERS	Unisex		SHOWER HEAD, 2.5 GPM,	SHOWER HEAD,1.5 GPM,
DD1		Eastlockors	Unicov	1	HAND HELD DOMESTIC	LOW FLOW HAND HELD DOMESTIC
DP1	CD REGIONAL	East LOCKERS	Unisex	1	SHOWER HEAD, 2.5 GPM,	SHOWER HEAD,1.5 GPM,
002	EACTEDIIN	STAFF	0	1	HAND HELD DOMESTIC	LOW FLOW HAND HELD DOMESTIC
DPS	EASTERLIN		0	1	SHOWER HEAD, 2.5 GPM,	SHOWER HEAD,1.5 GPM,
0010	Public Safety	Second Floor	Momon	0	COMMERICAL SHOWER	LOW FLOW COMMERICAL
BU28	Complex	Lockers	women	9	HEAD2.5 GPM,	SHOWERHEAD,1.5 GPM,
0010	Public Safety	Second Floor	Momon	1	HAND HELD DOMESTIC	LOW FLOW HAND HELD DOMESTIC
BU28	Complex	Lockers	women		SHOWER HEAD, 2.5 GPM,	SHOWER HEAD,1.5 GPM,
0010	Public Safety	Second Floor	Mon	12	COMMERICAL SHOWER	LOW FLOW COMMERICAL
BU28	Complex	Lockers	Wen		HEAD2.5 GPM,	SHOWERHEAD,1.5 GPM,
0010	Public Safety	Second Floor	Mon	1	HAND HELD DOMESTIC	LOW FLOW HAND HELD DOMESTIC
B028	Complex	Lockers	WIEIT		SHOWER HEAD, 2.5 GPM,	SHOWER HEAD,1.5 GPM,
	EPD Environmental					
BH39	Monitoring Facility	М	Men	1		LOW FLOW HAND HELD DOMESTIC
	& Lab				SHOWER HEAD, 2.3 GPIVI,	SHOWER HEAD, 1.5 GPIVI,
	EPD Environmental		Women	1		
BH39	Monitoring Facility	W				
	& Lab				SHOWER HEAD, 2.5 GPIVI,	SHOWER HEAD, I.S GPIVI,

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM W2: Install Refrigeration Line Heat Exchanger on Ice Machines

ECM Description

With a refrigeration heat exchanger system installed, cold discharge water from an ice machine or refrigeration unit is exposed to incoming domestic water in a reservoir. This heat exchange can cool incoming water by more than 16%. Due to this drop-in temperature, the efficiency of the ice machine improves by more than 18%.

Energy Savings

This creates energy savings by reducing the cooling load and cycle time of the ice machine or refrigeration unit.

O&M Impacts/Benefits

Ice machine does not have to work as hard to produce ice, thereby increasing the ice machine's lifecycle.

Equipment Replacements:

This ECM will install new Refrigeration Line Heat Exchanger on Ice Machines. The proposed heat exchanger is Chilltech Model: Chilltech II. Equipment (or equal). Following site and equipment or equal was selected for this ECM.

ID	Site	Location	Туре	Qty	Pre-Retrofit	Post Retrofit
DD1		Maintenance	Kit	1	ICE MACHINE, AIR COOLED,	CHILLED WATER HEAT EXCHANGER
DFI	BP1 CD REGIONAL					RETROFIT, AIR COOLED,
0.01		Cto di una Labbu	V:+	1		CHILLED WATER HEAT EXCHANGER
BPI	CD REGIONAL	Staurum Lobby	KIL	1	ICE MACHINE, AIR COOLED,	RETROFIT, AIR COOLED,

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM W3: Central Control Weather Based Irrigation System

ECM Description

Most automated irrigation systems develop watering schedules based on manual time-based irrigation controllers. The controllers that require manual adjustments cannot be controlled remotely, and develop watering schedules based on daily or weekly time schedules. Due to these systems operate without consideration of weather conditions, they are prone to overwatering on days when there is little to no need for irrigation due to favorable weather conditions. Central controlled smart irrigation systems receive or collect data daily to calculate the ET rates (evapotranspiration rates) of the controller's microclimate. ET calculations incorporate various climate parameters (wind, sunlight, temperature, and precipitation) to determine the base water demand of the irrigation system. This enables the system to then create a water efficient daily irrigation schedule - to water as conservatively as possible; only as needed. Central controlled smart irrigation systems can be monitored and controlled remotely through various BAS building management software.

One system of this type is the WeatherTrak ET Pro3, which links daily with a climate center that compiles 8 million data points daily to calculate and deliver site-specific, local weather data accurate down to one square kilometer to each controller. This central control system enables all features of each controller to be controlled and monitored by the irrigation manager from a remote location.

Energy Savings

Reduced water consumption for irrigation.

Location

Landscaping

Landscape

Landscape

Туре

IRR

IRR

IRR

Qty

1

2

3

O&M Impacts/Benefits

Less wear and tear on irrigation equipment, thereby increasing equipment life. Landscape will not die due to under watering, nor will it die due to mold growth from over watering when water is not needed.

Equipment Replacements:

Site

North Regional

Courthouse

Public Safety

Complex

CD REGIONAL

ID

BO29

BO28

BP1

This ECM will install above described "Central Control Weather Based Irrigation System". At each of the sites the existing controllers are replaced with new weather based controller. All the zones that are connected to existing controller will be controlled by new system. The proposed controller is Hydropoint Model: WeatherTRAK ET Pro3 (or equal). Following site and equipment or equal was selected for this ECM.

Pre-Retrofit

TIME BASED IRRIGATION

CLOCK,ZONE,

TIME BASED IRRIGATION

CLOCK,ZONE,

TIME BASED IRRIGATION

CLOCK,ZONE,

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for
presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without
explicit written permission of OpTerra Energy Services, Inc."

Post Retrofit

CENTRAL CONTROLLED AND CLIMATE

SENSITIVE IRRIGATION CLOCK, ZONE,

CENTRAL CONTROLLED AND CLIMATE

SENSITIVE IRRIGATION CLOCK, ZONE,

CENTRAL CONTROLLED AND CLIMATE

SENSITIVE IRRIGATION CLOCK, ZONE,

Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Exhibit 1 age 105 of 490 e company

Building Envelope Improvements

An accurate assessment of the performance of the building envelope is critical to the success of a facility's energy management program. Energy losses in the building envelope are caused by a range of issues including air leaks, thermal bridging and wet insulation. Air leaks in the envelope of a building can cause direct energy loss. Moisture in the envelope will migrate to the interior of the system, reducing insulation values and damaging building components.

ECM B1: Seal Building Cracks including Weather strip, Door Sweeps, and Astragals

ECM Description:

In the Group B Buildings surveyed, numerous air-leak paths through the envelope were found in such locations as gaps at transitions between wall, floor and roof levels; structural penetrations through the wall system and at transitions in wallsystem types. The buildings on this project provide significant opportunity for reducing air infiltrations, greatly improving occupant comfort as well as providing valuable energy savings with rapid payback. Leaky buildings can be drafty and uncomfortable, inefficient, and expensive to heat and cool. Air leaks allow unconditioned air to infiltrate the conditioned interior spaces, or to allow conditioned air to exit the building, drastically increasing heating and cooling loads by adding or removing heat. It is due to such leaks that we find HVAC systems and all components of these systems having to run for longer periods of time, therefore decreasing this same equipment's service life. These same leaks also contribute to problems with moisture, noise, dust and insects.

This Building Envelope Energy Conservation Measure (ECM) addresses unwanted air infiltration by locating and sealing the

'W1" Recommend sealant around window

"W1" Energy loss around window

cracks, gaps and openings where unintended air flow occurs. The greatest breaches occur through gaps where walls meet the floors and ceilings, plumbing and electrical penetrations, and through gaps or openings around windows and doors. By utilizing various sealing and weather-stripping tools and techniques, these breaches can be repaired, bringing energy savings to fruition.

Weather stripping, door sweeps, and astragals will be used to eliminate or greatly diminish gaps at transitions between the wall, floor and roof levels; structural penetrations through the wall system and at transitions in wall-system types air-leak, etc. Such air infiltration paths will be sealed throughout the building's envelope, reducing unconditioned air from entering the space, and/or, conditioned air from existing the space.

Energy Savings

Sealing air leaks within the building will lead to energy savings due to decreased HVAC usage as less unconditioned air will enter the building, and less conditioned air will escape the space as

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

well. A tighter building envelope leads to less energy consumption, moisture problems, dirt and debris, and insect infiltration.

O&M Impacts/Benefits

- HVAC equipment lifecycles increase as equipment will be used less frequently to meet the set-point temperature of the space.
- Cleaner facilities due to dirt and insects infiltrating the building through cracks and crevices.
- Lessening chance of mold growth and overall moisture infiltrating building, thereby increasing building infrastructure components and quality of life for inhabitants.

Building Envelope Improvements:

This ECM will install building envelope improvements to reduce infiltration and heat gain of buildings. The work will consist of sealing building cracks and gaps. Sealing window and door frames. Weather stripping windows and doors. Following material (or equal) will be used to improve building envelope performance.

Weather-Stripping

After the weather-stripping is installed, the doors will be tested for proper operation. The weather-stripping/sweep should be inspected annually. Door weather-stripping material is referred to as DF, which references DF Commercial/ Industrial weather-stripping. All weather-stripping materials shall have a mill finish, unless otherwise specified. Sealeze Nylon Therm-L-Brush Weatherseal 1,500,000 cycle testing ANSI 156.4, 1980

Astragals

Astragals are the weather-stripping material used to cover the gap between two doors. Sealeze Astra-Sweep Nylon Therm-L- Brush Astragal Seal 1,500,000 cycle testing ANSI 156.4, 1980

Door Sweeps

The reference to DS is for the door sweep material, which is also a Commercial/ Industrial product. All weather-stripping materials shall have a mill finish, unless otherwise specified. (Sealeze Nylon Therm-L- Brush Door Sweep 1,500,000 cycle testing ANSI 156.4, 1980

Polyurethane Sealants:

Polyurethane sealant will be installed in all wall cracks, concrete cracks, mortar cracks, control joints, and exterior applications unless otherwise specified. Compliance: Sealant shall meet or exceed requirements of these standards: 1. ASTM C920, Type S, Grade NS, Class 35, Use NT, M, A, and O.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Silicone Sealants:

Silicone sealant is used for all silicone weather-strip application, for capping the exterior edges of any EPDM glazing gaskets, and for sealing joints between non-porous surfaces such as metal and glass unless otherwise specified. Compliance: Sealant shall meet or exceed requirements of these standards: ASTM C920, Type S, Grade NS, Class 100/50, Use T, NT, G, M, A, and O.

Building Envelope Improvements Sites:

Below tables show scope of work per site for buildings selected for building envelope improvements.

CD Regional Park BP1

Quantity	Unit	Envelope Improvements
0.01	Sq/ft	Penetrations sealed with polyurethane sealant
105	LF	Wall cracks, window/door frames and vents sealed with polyurethane sealant
18	Ea	Sets of weather-strip DF
18	Ea	Door sweeps
4	Ea	Astragals (weather-strip for center of double door)
Quantity	Unit	Weatherization/Preventative Maintenance
3	Ea	Sets of weather-strip DF
7	Ea	Door sweeps

Topeekeegee Yugnee Park BP2

Quantity	Unit	Envelope Improvements
0.01	Sq/ft	Penetrations sealed with polyurethane sealant
144	LF	Wall cracks, window/door frames and vents sealed with polyurethane sealant
10	Ea	Sets of weather-strip DF
10	Ea	Door sweeps
Quantity	Unit	Weatherization/Preventative Maintenance
1	Ea	Sets of weather-strip DF
1	Ea	Door sweeps

Easterlin Park BL3

Quantity	Unit	Envelope Improvements
0.02	Sq/ft	Penetrations sealed with polyurethane sealant
8	Ea	Sets of weather-strip DF
8	Ea	Door sweeps
1	Ea	Astragals (weather-strip for center of double door)
Quantity	Unit	Weatherization/Preventative Maintenance
2	Ea	Door sweeps

Broward County Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Tree Tops BP4

Quantity	Unit	Envelope Improvements	
0.001	Sq/ft	Penetrations sealed with polyurethane sealant	
554	LF	Wall cracks, window/door frames and vents sealed with polyurethane sealant	
11	Ea	Sets of weather-strip DF	
11	Ea	Door sweeps	
3	Ea	Astragals (weather-strip for center of double door)	

Long Key BP5

Quantity	Unit	Envelope Improvements	
0.1	Sq/ft	Penetrations sealed with polyurethane sealant	
16	Ea	Sets of weather-strip DF	
16	Ea	Door sweeps	
6	Ea	Astragals (weather-strip for center of double door)	
Quantity	Unit	Weatherization/Preventative Maintenance	
3	Ea	Sets of weather-strip DF	
3	Ea	Door sweeps	

Brian Piccolo BP7

Quantity	Unit	Envelope Improvements
18	LF	Wall cracks, window/door frames and vents sealed with polyurethane sealant
7	Ea	Sets of weather-strip DF
7	Ea	Door sweeps
1	Ea	Astragals (weather-strip for center of double door)
Quantity	Unit	Weatherization/Preventative Maintenance
1	Ea	Sets of weather-strip DF
1	Ea	Door sweeps

Fern Forest Nature Preserve BP8

Quantity	Unit	Envelope Improvements
0.04	Sq/ft	Penetrations sealed with polyurethane sealant
264	LF	Wall cracks, window/door frames and vents sealed with polyurethane sealant
14	Ea	Sets of weather-strip DF
14	Ea	Door sweeps
4	Ea	Astragals (weather-strip for center of double door)
Quantity	Unit	Weatherization/Preventative Maintenance
4	Ea	Sets of weather-strip DF
4	Ea	Door sweeps
Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Plantation Heritage BP9 Quantity Unit **Envelope Improvements** Penetrations sealed with polyurethane sealant 0.01 Sq/ft Wall cracks, window/door frames and vents sealed with polyurethane sealant 183 LF Sets of weather-strip DF 8 Ea 8 Ea Door sweeps 1 Astragals (weather-strip for center of double door) Ea Quantity Unit Weatherization/Preventative Maintenance Sets of weather-strip DF 1 Ea 1 Ea Door sweeps

Secret Woods BP10

Quantity	Unit	Envelope Improvements
0.03	Sq/ft	Penetrations sealed with polyurethane sealant
399	LF	Wall cracks, window/door frames and vents sealed with polyurethane sealant
17	Ea	Sets of weather-strip DF
17	Ea	Door sweeps
3	Ea	Astragals (weather-strip for center of double door)
Quantity	Unit	Weatherization/Preventative Maintenance
1	Ea	Sets of weather-strip DF
1	Ea	Door sweeps

Hollywood North Beach BP11

Quantity	Unit	Envelope Improvements
0.01	Sq/ft	Penetrations sealed with polyurethane sealant
16	LF	Wall cracks, window/door frames and vents sealed with polyurethane sealant
2	Ea	Sets of weather-strip DF
2	Ea	Door sweeps

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Quantity	Unit	Envelope Improvements
322	LF	Wall cracks, window/door frames and vents sealed with polyurethane sealant
17	Ea	Sets of weather-strip DF
17	Ea	Door sweeps
4	Ea	Astragals (weather-strip for center of double door)
1	Ea	Sets of weather-strip DF (OH Door)
1	Ea	Door sweeps (OH Door)
Quantity	Unit	Weatherization/Preventative Maintenance
6	Ea	Sets of weather-strip DF
6	Ea	Door sweeps
1	Ea	Astragals (weather-strip for center of double door)

African American Library BL13

Government Center West

Quantity	Unit	Envelope Improvements
6	LF	Wall cracks, window/door frames and vents sealed with polyurethane sealant
23	Ea	Sets of weather-strip DF
23	Ea	Door sweeps
5	Ea	Astragals (weather-strip for center of double door)
1	Ea	Sets of weather-strip DF (OH Door)
1	Ea	Door sweeps (OH Door)
Quantity	Unit	Weatherization/Preventative Maintenance
4	Ea	Sets of weather-strip DF
4	Ea	Door sweeps
2	Ea	Astragals (weather-strip for center of double door)

Integrated Waste South Landfill BO33

Quantity	Unit	Envelope Improvements
18	LF	Wall cracks, window/door frames and vents sealed with polyurethane sealant
12	Ea	Sets of weather-strip DF
12	Ea	Door sweeps
4	Ea	Astragals (weather-strip for center of double door)
7	Ea	Sets of weather-strip DF (OH Door)
7	Ea	Door sweeps (OH Door)

EAP Our House BH40

Quantity	Unit	Envelope Improvements
0.05	Sq/ft	Penetrations sealed with polyurethane sealant
2	Ea	Sets of weather-strip DF
2	Ea	Door sweeps

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

BSO Maintenance Facility BR42

Quantity	Unit	Envelope Improvements
76	LF	Wall cracks, window/door frames and vents sealed with polyurethane sealant
9	Ea	Sets of weather-strip DF
9	Ea	Door sweeps

BCJC South Parking BR43

Quantity	Unit	Envelope Improvements
12	LF	Wall cracks, window/door frames and vents sealed with polyurethane sealant
10	Ea	Sets of weather-strip DF
10	Ea	Door sweeps

South Maintenance Shop BR45

Quantity	Unit	Envelope Improvements
0.01	Sq/ft	Penetrations sealed with polyurethane sealant
4	Ea	Sets of weather-strip DF
4	Ea	Door sweeps
1	Ea	Astragals (weather-strip for center of double door)

SOLAR ENERGY (PHOTOVOLTAIC) SYSTEMS

OpTerra performed an audit of all Group B building rooftops, building electrical service and annual utility charges. Most rooftops examined were found to be modified bitumen (built up) roofs with tar and gravel surfaces. Certain facilities do have more than one type of roof, most notably metal standing seam.

The existing structures were evaluated and noted as to age and condition. Once the sites and their utility costs were evaluated, the OpTerra team then proceeded with developing solar energy systems in suitable locations at the facilities receiving maximum Sun exposure. The ultimate goal is reducing the County's to purchase power from the utility, Florida Power and Light (FPL).

During the audit, it was noted that some of the facilities have various types of roof mounted equipment that must be avoided

as well as some varying roof heights and nearby structures that will shade certain areas. Only the areas where full Sun exposure is received from 9am-3pm daily were evaluated for solar panel installation.

Benefits of Photovoltaic implementation are:

- Reduction in electric purchase from the FPL
- Energy independence and redundancy in the event of a power outage
- Sustainable energy installation improves occupant experience
- Environmental stewardship
- Enhanced public relations
- Tax payer savings

This section includes final site selections for solar installations. The solar sites selected were those with the greatest savings that met the overall project 20-year payback criteria. The 10 sites presented below are included in this project and described in the following section.

- BL15 LIBRARY, WR, West Regional
- BL16 LIBRARY, NO, North West Regional
- BL17 Weston Library
- BO28 Public Safety complex
- BO29 North Regional Courthouse
- BO30 Government Center West
- BO31 Traffic Engineering Administration North
- BH37 Family Success Center, North, Pompano
- BR41 Mass Transit North Maintenance
- BR43 BCJC South Parking Garage

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM S1 and S2: Solar Power (Photovoltaic) System

ECM Description:

A photovoltaic system, also known as a PV system or solar power system, converts sunlight into electricity. PV is a power system designed to supply usable solar power harvested from the sun's energy by means of photovoltaics. This system, which sets up an energy producing electrical system, consists of an arrangement of several components such as solar panels, which absorb – then convert sunlight into electricity; solar inverters, which change the electric current from DC to AC; miscellaneous mounting and cabling hardware that tie the system together, and/or, assist in the system's collective components maintaining a stationary position where mounted. PV systems convert light directly into electricity and shouldn't be confused with other technologies, such as concentrated solar power or solar thermal, used for heating and cooling. These PV systems are mounted on rooftops (S1) and on parking lots (S2) with each varying in size and electrical output to match building electrical demand.

The buildings selected within "Group B", currently receive all electric power solely from the utility grid. The ever-rising cost of energy combined with the enhanced awareness of climate change, create an ideal situation for solar panels to be implemented at appropriate locations at each facility.

Energy Savings:

- Electricity generated by the sun, offsetting the need to purchase power from the utility grid.
- Positive environmental impact due to electricity being produced with no greenhouse gas emissions.
- Solar electricity provides a hedge against utility inflation by creating a levelized cost of energy (LEC) through ownership of a private self-generating power system that has a fixed upfront cost with minor O&M throughout the long life of a solar electric system.
- Solar panels reflect light off the roof thereby improving the heating and cooling system of the host facility and in some cases, extends the life of the roof structure itself.

O&M Impact/Benefits:

- O&M impacts of adding solar electric to the facilities is minimal as there are very few moving parts to break down.
- Solar panels that will be installed will have a 25-year output warranty and are made to withstand outside atmospheric changes.
- They are environmentally friendly, and should go years at a time without any need for repair, or anything beyond basic routine maintenance.
- Systems will be fully monitored electronically so that any issues that may arise would be alerted to staff via email or text message.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Pricing Comment:

The following pages describe installation details for the 10 anticipated sites. The equipment selections are shown for panels and inverters. However, the selections may change during the final design due to the market pricing volatility which is expected with proposed import tariffs on solar equipment.

Roof warranties:

The OpTerra solar project team recognizes that there may be buildings with **existing roof warranties in place**. In these instances, we anticipate contacting and coordinating with the individual roofing manufacturers and vendors to ensure that warranty specifications are kept intact. Our team will take every measure to work with the roofing manufacturer and apply all recommended methodologies and procedures to keep any existing manufacturer's warranty in effect after our scope of work has been performed.

OpTerra is well versed in the different roofing requirements of the various manufacturers. We are aware of the types of roofing materials installed on the proposed buildings and confident that we can satisfy the requirements that will be imposed by the roofing manufacturers.

Operation & Maintenance Services:

Operation & Maintenance Services proposed on this ECM include following; inspect and evaluate the PV systems annually to validate current condition and performance. Provide preventative maintenance and conduct any required minor repairs on-site. Generally, each inspection shall include the following steps for entire PV system:

Inspection Procedure:

- Visual inspection of all components. Check for obvious damage, nests, or rodent/pest damage
- Remove covers from combiner boxes and inspect connections, clean and tighten as needed
- o Test array voltage outputs and amperage outputs
- o Inspect support mounts for integrity and tighten if necessary
- o Check all bonding lugs and bond wire for corrosion, clear if necessary
- o Check all building penetrations for watertight seal, if applicable, then reseal if needed
- o Test DC disconnect for positive shutoff
- o Test all fuses in disconnects
- o Test power input side of inverter and at output side of inverter
- Test AC breaker(s)
- o Test impedance of system ground
- o Check connections/lugs on any ground rods, tighten as needed

- o Test fuses or breakers on inverters
- o Check mounts and labeling for disconnects and inverters
- o Test anti-islanding function
- o Test transfer switch
- o Check other components of system necessary for proper operation of system
- o Complete a full report on system operation
- o Does not include grounds keeping or system panel cleaning

The contractor shall perform all **minor repairs** found during a maintenance inspection as required. A minor repair is defined and considered as any such non-complex repair work requiring only a small limited amount of labor using minor truck stock material and not exceeding one (1) hour duration to complete on average.

The Customer may inspect contractor's repairs at any time without notice. Acceptance of all work completed by the Solar Contractor may be subject to an inspection as deemed necessary by the County.

In the event that the County notifies Solar Contactor of defects in the work performed, the Solar Contractor, within forty-eight (48) hours of receiving notice from the County, either perform the repair corrections or schedule an appointment with the designated Broward County Facilities Manager, to make the required repairs. Repairs on unacceptable workmanship shall be completed within five (5) days of receipt of notice of defect (unless a later access date is required by the County). Solar Contractor shall notify the designated Broward County Facilities staff member of the planned repair date, as well as the date of completion of the repair.

If a need to perform a major PV system repair is found upon completing a PV system maintenance inspection, the Solar Contractor shall submit a request to the County with a detailed report of problems found, accompanied by a cost proposal with work scope for approval prior to performing the work.

UNSCHEDULED MAINTENANCE WORK

The County may assign maintenance and repair work to the solar contractor as needed via a Work Order (or other mutually agreed method). The Work Order shall specify the PV system, including any contact information and location for desired work to be performed. Upon Contractor's acceptance of the Work Order, the Contractor shall contact the designated Broward County site owner for access as necessary, and schedule the time to perform the work.

Any major PV system repair after warranty period is Broward County's responsibility and should be reported to the Solar Contractor within 24 hours so that solar system production is not affected by down times.

The County is also responsible to maintain the panels in good working order by keeping the collector surfaces free of debris like construction dust, leaves or other foreign material that degrades collector performance. In general collector panels do not need to be washed in Florida due to the large amounts of rain we receive each month, but if for any reason the panels need to be washed/cleaned it is the County's responsibility to initiate an unscheduled maintenance Work Order.

BL15 - LIBRARY, WR, West Regional

Project Description:

The Solar PV installation is utilizing the available roof space on the roof, providing ample room for a 214.8 kW solar installation at the West Regional Library. The flexible design has 632 solar panels at 350 watts each. The flat roof with open space provides plenty of room for a solar electric system. (See panel layout plan in this section).

This solar installation consists of following components.

Solar PV Equipment Description

Panel Tilt: 10 degrees, Azimuth: 180 degrees, 3" Air Gap Solar PV Panels: 632 x Mission Solar Energy, Model: MSE340SQ6W Inverters: 9 x Solectria Renewables, Model: PVI 23TL-480 Total Panel Area: 13,504 sq-ft **Solar PV Equipment Typical Lifespan** Solar Panels: Greater than 30 Years, Inverters: 15 Years

Solar PV System Rating

System Peak Power: 214.88 kW DC (210.582 kW AC, 192.621 kW CEC) Annual Site Energy Use: 1,408,614 kWh

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Monthly Energy Use vs Solar Generation

The WR library is easily adaptable for solar in that it has a modified built-up roof as found throughout Broward County, with minor roof obstructions to work around. The building will accept standard solar installation materials and techniques, making it straightforward to install and ideal for future service by any knowledgeable professional.

The modified built-up roof

will have a partially ballasted and partially anchored system in place. Solar panels will be mounted facing south at a 10-degree tilt. Solar panels are mounted on custom racking that also contains ballast trays where special concrete blocks are placed to accent the anchor attachments. The anchor attachments are efficiently designed to be as least invasive to the buildings as possible. A "u-anchor" or

sometimes referred to as "o-mount" is placed directly on the roof surface and screwed through the decking rather than cut down through. From there, an exact piece of matching roof material is placed over the post and heat welded to the roof surface and sealed with the appropriate material to create a continuous surface as though they were put on at the time of initial roof installation.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

The 9 x Solectria Renewables, **inverters** will be mounted in locations recommended by the Solar Contractor, but ultimately be decided by Broward County. Inverters are ideally placed as close to the panels strung to them as possible, to allows for shorter DC runs, which have less voltage drop than longer AC runs.

For monitoring purposes, a **data acquisition system** will be installed that will allow for web-based monitoring of the system performance. This will allow the production information to be displayed anywhere Broward County chooses - where Internet service is available.

Upon completion of the project and all inspections passed, the FPL will be engaged to install **bi-directional meters** anywhere solar energy is tied. The bi-directional (net meter) is basically the cash register of the solar system. It allows for credit to be earned for any energy that goes back out into the grid, so that Broward County receives the full benefit of all the solar kWh they generate.

Panel Layout:

The picture seen below shows a proposed solar panel layout in multiple field segments on the WR Library's roof. The design includes 632 Solar PV panels and total panel area of 13,504 sq.ft. The design incorporates maintenance access to roof equipment. The final panel layout may change due to field conditions, and/or, upon Broward County's acceptance during final design phase.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

BL16 - LIBRARY, NO, North West Regional

Project Description:

The North West (NO) Regional Library Solar PV installation is utilizing the available roof space on the roof. There is ample room for a 285.2 kW solar installation at this facility. The flexible design has 839 solar panels at 350 watts each. The flat roof with open space provide plenty of room for a solar electric system, see panel layout plan in this section.

This solar installation consists of following components.

Solar PV Equipment Description

Panel Tilt: 10 degrees, Azimuth: 180 degrees, 3" Air Gap Solar PV Panels: 839 x Mission Solar Energy, Model: MSE340SQ6W Inverters: 8 x Solectria Renewables, Model: PVI 36TL-480 Total Panel Area: 17,926 sq-ft Solar PV Equipment Typical Lifespan

Solar Panels: Greater than 30 Years, Inverters: 15 Years

Solar PV System Rating

System Peak Power: 285.26 kW DC (279.555 kW AC, 255.71 kW CEC) Annual Site Energy Use: 1,412,538 kWh

The NO Regional Library facility is easily adaptable for solar in that it has a modified built-up roof as found throughout Broward County, with minor roof obstructions to work around. The building will accept standard solar installation materials and techniques, making it straightforward to install and ideal for future service by any knowledgeable professional.

The **modified built-up roof with gravel coating** will have a partially ballasted and partially anchored system in place. Solar panels will be mounted facing south at a 10-degree tilt. Solar panels are mounted on custom racking that also contains ballast trays where special concrete blocks are placed to accent the anchor attachments. The anchor attachments are efficiently designed to be as least invasive to the buildings as possible. A "u-anchor" or

sometimes referred to as "o-mount" is placed directly on the roof surface and screwed through the decking rather than cut down through. From there, an exact piece of matching roof material is placed over the post and heat welded to the roof surface and sealed with the appropriate material to create a continuous surface as though they were put on at the time of initial roof installation.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

The **inverters** will be mounted in locations recommended by the Solar Contractor, but will ultimately be decided by Broward County. Inverters are ideally placed as close to the panels strung to them as possible, to allows for shorter DC runs, which have less voltage drop than longer AC runs.

For monitoring purposes, a **data acquisition system** will be installed that will allow for web-based monitoring of the system performance. This will allow the production information to be displayed anywhere Broward County chooses as long as Internet service is available.

Upon completion of the project and all inspections passed, the utility will be engaged to install **bi-directional meters** anywhere solar energy is tied to. The bi-directional (net meter) is basically the cash register of the solar system. It allows for credit to be earned for any energy that goes back out into the grid, so that Broward County receives the full benefit of all the solar kWh they generate.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Panel Layout:

The picture seen below showcases the proposed solar panel layout in multiple field segments on the roof. The design includes 839 Solar PV panels and total panel area of 17,926 sq. ft. The design incorporates maintenance access to roof equipment. The final panel layout may change due to field conditions during final design phase.

BL17 - Weston Library

Project Description:

The Weston Library Solar PV installation is utilizing the available roof space to implement the system. There is ample room for a 241.4 kW solar installation at this facility. The flexible design has 710 solar panels at 350 watts each. The flat roof and open roof space provide plenty of room for a solar electric system, see panel layout plan in this section. This solar installation consists of following components.

Solar PV Equipment Description

Panel Tilt: 10 degrees, Azimuth: 180 degrees, 3" Air Gap Solar PV Panels: 710 x Mission Solar Energy, Model: MSE340SQ6W

Inverters: 8 x Solectria Renewables, Model: PVI 28TL-480

Total Panel Area: 15,170 sq-ft

Solar PV Equipment Typical Lifespan

Solar Panels: Greater than 30 Years, Inverters: 15 Years

Solar PV System Rating

System Peak Power: 241.4 kW DC (236.572 kW AC, 216.394 kW CEC) Annual Site Energy Use: 1,079,314 kWh

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Monthly Energy Use vs Solar Generation

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Installation:

The Weston Library is easily adaptable for solar in that it has a modified built-up roof as found throughout Broward County with minor roof obstructions to work around. The building will accept standard solar installation materials and techniques, making it straightforward to install and ideal for future service by any knowledgeable professional.

The **modified built-up roof** with gravel coating will have a partially ballasted and partially anchored system in place. Solar panels will be mounted facing south at a 10-degree tilt. Solar panels are mounted on custom racking that also contains ballast trays where special concrete blocks are placed to accent the anchor attachments. The anchor attachments are efficiently designed to be as least invasive to the buildings as possible. A "u-anchor" or sometimes referred to as "o-mount" is placed directly on the roof surface and screwed through the decking rather than cut down through. From there, an exact piece of matching roof material is placed over the post and heat welded to the roof surface and sealed with the appropriate material to create a continuous surface as though they were put on at the time of initial roof installation.

The **inverters** will be mounted in locations recommended by the contractor but ultimately decided by Broward County. Inverters are ideally placed as close to the panels connected to them as possible, to allow for shorter DC runs, which have less voltage drop than longer AC runs.

For monitoring purposes, a **data acquisition system** will be installed that will allow for web-based monitoring of the system performance. This will allow the production information to be displayed anywhere Broward County chooses - where Internet service is available.

Upon completion of the project and all inspections passed, the utility will be engaged to install **bi-directional meters** anywhere solar energy is tied to. The bi-directional (net meter) is basically the cash register of the solar system. It allows for credit to be earned for any energy that goes back out into the grid, so that Broward County receives the full benefit of all the solar kWh they generate.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Panel Layout:

The below picture seen below showcases the proposed solar panel layout in two field segments. The design includes 710 Solar PV panels and total panel area of 15,170 sq. ft. The design incorporates maintenance access to roof equipment. The final panel layout may change due to field conditions, and/or, per Broward County's approval during the final design phase.

BO28 - Public Safety Complex

Project Description:

The Public Safety Complex Solar PV installation is utilizing the available roof space on the roof and available parking space for shadeport installation, there is room for 1368.5 kW solar installation at this facility. The flexible design has 4025 solar panels at 350 watts each. The roofs and parking lot provides plenty of room for a solar electric system, see panel layout plan in this section.

This solar installation consists of following components.

Solar PV Equipment Description

Panel Tilt: 10 degrees, Azimuth: 180 degrees, 3" Air Gap

Solar PV Panels: 4025 x Mission Solar Energy, Model: MSE340SQ6W

Inverters: 27 x Solectria Renewables, Model: PVI 50TL-480

Total Panel Area: 86,000 sq-ft

Solar PV Equipment Typical Lifespan

Solar Panels: Greater than 30 Years, Inverters: 15 Years

Solar PV System Rating

System Peak Power: 1368.5 kW DC (1347.973 kW AC, 1232.998 kW CEC)

Annual Site Energy Use: 6,362,640 kWh

Monthly Energy Use vs Solar Generation

This Public Safety Complex is easily adaptable for solar implementation in that it has available roof space and parking lot space. The canopy installation will not reduce parking spaces and it will provide shading for cars parked underneath. The rooftop and parking lot will accept standard solar installation materials and techniques, making it straightforward to install and ideal for future service by any knowledgeable professional.

The **shadeport** installation proposed is following previously developed design and construction that has been implemented on earlier projects. The design utilizes concrete piers for anchoring, aluminum frame construction and design that meets Florida wind loading requirements.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

The **inverters** will be mounted in locations recommended by the Solar Contractor, but ultimately decided by Broward County. Inverters are ideally placed as close to the panels strung to them as possible, to allows for shorter DC runs, which have less voltage drop than longer AC runs.

For monitoring purposes, a **data acquisition system** will be installed that will allow for web-based monitoring of the system performance. This will allow the production information to be displayed anywhere Broward County chooses where Internet service is available.

Upon completion of the project and all inspections passed, the utility will be engaged to install **bi-directional meters** anywhere solar energy is tied to. The bi-directional (net meter) is basically the cash register of the solar system. It allows for credit to be earned for any energy that goes back out into the grid, so that Broward County receives the full benefit of all the solar kWh they generate.

Panel Layout:

The below picture shows proposed solar panel layout on multiple roofs and parking lots. The design includes 4025 Solar PV panels, with total panel area of 86,000 sq. ft. The design follows car parking patterns and allows for rooftop maintenance access to the equipment. The final panel layout may change due to field conditions, and/or, Broward County's acceptance during final design phase.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Detailed Layout

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

BO29 - North Regional Courthouse

Project Description:

The North Regional Courthouse Solar PV installation is utilizing the available roof space on the roof. There is room for 1242.7 kW of solar installation at this facility. The flexible design has 3655 solar panels at 350 watts each. The flat roof with open space provides plenty of room for a solar electric system, see panel layout plan in this section.

This solar installation consists of following components.

Solar PV Equipment Description

Panel Tilt: 10 degrees, Azimuth: 180 degrees, 3" Air Gap Solar PV Panels: 3655 x Mission Solar Energy, Model: MSE340SQ6W

Inverters: 44 x Solectria Renewables, Model: PVI 28TL-480

Total Panel Area: 78,094 sq-ft

Solar PV Equipment Typical Lifespan

Solar Panels: Greater than 30 Years, Inverters: 15 Years

Solar PV System Rating

System Peak Power: 1242.7 kW DC (1217.846 kW AC, 1113.971 kW CEC)

Annual Site Energy Use: 2,430,800 kWh

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Monthly Energy Use vs Solar Generation

The North Regional Courthouse is easily adaptable for solar in that it has a modified built-up roof as found throughout Broward County with minor roof obstructions to work around. The building will accept standard solar installation materials and techniques, making it straightforward to install and ideal for future service by any knowledgeable professional.

The **modified built-up** roof will have a partially ballasted and partially anchored system in place. Solar panels will be mounted facing south at a 10-degree tilt. Solar panels are mounted on custom racking that also contains ballast trays where special concrete blocks are placed to accent the anchor attachments. The anchor attachments are efficiently designed to be as least invasive to the buildings as possible. A "u-anchor" or sometimes referred to as "o-mount" is placed directly on the roof surface and screwed through the decking rather than cut down through. From

there, an exact piece of matching roof material is placed over the post and heat welded to the roof surface and sealed with the appropriate material to create a continuous surface as though

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

they were put on at the time of initial roof installation.

The **inverters** will be mounted in locations recommended by the contractor but ultimately decided by Broward County. Inverters are ideally placed as close to the panels strung to them as possible, to allows for shorter DC runs, which have less voltage drop than longer AC runs.

For monitoring purposes, a **data acquisition system** will be installed that will allow for web-based monitoring of the system performance. This will allow the production information to be displayed anywhere Broward County chooses where Internet service is available.

Upon completion of the project and all inspections passed, the utility will be engaged to install **bi-directional meters** anywhere solar energy is tied to. The bi-directional (net meter) is basically the cash register of the solar system. It allows for credit to be earned for any energy that goes back out into the grid, so that Broward County receives the full benefit of all the solar kWh they generate.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Panel Layout:

The picture seen below showcases the proposed solar panel layout in multiple field segments atop the North Regional Courthouse roof. The design includes 3655 Solar PV panels and total panel area of 78,094 sq. ft. The design incorporates maintenance access to roof equipment. The final panel layout may change due to field conditions, and/or, Broward County approval during final design phase.

BO30 - Government Center West

Project Description:

The Government Center West Solar PV installation is utilizing the available roof space on the roof. There is room for 307.3 kW solar installation at this facility. The flexible design has 904 solar panels at 350 watts each. The flat roof with open space provides plenty of room for a solar electric system, see panel layout plan in this section.

This solar installation consists of following components.

Solar PV Equipment Description

Panel Tilt: 10 degrees, Azimuth: 180 degrees, 3" Air Gap Solar PV Panels: 904 x Mission Solar Energy, Model: MSE340SQ6W Inverters: 6 x Solectria Renewables, Model: PVI 50TL-480 Total Panel Area: 19,315 sq-ft Solar PV Equipment Typical Lifespan

Solar Panels: Greater than 30 Years, Inverters: 15 Years

Solar PV System Rating

System Peak Power: 307.36 kW DC (302.75 kW AC, 276.927 kW CEC) Annual Site Energy Use: 3,335,282 kWh

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Monthly Energy Use vs Solar Generation

The Government Center West facility is easily adaptable for solar in that it has a modified builtup roof as found throughout Broward County with minor roof obstructions to work around. The building will accept standard solar installation materials and techniques, making it straightforward to install and ideal for future service by any knowledgeable professional.

The modified built-up roof with gravel coating will have a partially ballasted and partially

anchored system in place. Solar panels will be mounted facing south at a 10-degree tilt. Solar panels are mounted on custom racking that also contains ballast trays where special concrete blocks are placed to accent the anchor attachments. The anchor attachments are efficiently designed to be as least invasive to the buildings as possible. A "u-anchor" or sometimes referred to as "o-mount" is placed directly on the roof surface and screwed through the decking rather than cut down through. From there, an exact piece of matching roof material is placed over the post and heat welded to the roof surface and sealed with the appropriate material to create

a continuous surface as though they were put on at the time of initial roof installation.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

chooses -where Internet service is available.

The **inverters** will be mounted in locations recommended by the contractor but ultimately decided by Broward County. Inverters are ideally placed as close to the panels strung to them as possible, to allows for shorter DC runs, which have less voltage drop than longer AC runs.

For monitoring purposes, a **data acquisition system** will be installed that will allow for web-based monitoring of the system performance. This will allow the production information to be displayed anywhere Broward County

Upon completion of the project and all inspections passed, the utility will be engaged to install **bi-directional meters** anywhere solar energy is tied to. The bi-directional (net meter) is basically the cash register of the solar system. It allows for credit to be earned for any energy that goes back out into the grid, so that Broward County receives the full benefit of all the solar kWh they generate.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Panel Layout:

The below seen picture showcases the proposed solar panel layout in multiple field segments atop the Government Center West's roof. The design includes 904 Solar PV panels and total panel area of 19,315 sq. ft. The design incorporates maintenance access to roof equipment. The final panel layout may change due to field conditions, and/or, upon Broward County's acceptance during final design phase.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

BO31 - Traffic Engineering Administration North

Project Description:

The Traffic Engineering Administration North's Solar PV installation is utilizing the available roof space on the roof. There is room for 392.3 kW solar installation at this facility. The flexible design has 1154 solar panels at 350 watts each. The flat roof and metal roof with open roof space provide plenty of room for a solar electric system, see panel layout plan in this section.

This solar installation consists of following components.

Solar PV Equipment Description

Panel Tilt: 10 degrees, Azimuth: 180 degrees, 3" Air Gap Solar PV Panels: 1154 x Mission Solar Energy, Model: MSE340SQ6W Inverters: 17 x Solectria Renewables, Model: PVI 28TL-480 Total Panel Area: 24,657 sq-ft **Solar PV Equipment Typical Lifespan** Solar Panels: Greater than 30 Years, Inverters: 15 Years

Solar PV System Rating

System Peak Power: 392.36 kW DC (384.513 kW AC, 351.716 kW CEC) Annual Site Energy Use: 1,816,388 kWh

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

The Traffic Engineering Administration North facility is easily adaptable for solar in that it has a modified built-up roof as found throughout Broward County with minor roof obstructions to work around. The building will accept standard solar installation materials and techniques, making it straightforward to install and ideal for future service by any knowledgeable professional.

The modified built-up roof with gravel coating will have a partially ballasted and partially

anchored system in place. Solar panels will be mounted facing south at a 10-degree tilt. Solar panels are mounted on custom racking that also contains ballast trays where special concrete blocks are placed to accent the anchor attachments. The anchor attachments are efficiently designed to be as least invasive to the buildings as possible. A "u-anchor" or sometimes referred to as "o-mount" is placed directly on the roof surface and

screwed through the decking rather than cut down through. From there, an exact piece of matching roof material is placed over the post and heat welded to the roof surface and sealed with the appropriate material to create a continuous surface as though they were put on at the time of initial roof installation.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

The **inverters** will be mounted in locations recommended by the contractor but ultimately decided by Broward County. Inverters are ideally placed as close to the panels strung to them as possible, to allows for shorter DC runs, which have less voltage drop than longer AC runs.

For monitoring purposes, a **data acquisition system** will be installed that will allow for web-based monitoring of the system performance. This will allow the production information to be displayed anywhere Broward County chooses where Internet service is available.

Upon completion of the project and all inspections passed, the utility will be engaged to install **bi-directional meters** anywhere solar energy is tied to. The bi-directional (net meter) is basically the cash register of the solar system. It allows for credit to be earned for any energy that goes back out into the grid, so that Broward County receives the full benefit of all the solar kWh they generate.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Panel Layout:

The below picture shows proposed Traffic Engineering Administration North solar panel layout in multiple field segments on two roofs. The design includes 1154 Solar PV panels, with a total panel area of 24,657 sq. ft. The design incorporates maintenance access to roof equipment. The final panel layout may change due to field conditions, and/or, upon Broward County's acceptance during final design phase.

BH37 - Family Success Center, North, Pompano

Project Description:

The Family Success Center, North Pompano facility's Solar PV installation is utilizing the available roof space on the roof. There is room for 70.7 kW solar installation at this facility. The flexible design has 208 solar panels at 350 watts each. The three flat roofs with open space provide plenty of room for a solar electric system, see panel layout plan in this section.

This solar installation consists of following components.

Solar PV Equipment Description

Panel Tilt: 10 degrees, Azimuth: 180 degrees, 3" Air Gap Solar PV Panels: 208 x Mission Solar Energy, Model: MSE340SQ6W Inverters: 3 x Solectria Renewables, Model: PVI 23TL-480 Total Panel Area: 4,444 sq-ft **Solar PV Equipment Typical Lifespan** Solar Panels: Greater than 30 Years, Inverters: 15 Years

Solar PV System Rating

System Peak Power: 70.72 kW DC (69.306 kW AC, 63.394 kW CEC) Annual Site Energy Use: 149,276 kWh

Monthly Energy Use vs Solar Generation

The Family Success Center, North Pompano facility is easily adaptable for solar in that it has a modified built-up roof as found throughout Broward County with minor roof obstructions to work around. The building will accept standard solar installation materials and techniques, making it straightforward to install and ideal for future service by any knowledgeable professional.

The modified built-up roof will have a partially ballasted and partially anchored system in place. Solar panels will be mounted facing south at a 10degree tilt. Solar panels are mounted on custom racking that also contains ballast trays where special concrete blocks are placed to accent the anchor attachments. The anchor attachments are efficiently designed to be as least invasive to the buildings as possible. A "uanchor" or sometimes referred to as "o-mount" is placed directly

on the roof surface and screwed through the decking rather than cut down through. From there, an exact piece of matching roof material is placed over the post and heat welded to the roof surface and sealed with the appropriate material to create a continuous surface as though they were put on at the time of initial roof installation.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

The **inverters** will be mounted in locations recommended by the contractor but ultimately decided by Broward County. Inverters are ideally placed as close to the panels strung to them as possible, to allows for shorter DC runs, which have less voltage drop than longer AC runs.

For monitoring purposes, a **data acquisition system** will be installed that will allow for web-based monitoring of the system performance. This will allow the production information to be displayed anywhere Broward County chooses where Internet service is available.

Upon completion of the project and all inspections passed, the utility will be engaged to install **bidirectional meters** anywhere solar energy is tied to. The bi-directional (net meter) is basically the cash register of the solar system. It allows for credit to be

earned for any energy that goes back out into the grid, so that Broward County receives the full benefit of all the solar kWh they generate.

Panel Layout:

The picture seen below showcases the proposed solar panel layout on the Family Success Center, North Pompano facility - seen in multiple field segments on three roofs. The design includes 208 Solar PV panels with a total panel area of 4,444 sq. ft. The design incorporates maintenance access to roof equipment. The final panel layout may change due to field conditions, and or, Broward County's approval during final design phase.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

BR41 - Mass Transit North Maintenance

Project Description:

The Mass Transit North Maintenance facility's Solar PV installation is utilizing the available roof space on two roofs. There is ample room for 747.6 kW solar installation at this facility. The flexible design has 2199 solar panels at 350 watts each. The flat roof and metal roof with open roof space provide plenty of room for a solar electric system, see panel layout plan in this section.

This solar installation consists of following components.

Solar PV Equipment Description

Panel Tilt: 10 degrees, Azimuth: 180 degrees, 3" Air Gap Solar PV Panels: 2199 x Mission Solar Energy, Model: MSE340SQ6W Inverters: 32 x Solectria Renewables, Model: PVI 28TL-480 Total Panel Area: 46,985 sq-ft **Solar PV Equipment Typical Lifespan**

Solar Panels: Greater than 30 Years, Inverters: 15 Years

Solar PV System Rating

System Peak Power: 747.66 kW DC (732.707 kW AC, 670.211 kW CEC) Annual Site Energy Use: 2,920,591 kWh

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

The Mass transit North Maintenance facility is interesting in that there are two types of structures on the property connected to one another as one facility, but with two different roof types. The good news is that both types of roof styles, when used in conjunction with solar panels, will minimize penetrations through the surface. The buildings will accept standard solar installation materials and techniques, making them straightforward to install and ideal for future service by any knowledgeable professional.

The first, the **modified built-up roof with gravel coating**, will have a partially ballasted and partially anchored system in place. Solar panels in this zone will be mounted facing south at a 10-degree tilt. Solar panels are mounted on custom racking that also contains ballast trays where

special concrete blocks are placed to accent the anchor attachments. The anchor attachments are efficiently designed to be as least invasive to the buildings as possible. A "u-anchor" or sometimes referred to as "o-mount" is placed directly on the roof surface and screwed through the decking rather than cut down through. From there, an exact piece of matching roof material is placed over the post and heat welded to the roof surface and sealed with the appropriate material to create a continuous surface as though they were put on at the time of initial roof installation.

The second attachment method will be on the **metal standing seam roofs**. Panels will be flush mounted on the existing east/west roof slopes. The solar industry uses special clamps, such as those provided by S-5, for a variety of seam types. The clamps attach directly to the metal seams, and the solar rail that supports the panels is attached to the top of the clamps. This eliminates the need to penetrate the roof to attach the solar system.

The **inverters** will be mounted in locations recommended by the contractor but ultimately decided by Broward County.

Inverters are ideally placed as close to the panels strung to them as possible, to allows for shorter DC runs, which have less voltage drop than longer AC runs. Although the system is currently preengineered, it is expected that panels will be tied to different utility meters on the property, as utility requirements for interconnection and value-engineering will dictate during that process.

For monitoring purposes, a **data acquisition system** will be installed that will allow for web-based monitoring of the system performance. This will allow the production information to be displayed anywhere Broward County chooses where Internet service is available.

Upon completion of the project and all inspections passed, the utility will be engaged to install **bi-directional meters** anywhere solar energy is tied to. The bi-directional (net meter) is basically the cash register of the solar system. It allows for credit to be earned for any energy that goes

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

back out into the grid, so that Broward County receives the full benefit of all the solar kWh they generate.

Panel Layout:

The picture seen below shows the proposed Mass transit North Maintenance facility's solar panel layout in multiple field segments. The design includes 2199 Solar PV panels and total panel area of 46,985 sq. ft. The design incorporates maintenance access to roof equipment. The final panel layout may change due to field conditions, and/or, Broward County's approval during final design phase.

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

BR43 - BCJC South Parking Garage

Project Description:

The BCJC South Parking Garage facility's Solar PV installation is utilizing the available roof space on the roof. There is ample room for 228.1 kW solar installation at this facility. The flexible design has 671 solar panels at 350 watts each. The top floor of parking garage provides plenty of room for a solar electric system on shadeport setting, see panel layout plan in this section.

This solar installation consists of following components.

Solar PV Equipment Description

Panel Tilt: 10 degrees, Azimuth: 180 degrees, 3" Air Gap Solar PV Panels: 671 x Mission Solar Energy, Model: MSE340SQ6W Inverters: 9 x Solectria Renewables, Model: PVI 23TL-480 Total Panel Area: 14,337 sq-ft **Solar PV Equipment Typical Lifespan** Solar Panels: Greater than 30 Years, Inverters: 15 Years

Solar PV System Rating

System Peak Power: 228.14 kW DC (223.577 kW AC, 204.507 kW CEC) Annual Site Energy Use: 781,812 kWh

This BCJC South Parking Garage facility is easily adaptable for solar in that it has top floor dedicated for parking. The canopy installation will not reduce parking spaces and it will provide shading for top floor. The building will accept standard solar installation materials and techniques, making it straightforward to install and ideal for future service by any knowledgeable professional.

The **shadeport** installation proposed is following same design and planning approach as Tampa International Airport installation show on the pictures. The final material selection may change during design phase depending on field conditions. The final product will be similar to the configuration shown on the pictures.

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

The **inverters** will be mounted in locations recommended by the contractor but ultimately decided by Broward County. Inverters are ideally placed as close to the panels strung to them as possible, to allows for shorter DC runs, which have less voltage drop than longer AC runs.

For monitoring purposes, a **data acquisition system** will be installed that will allow for web-based monitoring of the system performance. This will allow the production information to be displayed anywhere Broward County chooses where Internet service is available.

Upon completion of the project and all inspections passed, the utility will be engaged to install **bi-directional meters** anywhere solar energy is tied to. The bi-directional (net meter) is basically the cash register of the solar system. It allows for credit to be earned for any energy that goes back out into the grid, so that Broward County receives the full benefit of all the solar kWh they generate.

Panel Layout:

The picture seen below shows the proposed BCJC South Parking Garage facility's solar panel layout in multiple field segments on top floor of the parking garage. The design includes 671 Solar PV panels and total panel area of 14,337 sq. ft. The design follows car parking patterns and provides for maintenance access to equipment. The final panel layout may change due to field conditions, and/or, upon Broward County's approval during final design phase.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

OTHER UPGRADES

OpTerra performed an audit of all existing building/HVAC equipment and controls for the Group B buildings. This section list ECMs that were not covered under previous sections.

The existing equipment was inspected and noted as to age, reliability and efficiency. Once all of the equipment was evaluated, the OpTerra team then proceeded with developing practical solutions to improve any underlining problems and areas that stand out for potential energy savers.

Upgrades and improvement to the other energy using equipment, listed in this section, will result in the following benefits for Broward County.

Benefits of these ECMs include:

- Deferred maintenance
- Operational savings
- Increased reliability

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

ECM 01: Surge Protection

ECM Description:

This ECM is providing surge protection to HVAC equipment to avoid down time of equipment due to surges in electrical distribution system. A surge is a high-amplitude, short-duration electrical fluctuation that can cause harm to electrical, electromechanical, and electronic equipment. Surges are caused by lightning, utility events, and internal events. It was reported by the staff that this area has frequent lighting storms and that the units in question have been down due to power surges several times in 2017.

Energy Savings:

This ECM has no energy savings. The benefits are in avoided costs in emergency repairs due to surge damage, and at minimum, the avoided cost of a service call to reset the controls due to surge or power disruption.

O&M Impact/Benefits:

Equipment reliability will be increased. Problems associated with spikes and surges will be reduced or eliminated. Resulting in reduced repair costs. No additional O&M cost are expected from this measure.

Condensing Units to Receive Surge Protectors:

This ECM will install new surge protectors for CU-3 and CU-4 at Ann Kolb Nature Center. The Condensing units that receive protectors are serving Mangrove Hall. The protectors will be installed next to the electrical panel providing power to the condensing units.

ID	Site	Building	Tag	Location	Repair description
BP6	West Lake / AK	Mangrove Hall	CU-3	Outside Unit	Install Surge Protector
BP7	West Lake / AK	Mangrove Hall	CU-4	Outside Unit	Install Surge Protector

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

3. Historical Energy Use

This section of the report contains the electric and water usage history for each of the Broward County facilities assigned to OpTerra. Historical data was provided by Broward County and supplemented with more recent electrical data from FPL and water data from the county utilities department and the municipalities in which the various facilities are located. Data was not available for the two homeless shelters and the Southwest Regional Library because the county does not pay these utility bills. Natural gas data was not provided because it is used at only a few sites and is unaffected by the proposed energy conservation measures.

Electrical Usage

Electricity is provided to the facilities by Florida Power and Light (FPL). Some sites have multiple meters that measure the electricity consumed at the site. There are 133 meters at the 46 assigned sites. Of these, the 12 Parks have about 60% of the meters due to their spread-out nature.

FPL has established several rate schedules, or tariffs, to calculate the amount its customers pay for usage. The time and quantity that energy is consumed by the meter dictates the rate schedule that the electricity consumed at a meter is billed. Table 3-1 lists each site along with the corresponding FPL rate code. These rates along with a brief description is provided below:

- GS-1: General Service Non-Demand
 - o Billed for kWh usage at all times (kW demand < 20 kW)
- GSD-1, GSLD-1: General Service Demand and General Service Large Demand
 - o Billed for kWh usage and kW demand at all times
 - GSD-1 (20 kW < kW Demand < 500 kW)
 - GSLD-1 (500 kW < kW Demand < 2000 kW)
- GSDT-1: General Service Demand with Time-of-Use
 - Same as GSD-1 & GSLD-1 but kW and kWh is billed according to pre-established on-peak and off-peak times
- SDTR-1A: Seasonal Demand with Time-of-Use Rider
 - o Same as GSDT-1 but with different pre-established peak times.
- CILC-1D: Commercial and Industrial Load Control Program
 - Provides a rate reduction for random FPL load control events.

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

TABLE 3-1 FPL ELECTRIC RATE TARIFFS

	Site	FPL RATE CODE
	Central Broward Regional	SDTR-1A, GS-1, GSD-1
	Topeekeegee Yungee	SDTR-1A, GS-1, GSD-1
	Easterlin	GS-1, GSD-1
	Tree Tops	GS-1, GSD-1
	Long Key	SDTR-1A, GS-1
SKS	West Lake / Anne Kolb NC	SDTR-1A, GS-1, GSD-1
PAI	Brian Piccolo	SDTR-1A, GS-1
	Fern Forest	GS-1, GSD-1
	Plantation Heritage	GS-1, GSDT-1
	Secret Woods	GS-1, GSD-1
	Hollywood North Beach	GS-1
	Saw Palmetto	GS-1
	African American	GSDT-1
	Southwest Regional	
	West Regional	GSD-1
	Northwest Regional	GSD-1
	Weston	GSD-1
	Lauderdale Lakes	GSD-1
SIES .	Stirling Road	SDTR-1A
RAF	North Lauderdale	GSD-1
=	Dan Pearl	GSD-1
	Margate	GSD-1
	Hallandale	SDTR-1A
	Century Plaza	GS-1, GSD-1
	Dania Beach	SDTR-1A
	Carver Ranches	GSD-1
	Pompano Northwest Branch	GSD-1
	Public Safety complex-Public Safety Building	CILC-1D
n SE	Public Safety complex-BSO District 5	GSLD-1
운	Public Safety complex-Evidence Warehouse	GSD-1
L.N.	Public Safety complex-Logistics Warehouse	SDTR-1A
8	North Regional Courthouse	GSLD-1
E 8	Government Center West	GSLDT-1
EE	Traffic Engineering Administration North	SDTR-1A, GSDT-1
0	Park Administration Complex	GSD-1
	South Broward Landfill	SDTR-1A, GS-1
~	Central Homeless Assistance Center	
LA	Booher Building	GSDT-1
N	North Homeless Assistance Center	
臣	North Family Success Center, Pompano	GS-1, GSD-1
EAL'	Sexual Assault Treatment Center	GSD-1
Ŧ	EPD Environmental Monitoring Facility & Lab	SDIR-1A
	EAP Our House	GS-1
త	Mass Transit North Maintenance	GSDT-1
R R	BSO Maintenance Facility	SDIR-1A
RKIN HOI	BCJC South Parking Garage	GSD-1
PA ARE RE	Highway & Bridge Mosquito Control	GSD-1
S	South Maintenance Shop	GS-1
	IMass Tansit Northeast Terminal	IGSD-1

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Energy cost savings are based on the applicable FPL rate tariff for each site. Besides billing its customers for kWh usage and kW demand, FPL also adds a conservation charge, environmental charge, storm charge, a highly variable and frequently adjusted fuel cost recovery charge, and government-imposed fees and taxes. These additional charges were added to the base energy usage and demand charges for each rate tariff to determine the effective rates to be applied to the predicted energy savings. Sample bills were obtained from FPL to compare and confirm the rate calculation methodology. Table 3-2 shows the effective unit costs for kWh and kW demand for each rate tariff.

Because the parks have multiple meters, many of which are billed at different rates, a blended rate calculation was developed, also shown in Table 3-2.

	Year Round	(Or Summer if S	easonal Rate)	Winter (If S	easonal Rate)
TARIFF CODE	On-Peak kW	On-Peak kWh	Off-Peak kWh	Off-Peak kW	Off-Peak kWh
GS-1	-	\$0.10144	-	-	-
GSD-1	\$11.52	\$0.05846	-	-	-
GSDT-1	\$11.52	\$0.08558	\$0.04652	-	-
SDTR-1A	\$12.49	\$0.13734	\$0.05044	\$11.19	\$0.05846
CILC-1D	\$9.57	\$0.04866	\$0.04279	-	-
GSLD-1	\$11.95	\$0.05365	-	-	-
GSLDT-1	\$13.45	\$0.06791	\$0.04640	-	-
Central Broward Regional	-	\$0.11515	-	-	-
Topeekeegee Yungee	-	\$0.11400	-	-	-
Easterlin	-	\$0.14214	-	-	-
Tree Tops	-	\$0.09719	-	-	-
Long Key	-	\$0.12836	-	-	-
West Lake / Anne Kolb NC	-	\$0.08750	-	-	-
Brian Piccolo	-	\$0.17259	-	-	-
Fern Forest	-	\$0.10806	-	-	-
Plantation Heritage	-	\$0.11310	-	-	-
Secret Woods	-	\$0.11216	-	-	-
Hollywood North Beach	-	\$0.10565	-	-	-
Saw Palmetto	-	\$0.20329	-	-	-

Table 3-2 FPL EFFECTIVE RATES

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Water Usage

Water and sewer service is provided to the various sites by Broward County Water & Wastewater Services (WWS) as well as several municipal utility departments. Some of the historical usage data was initially provided by the County; however, most of it was obtained directly from the service providers. The historical data applicable to this project is in the appendices. Unfortunately, for three sites the municipalities were unable to provide this data.

A reasonable benchmark was needed to calculate the energy cost savings because of the many different water & sewer rate schedules affecting this project, as shown in Table 3-3. The utility provider for many sites is Broward WWS, whose rates are near average. As such, WWS' rate structure was used (before the recent rate increase) to calculate energy cost savings.

Utility Provider	Water	Sewer	Total
Broward County WWS	\$4.90	\$3.98	\$8.88
Coral Springs	\$2.70	\$4.09	\$6.79
Davie	\$5.64	\$6.60	\$12.24
Deerfield Beach ¹			
Fort Lauderdale	\$5.04	\$6.93	\$11.97
Hallandale ¹			
Hollywood	\$6.43	\$9.53	\$15.96
Margate	\$4.41	\$5.45	\$9.86
North Lauderdale	\$3.54	\$4.16	\$7.70
Oakland Park	\$6.68	\$5.34	\$12.02
Plantation	\$5.74	\$4.93	\$10.67
Pompano Beach	\$3.38	\$2.85	\$6.23
Sunrise	\$4.18	\$4.03	\$8.21
Average	\$4.78	\$5.26	\$10.05
Used for savings calculations	\$4.73		\$8.59

Water & Sewer Volumetric Rates (\$ per 1,000 gallons)

Table 3-3

Note 1: Information unavailable

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Historical Energy Use

Table 3-4 summarizes the energy usage, costs, energy usage index, and energy cost index for each site. For water, only those sites affected by this project and having historical data are shown. Between one and three years of historical data was obtained and compiled and is included in the appendices.

Exhibit 1 Page 162 of 490

Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report Table 3-4

Broward County - Group B Sites Annual Utility Summary

		Avg. Electric	Electric											
	Area	Monthly Demand	Use	Water	kWh/	MCF/	Electric	Total	Electric	EI.	Water	Water		
		-												
Site	(sf)	(kW)	(kWh)	kgal	sf	sf	Btu/sf	Btu/sf	\$	\$/KWH	\$	\$/kgal	Total \$	\$/sf
				P	ARKS									
Central Broward Regional	50,516	670	1,577,766	-	31.23	-	106,598	106,598	\$169,268	\$0.1073	\$0		\$169,268	\$3.35
Topeekeegee Yungee	44,378	361	1,580,703	-	35.62	-	121,568	121,568	\$147,077	\$0.0930	\$0		\$147,077	\$3.31
Easterlin	36,194	50	284,961	812	7.87	-	26,871	26,871	\$27,006	\$0.0948	\$15,759	\$19.41	\$42,765	\$1.18
Tree Tops	26,103	72	307,209	45	11.77	-	40,168	40,168	\$29,343	\$0.0955	\$75,123	N/A	\$104,467	\$4.00
Long Key ⁴	23,591	88	290,538	28	12.32	-	42,033	42,033	\$30,170	\$0.1038	\$1,417	\$50.62	\$31,588	\$1.34
West Lake / Anne Kolb NC	20,776	131	580,983	-	27.96	-	95,442	95,442	\$50,787	\$0.0874	\$0		\$50,787	\$2.44
Brian Piccolo	11,706	533	453,964	-	38.78	-	132,358	132,358	\$80,761	\$0.1779	\$0		\$80,761	\$6.90
Fern Forest	9,893	34	99,551	-	10.06	-	34,344	34,344	\$11,124	\$0.1117	\$0		\$11,124	\$1.12
Plantation Heritage	7,674	58	189,933	-	24.75	-	84,472	84,472	\$20,421	\$0.1075	\$0		\$20,421	\$2.66
Secret Woods	7,257	35	105,832	-	14.58	-	49,773	49,773	\$11,412	\$0.1078	\$0		\$11,412	\$1.57
Hollywood North Beach	4,000	-	69,108	645	17.28	-	58,966	58,966	\$8,363	\$0.1210	\$10,558	\$16.37	\$18,921	\$4.73
Saw Palmetto	160	-	1,227	-	7.67	-	26,163	26,163	\$230	\$0.1874	\$0		\$230	\$1.44
PARK TOTALS	242,248	2,032	5,541,772	1,530	22.88	-	78,077	78,077	\$585,962	\$0.1057	\$102,857	\$67.23	\$688,820	\$2.84
				LIB	RARIES									
African American	61,150	321	1,671,600	-	27.34	-	93,298	93,298	\$132,002	\$0.0790	\$0		\$132,002	\$2.16
Southwest Regional ¹	79.747				-	-	-	-						
West Regional	72.000	275	1.395.480	-	19.38	-	66.150	66.150	\$114.809	\$0.0823	\$0		\$114.809	\$1.59
Northwest Regional	72,000	337	1,396,080	-	19.39	-	66,178	66,178	\$123,220	\$0.0883	\$0		\$123,220	\$1.71
Weston	51,000	288	1,102,020	-	21.61	-	73,749	73,749	\$100,460	\$0.0912	\$0		\$100,460	\$1.97
Lauderdale Lakes	20,237	88	313,410	-	15.49	-	52,857	52,857	\$29,505	\$0.0941	\$0		\$29,505	\$1.46
Stirling Road	20,000	82	405,342	-	20.27	-	69,172	69,172	\$34,121	\$0.0842			\$34,121	\$1.71
North Lauderdale	20,000	118	490,980	-	24.55	-	83,786	83,786	\$43,395	\$0.0884			\$43,395	\$2.17
Dan Pearl	19,500	107	404,700	-	20.75	-	70,833	70,833	\$37,605	\$0.0929			\$37,605	\$1.93
Margate	15,800	82	447,960	621	28.35	-	96,765	96,765	\$36,293	\$0.0810	\$9,991	\$16.09	\$46,283	\$2.93
Hallandale	14,700	62	305,400	162	20.78	-	70,907	70,907	\$26,402	\$0.0864	\$1,294	\$7.99	\$27,696	\$1.88
Century Plaza	11,682	43	190,189	64	16.28	-	55,565	55,565	\$17,485	\$0.0919	\$835	\$13.05	\$18,320	\$1.57
Dania Beach	9,970	42	233,832	-	23.45	-	80,047	80,047	\$19,365	\$0.0828			\$19,365	\$1.94
Carver Ranches	16,700	92	298,440	100	17.87	-	60,993	60,993	\$29,268	\$0.0981	\$2,063	\$20.74	\$31,331	\$1.88
Pompano Northwest Branch	10,000	57	216,270	-	21.63	-	73,813	73,813	\$19,971	\$0.0923			\$19,971	\$2.00
LIBRARY TOTALS	494,486	1,993	8,871,702	947	17.94	-	61,234	61,234	\$763,902	\$0.0861	\$14,183	\$14.98	\$778,085	\$1.57
			C	OFFICE AND	COURTH	IOUSE			-					
Public Safety Complex - Public Safety Building	253,076	954	6,328,860	13,182	25.01	-	85,351	85,351	\$367,264	\$0.0580	\$97,419	\$7.39	\$464,682	\$1.84
Public Safety Complex - BSO D5 Office	20,250	102	658,260	213	32.51	-	110,945	110,945	\$48,401	\$0.0735	\$4,656	\$21.86	\$53,056	\$2.62
Public Safety Complex - Inventory & Evidence Bldgs	20,704	63	285,120	-	13.77	-	47,001	47,001	\$24,139	\$0.0847			\$24,139	\$1.17
Public Safety Complex - Logistics Warehouse	6,690	18	114,840	-	17.17	-	58,587	58,587	\$8,950	\$0.0779			\$8,950	\$1.34
North Regional Courthouse	200,000	417	2,448,200	2,203	12.24	-	41,779	41,779	\$192,152	\$0.0785	\$22,657	\$10.29	\$214,809	\$1.07
Government Center West	184,820	587	3,389,640	3,335	18.34	-	62,595	62,595	\$215,041	\$0.0634	\$35,381	\$10.61	\$250,422	\$1.35
Traffic Engn Administration North	71,346	342	2,364,660	950	33.14	-	113,119	113,119	\$172,549	\$0.0730	\$12,235	\$12.88	\$184,784	\$2.59
Park Administration Complex	35,296	76	325,530	612	9.22	-	31,478	31,478	\$29,317	\$0.0901	\$8,879	\$14.51	\$38,196	\$1.08
South Broward Landfill	17,847	166	998,826	-	55.97	-	191,012	191,012	\$78,571	\$0.0787			\$78,571	\$4.40
OFFICE & COURTHOUSE TOTALS	810,029	2,725	16,913,936	20,494	20.88	-	71,266	71,266	\$1,136,383	\$0.0672	\$181,227	\$8.84	\$1,317,610	\$1.63
				HEALT	H AND LA	B		-						
Central Homeless Assistance Center ³	63,244				-	-	-	-		#DIV/0!				
Booher Building	53,060	259	1,680,570	6,085	31.67	-	108,100	108,100	\$126,221	\$0.0751	\$52,797	\$8.68	\$179,018	\$3.37
North Homeless Assistance Center ²	44,254				-	-	-	-		#DIV/0!				
Family Success Center, N, Pompano	11,929	33	244,320	-	20.48	-	69,902	69,902	\$23,660	\$0.0968			\$23,660	\$1.98
Sexual Assault Treatment Center	10,643	44	182,730		17.17	-	58,598	58,598	\$16,442	\$0.0900			\$16,442	\$1.54
EPD Environmental Monitoring Facility & Laboratory	9,694	151	986,940	377	101.81	-	347,475	347,475	\$75,219	\$0.0762	\$12,657	\$33.57	\$87,876	\$9.07
EAP Our House	1,127	-	15,676	17	13.91	-	47,473	47,473	\$1,665	\$0.1062	\$381	\$22.41	\$2,046	\$1.82
HEALTH AND LAB TOTALS	193,951	488	3,110,236	6,479	16.04	-	54,732	54,732	\$243,207	0.0781958	\$65,835	\$10.16	\$309,042	\$1.59
			PARK	ING, WARE	HOUSE A	ND REPA	IR							
Mass Transit North Maintenance	195,189	481	3,424,613	-	17.55	-	59,881	59,881	\$249,319	\$0.0728			\$249,319	\$1.28
BSO Maintenance Facility	14,800	40	233,160	-	15.75	-	53,769	53,769	\$18,646	\$0.0800			\$18,646	\$1.26
BCJC South Parking Garage	14,397	110	921,717	-	64.02	-	218,505	218,505	\$73,602	\$0.0799			\$73,602	\$5.11
HIGH & BRDG Mosquito Control, Pembroke	9,865	24	109,047	-	11.05	-	37,727	37,727	\$9,552	\$0.0876			\$9,552	\$0.97
South Maintenance Shop	6,024	-	75,671	-	12.56	-	42,873	42,873	\$7,828	\$0.1034			\$7,828	\$1.30
Mass Transit Northeast Terminal	2,000	22	111,300	-	55.65	-	189,933	189,933	\$9,455	\$0.0850			\$9,455	\$4.73
PARKING, WAREHOUSE & REPAIR TOTALS	242,275	678	4,875,507	-	20.12	-	68,683	68,683	\$368,402	\$0.0756			\$368,402	\$1.52
	1 092 090	7 015	20 212 152	20.450	10.92		67 662	67 662	\$2 007 957	¢0 0799	\$264 102	\$12.26	\$2 461 060	¢1 75

Electricity and chilled water provided by Charter School attached to building. County is billed by the City of Pembroke Pines; however, this data was not made available to OpTerra.
Annual cost for utility was obtained from the site. Utility usage estimated based upon using average cost for utilities.
No utility data was available. Utility usage estimated based upon the energy indice of the North Homeless Assistance Center.

4 - An electric meter inaccuracy was found at this site. As a result, baseline data was established using the period of Jan-2013 thru July-2015.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

4. Data on Present Facilities

Introduction

Data relevant to energy consumption requirements for the facilities included in the project where energy conservation measures were analyzed, are covered in this section. The data was collected on a facility-by-facility basis. A survey team visited facilities listed in the "Group B" listing of facilities in which we were responsible for auditing, to identify potential opportunities for both energy and water cost reductions. Areas of concern encompassed factors that have an impact on the consumption of thermal energy, electrical energy, and water usage. The survey considered building envelope, heating, ventilation, and air-conditioning (HVAC) equipment, lighting, and miscellaneous energy consuming equipment, as well as sink faucets, showerheads, irrigation, urinals and toilets. Information was collected on building use schedules, HVAC equipment usage, lighting use schedules, and water flow rates. Available plans and HVAC control drawings for each building were reviewed to augment data collected during the survey.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

CB Regional Park

3700 NW 11th PL, Lauderhill, FL 33311

Area: 50,516 sf

Year Built: 2007

Major Additions: None

Wall Type: Concrete, CMU

Roof Type: Metal and built-up roofing.

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilized many different lighting technologies including Compact Fluorescent, Linear Fluorescent, HID, Halogen, etc. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule: 8:00 am to 7:30 pm, Monday through Sunday. Extended hours on events.

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that are in either the air handling units, mounted in the ductwork, or located inside the package units.

Cooling Source: Air-cooled 106 Ton scroll chiller provides chilled water to the stadium building. Maintenance building is cooled by a packaged unit, pool building and gate house are cooled by split systems.

Air Handling Units: Sixteen Carrier air handling units and two dedicated outside air units serve the Field House.

HVAC System Controls: Stadium HVAC system utilizes a Carrier Building Automation System (BAS) that was installed when the building was constructed. Other HVAC units are controlled by local thermostats.

CB Regional Park HVAC Equipment Inventory

Chiller Summary Table

Building	Tan	Manufacturer	Model	Sorial	Type	Nominal			Compres	ssor			Co	ondenser	Fans	
Bununiy	Tay	wanuacurer	wouer	Serial	Type	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase
Field House	CH-1	Carrier	30RBA11068	2107Q83675	Scroll	106	2	460	41.6	3	R-410A	6	3.6	460	5	3
							3	460	32.7	3	R-410A					

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Air Handling Unit Data

Tag	Air Handler	Air Handler Model		М	otor		Cooling Coil	Heating Coil	Manf. Date	Area
-	Manufacturer		HP	Volts	Amps	Phase	Туре	Туре		Served
OA1-1	Carrier	39LB06	2.0	460	n/a	3	CHW	N/A	2007	Field House 1st Floor
OA1-2	Carrier	39LB06	2.0	460	n/a	3	CHW	N/A	2007	Field House 1st Floor
AHU1-1	Carrier	42BHC202	1.0	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 1st Floor
AHU1-2	Carrier	42BHC202	1.0	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 1st Floor
AHU1-3	Carrier	42BHC202	1.0	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 1st Floor
AHU1-4	Carrier	42BHC121	0.5	460	n/a	3	CHW	Elect. 2 kW	2007	Field House 1st Floor
AHU1-5	Carrier	42BHC121	0.5	460	n/a	3	CHW	Elect. 2 kW	2007	Field House 1st Floor
AHU1-6	Carrier	42BHC121	0.5	460	n/a	3	CHW	Elect. 3 kW	2007	Field House 1st Floor
AHU1-7	Carrier	42BHC061	0.3	460	n/a	3	CHW	Elect. 2 kW	2007	Field House 1st Floor
OA2-1	Carrier	39LB06	2.0	460	n/a	3	CHW	N/A	2007	Field House 2nd Floor
OA2-2	Carrier	39LB06	2.0	460	n/a	3	CHW	N/A	2007	Field House 2nd Floor
AHU2-1	Carrier	40RMS008	2.4	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 2nd Floor
AHU2-2	Carrier	42BHC082	0.3	460	n/a	3	CHW	Elect. 2.5 kW	2007	Field House 2nd Floor
AHU2-3	Carrier	40RMS008	2.4	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 2nd Floor
AHU2-4	Carrier	40RMS008	2.4	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 2nd Floor
AHU2-5	Carrier	40RMS008	2.4	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 2nd Floor
AHU2-6	Carrier	42BHC162	0.5	460	n/a	3	CHW	Elect. 3 kW	2007	Field House 2nd Floor
AHU2-7	Carrier	42BHC121	0.5	460	n/a	3	CHW	Elect. 2 kW	2007	Field House 2nd Floor
AC-1 Gate	Carrier	N/A		208/230	n/a	1	DX	Elect.	2007	Gate House
AC-1 Pool	Thermal Zone	Mini-Split indoor unit		208/230	0.09	1	DX	N/A	2007	Pool House
AC-2 Pool	Thermal Zone	Mini-Split indoor unit		208/230	0.4	1	DX	N/A	2007	Pool House
AC-3 Pool	Thermal Zone	Mini-Split indoor unit		208/230	0.4	1	DX	N/A	2011	Pool House

Rooftop/Package Unit & Heat Pump Nameplate Data

				Rated	Rated Htra		Su	pply F	an			C	ompre	ssor			Cond	lenser	Fans		
Tag	Manufacturer	Model	Serial	Clg. Tons	Output MBH	Qty	HP	Volts	Amp s	Phas e	Qty	Volts	Amp s	Phas e	Refrig.	Qty	HP	Volts	Amp s	Phas e	Comments
RTU-1	Carrier	50HC-D08A2B6 A0A0A0	1213G30157	7.5	14 kW	1		460	3.4	3	2	460	6.1	3	R-410A	2		460	0.8	1	Maintenance

Air Handling Unit Data

Тад	Air Handler	Air Handler Model		М	otor		Cooling Coil	Heating Coil	Manf. Date	Area
	Manufacturer		HP	Volts	Amps	Phase	Type	Type	1	Served
OA1-1	Carrier	39LB06	2.0	460	n/a	3	CHW	N/A	2007	Field House 1st Floor
OA1-2	Carrier	39LB06	2.0	460	n/a	3	CHW	N/A	2007	Field House 1st Floor
AHU1-1	Carrier	42BHC202	1.0	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 1st Floor
AHU1-2	Carrier	42BHC202	1.0	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 1st Floor
AHU1-3	Carrier	42BHC202	1.0	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 1st Floor
AHU1-4	Carrier	42BHC121	0.5	460	n/a	3	CHW	Elect. 2 kW	2007	Field House 1st Floor
AHU1-5	Carrier	42BHC121	0.5	460	n/a	3	CHW	Elect. 2 kW	2007	Field House 1st Floor
AHU1-6	Carrier	42BHC121	0.5	460	n/a	3	CHW	Elect. 3 kW	2007	Field House 1st Floor
AHU1-7	Carrier	42BHC061	0.3	460	n/a	3	CHW	Elect. 2 kW	2007	Field House 1st Floor
OA2-1	Carrier	39LB06	2.0	460	n/a	3	CHW	N/A	2007	Field House 2nd Floor
OA2-2	Carrier	39LB06	2.0	460	n/a	3	CHW	N/A	2007	Field House 2nd Floor
AHU2-1	Carrier	40RMS008	2.4	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 2nd Floor
AHU2-2	Carrier	42BHC082	0.3	460	n/a	3	CHW	Elect. 2.5 kW	2007	Field House 2nd Floor
AHU2-3	Carrier	40RMS008	2.4	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 2nd Floor
AHU2-4	Carrier	40RMS008	2.4	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 2nd Floor
AHU2-5	Carrier	40RMS008	2.4	460	n/a	3	CHW	Elect. 8 kW	2007	Field House 2nd Floor
AHU2-6	Carrier	42BHC162	0.5	460	n/a	3	CHW	Elect. 3 kW	2007	Field House 2nd Floor
AHU2-7	Carrier	42BHC121	0.5	460	n/a	3	CHW	Elect. 2 kW	2007	Field House 2nd Floor
AC-1 Gate	Carrier	N/A		208/230	n/a	1	DX	Elect.	2007	Gate House
AC-1 Pool	Thermal Zone	Mini-Split indoor unit		208/230	0.09	1	DX	N/A	2007	Pool House
AC-2 Pool	Thermal Zone	Mini-Split indoor unit		208/230	0.4	1	DX	N/A	2007	Pool House
AC-3 Pool	Thermal Zone	Mini-Split indoor unit		208/230	0.4	1	DX	N/A	2011	Pool House

DX Condenser / Compressor Summary

Tag	Equipment	Monufacturar	Model	Sorial	Tons	Now EED/SEED			Com	pressor				Condens	er Fans		Monf Data
Tay	Served	wanuacturer	woder	Serial	TONS	New EER/SEEK	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Wall. Dale
CU-1	AC-1 Gate	Carrier	24ABR318	3507E05577	1.5	13.0	1	208/230	7.7	1	R-22	1	1/12	208/230	0.5	1	2007
CU-1 Pool	AC-1 Pool	Thermal Zone	MS212A13240CA	N/A	1	12.0	1	208/230	4.1	1	R-22	1		208/230	0.22	1	2007
CU-2 Pool	AC-2 Pool	Thermal Zone	Can't read the plate	N/A	2	13.0	1	208/230		1	R-22	1		208/230		1	2007
CU-3 Pool	AC-3 Pool	Thermal Zone	MSC424A13230CA	N/A	2	13.0	1	208/230	10	1	R-410A	1		208/230	0.9	1	2011

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Topeekeegee Yugnee Park

3300 N. Park RD., Hollywood, FL 33021

Area: 44,378 sf

Year Built: Various

Major Additions: 1998

Wall Type: CMU w/Stucco Finish

Roof Type: Mostly metal, warehouse has built-up roofing

Window Type: Buildings have been added over the years but majority has single pane with metal frame.

Lighting Type: This facility utilized many different lighting technologies including Compact Fluorescent, Linear Fluorescent, HID, Halogen, etc. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

November 5, 2017 through March 10, 20188 am to 6 pmMarch 11, 2018 through November 3, 20188 am to 7:30 pmPark Office, Year Round, Daily 9 am to 5:30 pm

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that are in either the air handling units, mounted in the ductwork, or located inside the package units.

Cooling Source: Cooling is provided by split DX units or wall AC units. Condensing unit are air cooled DX unit and serving single indoor/air-handling units.

Air Handling Units (Original Building): Cooling is by split DX units with associated indoor (AHU) unit.

HVAC System Controls: Split units are controlled by thermostats/programmable units.

TY Park HVAC Equipment Inventory

DX Condenser / Compressor Summary

Terr	Equipment Served Manufacturer Model Serial				Tama	New	Compre			ressor			C	ondenser l	Fans		Manf.
Tag	Equipment Served	wanutacturer	wodei	Serial	Tons	EER/SEER	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Date
CU-2	Park Office	Goodman	GSC101203AB	0905695725	10	11.2	1	208/230	30.1	3	R-22	1	1	208/230	5	3	2009
CU-1	Park Office	Rheem	RAWD-100CAZ	6239F480306979	10	10.0	1	208/230	37.8	3	R-22	2	1/3	208/230	2.2	1	2003
CU-1 Pool	Pool Snack Bar	Carrier	PA13NR018	1611X70189	1.5	11.0	1	208/230	8.3	1	R-22	1	1/12	208/230	0.5	1	2011
CU-2 Pool	Pool Snack Bar	Daikin	RKN24NMVJU	G001331	1.8	12.3	1	208/230	12	1	R-410A	1	1/10	208/230	0.53	1	2015
CU-3 Pool	Pool Snack Bar	Daikin	RKN24NMVJU	G001353	1.8	12.3	1	208/230	12	1	R-410A	1	1/10	208/230	0.53	1	2015
CU-4 Pool	Pool RR & Office	Carrier	NXA436GKC101	E163415908	3	11.7	1	208/230	13.6	1	R-410A	1	1/5	208/230	1.1	1	2015
CU-1 Maint	Maintenance	York	H2RD0428068	W0F6568521	3.5	11.1	1	208/230	13.5	1	R-22	1	1/4	208/230	1.5	1	2006
CU-1 Camp	Campground	AAON	CA1277	200702-CCC695941	6	11.0	2	208	10.7	3	R-22	1	3/4	208	5.4	1	2007
CLI-1 Gate	Gate	York	2H2RD0186068	W0B2416419	15	11.0	1	208/230	64	1	R-22	1	1/8	208/230	0.8	1	2002

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Air Handling Unit Data

Tag	Air Handler	Air Handler Model	Serial		Moto	or		Cooling Coil	Heating Coil	Manf. Date	Area
-	Manufacturer			HP	Volts	Amps	Phase	Туре	Туре		Served
AHU-1	Rheem	RHGE-100ZL	153F510312382	2.00	208/230	6.8	3	DX	Elect. 10kW	2003	Park Office
AHU-2	Goodman	AR120AA	0810010894	2.00	208/230	6	3	DX	Elect. 14kW	2008	Park Office
AHU-1 Pool	Carrier	FA4ANC018		0.10	208/230	0.9	1	DX	Elect.	n/a	Pool Snack Bar
AHU-2 Pool	Daikin	FTKN24NMVJU			208/230	0.5	1	DX	N/N	2015	Pool Snack Bar
AHU-3 Pool	Daikin	FTKN24NMVJU			208/230	0.5	1	DX	N/N	2015	Pool Snack Bar
AHU-4 Pool	ICP	FMA4P3600AT	V160368275	0.50	208/230	1.8	1	DX	Elect 5kW	2015	Pool RR and Office
AHU-1 Maint	York	N/A			208/230	N/A	1	DX		2006	Miantenance
AHU-1 Camp	AAON	V2-B1-2-56-3A1	200702-CBEB02298	1.00	208	4.6	3	DX	Elect. 5kW	2007	Campground
AHU-1 Gate	York	N/A			208/230	N/A	1	DX		2002	Gate

Wall Package Unit & Heat Pump Nameplate Data

						the Osmantes Fran											
Tag	Manufacturor	Model	Sorial	Rated Clg.	Rated Htg.			Suppl	y Fan				Compre	ssor			Comments
rag	wanuacturer	model	Serial	Tons	Output MBH	Qty	HP	Volts	Amps	Phase	Qty	Volts	Amps	Phase	Refrig.	Manuf Date	commenta
WU-1	Friedrich	CP10G10B	N/A	0.8	N/A	1		115		1	1	115		1	R-410A	2003	Swim Central Age estimated
WU-2	Friedrich	CP10G10B	N/A	0.8	N/A	1		115		1	1	115		1	R-410A	2003	Swim Central.
WU-3	Friedrich	CP08G10B	N/A	0.7	N/A	1		115		1	1	115		1	R-410A	2003	Swim Central.
WU-4	Friedrich	CP08G10B	N/A	0.7	N/A	1		115		1	1	115		1	R-410A	2003	Swim Central.
WU-5	Friedrich	CP08G10B	N/A	0.7	N/A	1		115		1	1	115		1	R-410A	2003	Swim Central.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Easterlin Park

1000 NW 38th ST., Oakland Park, FL 33309

Area: 36,194 sf

Year Built: Park opened 1965

Major Additions: New park office building in 2014.

Wall Type: CMU w/Stucco Finish

Roof Type: Metal

Window Type: Double pane with metal frames

Lighting Type: This facility utilized many different lighting technologies including LED, Compact Fluorescent, Linear Fluorescent, HID, Halogen, etc. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

November 5, 2017 through March 10, 20188 am to 6 pmMarch 11, 2018 through November 3, 20188 am to 7:30 pmPark Office, Year Round, Daily 9 am to 5:30 pm

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that are in either the air handling units, mounted in the ductwork, or located inside the package units.

Cooling Source: Air-handling units utilize direct expansion condensers to cool the facility.

Air Handling Units: Four Carrier air-handling units serve the entire building, including computer area.

HVAC System Controls: Programmable thermostats and Carrier BAS are utilized to control the air-handling units and outside air dampers that serve the building.

Easterlin Park HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler	Air Handler Model	Serial		Mot	or		Cooling Coil	Heating Coil	Manf. Date	Area
	Wanuacurer			HP	Volts	Amps	Phase	Туре	Туре		Served
AC-1	Carrier	FV4CNB006L00ABAA	4114A86610	0.75	208/230	6.8	1	DX	Elect. 6kW	2014	Office Bldg.
AC-2	Carrier	FV4CNB006L00ABAA	4114A86577	0.75	208/230	6.8	1	DX	Elect. 6kW	2014	Office Bldg.
AC-3	Carrier	FV4CNF003L00ABAA	3314A89199	0.50	208/230	4.3	1	DX	Elect. 3.75kW	2014	Office Bldg.
AC-4	Carrier Toshiba	Same as CU		0.21	208/230	0.75	1	DX		2014	Office Bldg.

Broward County Broward County - RFP No: R1243101PI --Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

DX Condenser / Compressor Summary

Tag	Equipment	Manufacturor	Model	Sorial	Tons	New			Compre	ssor			0	Condenser H	ans		Manf Data
Tay	Served	wanuacturei	wouer	Serial	10113	EER/SEER	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Man. Date
CU-1	AC-1	Carrier	24ABB360A520	4214E15478	3	11.5	1	208/230	16	3	R-410A	1	1/4	208/230	1.4	1	2014
CU-2	AC-2	Carrier	24ABB360A520	4214E15481	3	11.5	1	208/230	16	3	R-410A	1	1/4	208/230	1.4	1	2014
CU-3	AC-3	Carrier	24ABB330A510	3314E09137	2.5	11.5	1	208/230	8.3	3	R-410A	1	1/4	208/230	0.1	1	2014
CU-4	AC-4	Toshiba Carrier	RAS-12EAV-UL	42200247	1.9	11.0	1	208/230	11	1	R-410A	1	2/7	208/230	0.1	1	2014

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Tree Tops Park

3900 SW 100th AVE., Davie, FL 33328

Area: 26,103 sf

Year Built: 1983

Major Additions: Various

Wall Type: CMU w/Stucco Finish, wood frame

Roof Type: Metal

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilized many different lighting technologies including LED, Compact Fluorescent, Linear Fluorescent, HID, Halogen, etc. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

November 5, 2017 through March 10, 20188 am to 6 pmMarch 11, 2018 through November 3, 20188 am to 7:30 pmPark Office, Year Round, Daily 9 am to 5:30 pm

HVAC System Types:

Heating Source: Air handling units utilize electronic strip heat to provide heating to the building.

Cooling Source: Air-cooled chillers utilize chilled water to provide cooling to the building. Split system utilize direct expansion to provide cooling to portions of the building.

Air Handling Units: York air handling units and Rheem split systems serve the buildings.

HVAC System Controls: Electronic and programmable thermostats are utilized to control the equipment in the building.

Plantation Heritage Park HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler Manufacturor	Air Handler Model	Serial		Мо	otor		Cooling Coil	Heating Coil	Manf. Date	Area
	Manulacturer			HP	Volts	Amps	Phase	Туре	Туре		Served
AHU-1	Rheem	RHGL-120ZL	F061712099	2.00				DX	Elect.	2017	Admin offices
AHU-2	York	XTI-045X078	CCEMXT0049	5.0	460	6.6	3	DX	Elect.	Unk	Hall

Broward County Broward County - RFP No: R1243101PI --Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

DX Condenser / Compressor Summary

Tag	Equipment	Manufacturor	Model	Sorial	Tons	New	V Compressor						Con	ndenser	Fans		Manf Data
Tay	Served	wanuacturer	woder	Serial	10115	EER/SEER	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	wan. Date
CU-1	AHU-1	Rheem	RA1460AC1NB	W341616298	5	13.0	1	230	15.9	3	410A	1	1/5	230	1.4	3	2016
CU-2	AHU-2	Rheem	RA1460AC1NB	W391614598	5	13.0	1	230	15.9	3	410A	1	1/5	230	1.4	3	2016

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Long Key Nature Area

3501 SW 130th AVE, Davie, FL 33330

Area: 23,591 sf

Year Built: 2007

Major Additions: None

Wall Type: CMU w/Stucco Finish

Roof Type: Built-up roofing and metal

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule: 9:00 am to 5:00 pm, Monday through Sunday, Closed on Christmas Day only.

Special events may vary regular operating times.

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that are in either the air handling units, mounted in the ductwork, or located inside the package units.

Cooling Source: Air-handling units utilize direct expansion condensers to cool the facility. There are two double circuit AHU units served by one or two separate condensing units.

Air Handling Units: Seven Carrier air-handling units serve the entire building.

HVAC System Controls: Electronic and programmable thermostats are utilized to control the air-handling units that serve this building.

Long Key Nature Area HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler	Air Handler Model	Serial		Мо	tor		Cooling Coil	Heating Coil	Manf.	Area
	wanuacturer			HP	Volts	Amps	Phase	Туре	Туре	Dale	Served
AHU-1	Carrier	40RM012-B611HC	3707U29204	2.40	460	2.6	3	DX	10 kW	2007	East End Exhibit
AHU-3	Carrier	40RM008-B611HC	3807U29923	2.40	460	2.6	3	DX	10 kW	2007	East End Theater
AHU-4	Carrier	40RM012-B611HC	3707U29203	2.40	460	2.6	3	DX	10 kW	2007	West End Lobby
AHU-5	Carrier	40RM008-B611HC	3707U29128	2.40	460	2.6	3	DX	10 kW	2007	West End Kitchen
AHU-6	Carrier	40RM024-B611HC	3707U29163	5.00	460	6.4	3	DX	20 kW	2007	West End - Assembly Hall
AHU-7	Carrier	FK4DNF005	4907A86836	0.50	208/230	4.3	1	DX	7.6 kW	2007	Maintenance

Broward County Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

DX Condenser / Compressor Summary

	Fauinment					Now		0	ompress	or			Co	ndenser F	ans		
Tag	Served	Manufacturer	Model	Serial	Tons	EER/SEER	#	Volts	Amps	Ph	Refrig.	#	HP	Volts	Amps	Ph	Manf. Date
AC-1	AHU-1	Carrier	38ARD012-601	0507G40134	8.7	11.0	2	460	8	3	R-22	2	1/4	460	0.7	1	2007
AC-3A	AHU-3	Carrier	24ABR342A610	1207E01459	3.5	11.2	1	460	6	3	R-22	2	1/4	460	0.7	1	2007
AC-3B	AHU-3	Carrier	24ABR342A610	1207E01457	3.5	11.2	1	460	6	3	R-22	2	1/4	460	0.7	1	2007
AC-4	AHU-4	Carrier	38ARD012-601	3507G20071	8.7	11.0	2	460	8	3	R-22	2	1/4	460	0.7	1	2007
AC-5	AHU-5	Carrier	38ARZ008-601	3907G10140	7	11.0	1	460	13	3	R-22	2	1/4	460	0.7	1	2007
AC-6	AHU-6	Carrier	38ARD024-601	3407G10057	18.1	11.0	2	460	19.2	3	R-22	2	7/10	460	2.1	1	2007
AC-7	AHU-7	Carrier	24ABR336A3	4907E01258	3	11.2	1	208/230	14.4	1	R-22	1	1/5	208/230	1.1	1	2007

Rooftop/Package Unit & Heat Pump Nameplate Data

				Patod	Pated Htg		Su	ipply	Fan				Compre	essor			Col	ndenser	Fans		Manuf
Tag	Manufacturer	Model	Serial	Clg. Tons	Output MBH	Qty	HP	Volt s	Amp s	Ph	Qty	Volt s	Amps	Ph	Refrig.	Qty	HP	Volts	Amps	Ph	Date
AC-2 (RTU)	Carrier	50HJ-014-V651	4107G10640	12.5	11 kW	1	7.5	460	7.4	3	2	460	9	3	R-22	2	0.25	460	0.7	1	2007
AC-1	Carrier	50HJ-006-V631	4307G40316	5	5 kW	1	2	460	3.4	3	1	460	9	3	R-22	1	0.25	460	0.8	3	2007

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

West Lake / Anne Kolb NC Park

751 Sheridan ST., Hollywood, FL 33019

Area: 20.776 sf

Year Built: 1982 West Lake Park

Major Additions: Anne Kolb Nature Center

Wall Type: CMU w/Stucco Finish

Roof Type: Metal and cement tile

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

November 5, 2017 through March 10, 2018 8 am to 6 pm March 11, 2018 through November 3, 2018 8 am to 7:30 pm Park Office, Year Round, Daily 9 am to 5:30 pm West Lake Marina, daily, 9 am to 5 pm

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that are in either the air handling units, mounted in the ductwork, or located inside the package units.

Cooling Source: Air-handling units utilize direct expansion condensers to cool the facility. The pump room at AK and Marina have DX units.

Air Handling Units: Seven Carrier air-handling units serve the entire AK area, Marina has split DX unit.

HVAC System Controls: Electronic and programmable thermostats are utilized to control the airhandling units that serve this building. Anne Kolb Nature Center has Barber-Coleman Network 8000 BAS.

West Lake / Ann Kolb Nature Center HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler	Air Handler Model	Serial		Мо	tor		Cooling Coil	Heating Coil	Manf. Date	Area	Comments
	Manufacturer			HP	Volts	Amps	Phase	Туре	Туре		Served	
AHU-1	Carrier	40RM-012-B600GC	1695F43326	2.40	460	2.6	3	DX		1996	AK Visitor Center	Mech Rm.
AHU-2	Carrier	40RM-012-B600GC	1395F40189	2.4	460	2.6	3	DX		1996	AK Visitor Center	Mech Rm.
AHU-3	Carrier	40RUAA28A5A6A0A0A0	3213U31111	10.00	460	15	3	DX	Elect. 4kW	2013	AK Assembly Hall	Next to kitchen
AHU-4	Carrier	40RUAA28A5A6A0A0A0	3813U35173	10.00	460	15	3	DX	Elect. 4kW	2013	AK Assembly Hall	East end
AHU-5	Carrier	40RR-024	0495F30035	3.00	230/460	10.1/5.0	3	DX		1995	AK Exhibit Hall	Mech Rm.
AHU-6	Carrier	40RUAA28A5A6	3813U35171	10.00	460	15	3	DX		2015	AK Exhibit Hall	Mech Rm.
AHU-7P	Rheem	RBHB-24J07SH4	N081500486	0.75	208/240	4.2	1	DX	Elect. 5.3kW	2015	AK Exhibit Hall Pump Rm.	Pump Rm.
AHU-1M	Carrier	40RM-008-B600GC	1295F39015	2.50	208/230			DX		1996	WL Marina	Mech. Rm.

DX Condenser / Compressor Summary

Torr	Equipment Conved	Monufooturor	Madal	Carial	Tono	New			Compress	or			Co	ondenser Fa	ans		Manf. Data
Tay	Equipment Served	Wanuacturer	woder	Selia	TONS	EER/SEER	#	Volts	Amps	Ph	Refrigerant	#	HP	Volts	Amps	Ph	Wall. Date
CU-1	AHU-1	Carrier	38ARS012-K611	1007G40091	10.0	11.0	1	460	18	3	R-22	2	3/7	460	0.7	1	2007
CU-2	AHU-2	Carrier	38ARS012-K611	0808G30154	10.0	11.0	1	460	18	3	R-22	2	3/7	460	0.7	1	2008
CU-3	AHU-3	Carrier	38APS02565-10020	4313Q49289	24.0	11.0	2	460	18.6	3	R-410A	2	1 3/4	460	3.3	3	2013
CU-4	AHU-4	Carrier	38APS02565-10020	4313Q49248	24.0	11.0	2	460	18.6	3	R-410A	2	1 3/4	460	3.3	3	2013
CU-5	AHU-5	Carrier	38AKS024-K621	3408G20001	18.0	10.0	1	460	34.7	3	R-22	2	3/4	460	2.1	3	2008
CU-6	AHU-6	Carrier	38APS02565-10020	4313Q49263	24.0	11.0	2	460	18.6	3	R-410A	2	1 3/4	460	3.3	3	2015
CU-7P	AHU-7P	Rheem	RAKA-048JAZ	5432F210240257	4.0	10.0	1	208/230	21.9	1	R-22	1	1/3	208/230	2	1	2002
CU-1 Marina	AHU-1 Marina	Carrier	N/A	N/A	7.5	9.0	1	208/230			R-22	1		208/230			1996

Rooftop/Package Unit & Heat Pump Nameplate Data

Tag	Manufacturor	Model	Sorial	Rated	Rated Htg.			Supply Fa	an			C	Compresso	or			Con	denser F	ans		Manuf	Commonte
Tay	wanuacturer	wouer	Serial	Clg. Tons	Output	Qty	HP	Volts	Amps	Ph	Qty	Volts	Amps	Ph	Refrig.	Qty	HP	Volts	Amps	Ph	Date	Comments
HP-1	Daikin	RXN09KEVJU5	G001081	0.8	11.6	1		208/230		1	1	208/230	3.7	1	R-410A	1	0.044	208/230	0.17	1	2013	Gatehouse

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Brian Piccolo Park

9501 Sheridan ST., Cooper City, FL 33024

Area: 11,706 sf

Year Built: 1989

Major Additions: Velodrome in 1992

Wall Type: CMU w/Stucco Finish

Roof Type: Rolled asphalt with fiberglass

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

November 5, 2017 through March 10, 20188 am to 6 pmMarch 11, 2018 through November 3, 20188 am to 7:30 pmPark Office, Year Round, Daily 9 am to 5:30 pm

HVAC System Types:

Heating Source: Air Handling units utilize electric heat to provide heating to the building.

Cooling Source: Air Handling units utilize direct expansion units to provide cooling to the building.

Air Handling Units: Air-handling units (split system) serve Park Office, Tennis Center and Skate Park.

HVAC System Controls: Electronic thermostats and programmable thermostats are utilized to control the equipment with in the buildings.

Brian Piccolo Park HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler	Air Handler Model	Serial		Motor			Cooling Coil	Heating Coil	Manf.	Area
	wanuacturer			HP	Volts	Amps	Ph	Туре	Туре	Dale	Served
AHU-1	Rheem	RHSA-HM4221JA	M1308 03510	0.50	208/240	5.2	1	DX	5.4 kW	2008	Admin
AHU-2	Carrier	FX4DNF037T00ABAA	4013A83737	0.5	208/230	4.1	1	DX	6 kW	2013	Office
AHU-3	Carrier	FE5ANB004T00ABAA	4613A83316	0.75	208/230	6.8	1	DX	6 kW	2013	Office
AHU-1 SP	Rheem	RHGE-075ZK	139G3298 00489	1.00	460	1.8	3	DX	N/A	1998	Skate Park Bldg.
AHU-1 TC	Goodman	ARUF384216AB	7077119	0.50	208/240	2.86	1	DX	Elect.	2007	Tennis Center Shop

DX Condenser / Compressor Summary

Tag	Equipment	Manufacturor	Model	Sorial	Tons	New			Compres	sor			С	ondenser F	ans		Manf Data
Tay	Served	manulacturer	wouer	Serial	10115	EER/SEER	#	Volts	Amps	Ph	Refrigerant	#	HP	Volts	Amps	Ph	Main. Date
CU-1	AHU-1	Rheem	13AJA42A01	7280N370702101	3.5	11.2	1	208/230	19.2	1	R-22	1	1/6	208/230	0.8	1	2007
CU-2	AHU-2	Carrier	24ABC630A300	4313E05837	2.5	12.8	1	208/230	12.8	1	R-410A	1	1/10	208/230	0.75	1	2013
CU-3	AHU-3	Carrier	24ANB124A310	4613E15813	2	14.7	1	208/230	11.1	1	R-410A	1	1/5	208/230	1.88	1	2013
CU-1 SP	AHU-1 SP	Rheem	RAWD-076DAZ	6417F060410941	7.5	9.9	1	460	14.7	3	R-22	1	1/3	460	1.3	3	2004
CU-1 TC	AHU-1 TC	Goodman	N/A	N/A		11.0	1	208/240			R-22	1		208/240			2007

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Fern Forest Park

4800 SW 4th ST., Margate, FL 33063

Area: 9,893 sf

Year Built: 2007

Major Additions: None

Wall Type: Wood frame / CMU

Roof Type: Rolled asphalt with fiberglass

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule: 9:00 am to 5:00 pm, year-round. Closed on Christmas Day.

HVAC System Types:

Heating Source: Air Handling units and RTU units utilize electric heat to provide heating to the building.

Cooling Source: First floor air Handling units utilize direct expansion units on the roof. Two RTU provide cooling to the upper floor.

Air Handling Units: Air-handling units (split system) with electric heat serve first floor.

HVAC System Controls: Electronic thermostats and programmable thermostats are utilized to control the equipment with in the buildings.

Fern Forest Nature Center HVAC Equipment Inventory Air Handling Unit Data

Tag	Air Handler	Air Handler Model	Serial		Moto	r		Cooling Coil	Heating Coil	Manf. Date	Area
	wanuacturer			HP	Volts	Amps	Phase	Туре	Туре		Served
AHU-1	Trane	TWE048P13FB0	53035612V	0.50	200/230	3.3	1	DX	Elct. 7.2 kW	2005	Nature Center
AHU-2	Trane	TWE048P13FB0	52955L01V	0.50	200/230	3.3	1	DX	Elct. 7.2 kW	2005	Nature Center

DX Condenser / Compressor Summary

Tag	Equipment	Mako	Model	Model Serial To					Compres	sor			C	ondenser F	ans		Manf Dato
Tay	Served	make	woder	Serial	10/13	EER/SEER	#	Volts	Amps	Ph	Refrigerant	#	HP	Volts	Amps	Ph	Man. Date
CU-1	AHU-1	Trane	2TTA2048A3000AB	51215GK3F	4.0	11.0	1	200/230	15	3	HCFC-22	1	1/6	200/230	1.4	1	2005
CU-2	AHU-2	Trane	2TTA2048A3000AB	51215HD3F	4.0	11.0	1	200/230	15	3	HCFC-22	1	1/6	200/230	1.4	1	2005

Rooftop/Package Unit & Heat Pump Nameplate Data

Tom	Monufooturor	Madal	Carial	Rated	Rated Htg.		S	upply Fa	an			C	compresso	or			Cor	ndenser H	Fans		Manuf Data
Tay	Wanuacturer	woder	Serial	Clg. Tons	Output MBH	Qty	HP	Volts	Amps	Ph	Qty	Volts	Amps	Ph	Refrig.	Qty	HP	Volts	Amps	Ph	Manui Dale
RTU-1	Trane	THC092A3RCA02D2	532100022L	7.5	Elect. 9kW	1	2	208	6.3	3	2	208	12.4	3	R-22	1	2	208	6.3	3	2005
RTU-2	Trane	THC092A3RCA1GA000A	532100101L	7.5	Elect. 9kW	1	2	208	6.3	3	2	208	12.4	3	R-22	1	2	208	6.3	3	2005

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Plantation Heritage Park

1100 S Fig Tree LN., Plantation, FL 33317

Area: 7,674 sf

Year Built: 1992

Major Additions: None

Wall Type: CMU w/Stucco Finish

Roof Type: Build-up roofing

Window Type: Single pane with metal frames and solar screens

Occupancy Schedule:

November 5, 2017 through March 10, 20188 am to 6 pmMarch 11, 2018 through November 3, 20188 am to 7:30 pmPark Office, Year Round, Daily 9 am to 5:30 pm

HVAC System Types:

Heating Source: Air handling units utilize electric strip heat provide heating to the building.

Cooling Source: Air handling units utilizes direct expansion to provide cooling to the building.

Air Handling Units: Air handling units serve the main building.

HVAC System Controls: Programmable thermostats are utilized to control the equipment in the building.

Plantation Heritage Park HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial		Мо	tor		Cooling Coil	Heating Coil	Manf. Date	Area
	Manulacturer			HP	Volts	Amps	Ph	Туре	Туре		Served
AHU-1	Unknown										Hall
AHU-2	Trane	2TEH3F36A	6214KJ21V	0.5	230	4				2006	Office
AHU-3	American Std	2TEH3F42A	6211ML52V	0.50	230	4.1				2006	Hall

DX Condenser / Compressor Summary

Torr	Equipment Manufacturer Model		Sorial	Tono	New			Compres	sor			Co	ndenser	Fans		Manf.	
Tay	Served	wanuacurer	woder	Serial	Tons	EER/SEER	#	Volts	Amps	Phase	Refrig.	#	HP	Volts	Amps	Ph	Date
CU-1	AHU-1	Rheem	TZAA-342-2C757	W431413720	3.5		1	230	19.2	1		1	1/6	230	0.8	1	2014
CU-2	AHU-2	Rheem	TZAA-336-2A757	W101400134	3		1	230	15.9	1		1	1/6	230	0.8	1	2014
CU-3	AHU-3	Am. Std	TTA090A400FA	62255U9AD	7.5		1	460	13.2	3		1		460	1.6		

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Secret Woods Park

2701 W. State RD., Dania Beach, FL 33312

Area: 7,257 sf

Year Built: Unknown

Major Additions: None

Wall Type: CMU, wood frame

Roof Type: Metal and asphalt shingle

Window Type: Single pane with metal frames and clear

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule: 9:00 am to 5:00 Monday through Sunday

HVAC System Types:

Heating Source: Air handling units utilize electric strip heat provide heating to the buildings.

Cooling Source: Spit system units utilize direct expansion to provide cooling to the buildings.

Air Handling Units: Air handling units serve each building.

HVAC System Controls: Programmable thermostats are utilized to control the equipment in the building.

Manufacturor	Model	Tons			Com	pressor			Cor	ndenser Fans		Manf Data
Manulacturer	Woder	10/13	#	Volts	Amps	Phase	Refrigerant	#	Volts	Amps	Phase	Man. Date
Guardian	GAW14L36C21SA	3	1	208/230	14.1	1	407C	1	208/230	1.3	1	
Ruud	UAHE036JAS	3	1	208/230	15.5	1	22	1	208/230	1.3	1	1991
American Std	2TTR3060	2.5	1	208/230	25	1	22	1	208/230	1.3	1	2007
Rheem	TZAA3362A757	3	1	208/230	15.4	1	22	1	208/230	0.8	1	2013
Fujitsu	AOU36CLX1	3	1	208/230	15.3	1		1	208/230	0.9	1	
Fujitsu	AOU24RLXFZ	2	1	208/230	12	1		1	208/230	0.5	1	

DX Condenser / Compressor Summary

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Hollywood North Beach Park

3601 N. Ocean DR., Hollywood, FL 33019

Area: 4,000 sf

Year Built: 1988

Major Additions: None

Wall Type: CMU w/Stucco Finish

Roof Type: Asphalt shingle

Window Type: Single pane with metal frames and tint.

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

November 5, 2017 through March 10, 2018	8 am to 6 pm
March 11, 2018 through November 3, 2018	8 am to 7:30 pm

HVAC System Types:

Heating Source: Air Handling units utilize electric heat to provide heating to the building.

Cooling Source: Air Handling units utilize direct expansion units to provide cooling to the building.

Air Handling Units: Air-handling units (split system) serve Gate House.

HVAC System Controls: Electronic thermostats are utilized to control the equipment with in the buildings.

Hollywood North Beach Park HVAC Equipment Inventory

Air Handling Unit Data

Tag	Make	Air Handler Model	Serial	Motor		Motor			Heating Coil	Manf. Date	Area
				HP	Volts	Amps Ph		Туре	Туре		Served
AHU-1	Ruud	RCFA-A-24	N/A	0.33	208/230	1.6	1	DX		2009	Gatehouse

DX Condenser / Compressor Summary

Tag	Equipment	Manufacturor	Model	Sorial	Tons	New		C	ompress	or			Co	ndenser Fa	ns		Manf.
Tay	Served	wanuacturei	wouer	Serial	10115	EER/SEER	#	Volts	Amps	Ph	Refrig.	#	HP	Volts	Amps	Ph	Date
CU-1	AHU-1	Ruud	13AJA24A01	7653N330908693	2	11.2	1	208/230	10.4	1	R-22	1	1/10	208/230	0.6	1	2009
Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

African American Library

2650 NW 6th ST., Ft. Lauderdale, FL 33311

Area: 61,150 sf

Year Built: 2003

Major Additions: None

Wall Type: CMU w/Stucco Finish

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilized many different lighting technologies including LED, Compact Fluorescent, Linear Fluorescent, HID, Halogen, etc. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

10:00 am to 6:00 pm; Tuesday, Thursday thru Sunday 12:00 pm to 8:00 pm; Monday, Wednesday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in either the air handling units, mounted in the ductwork, or located inside the terminal units.

Cooling Source: The majority of cooling is provided by a 243 ton air-cooled chiller located across the parking lot from the library. Additionally, the Exhibit Hall (AHU-5) and Archives (AHU-9) have supplemental split systems which utilize direct expansion to provide cooling for those areas. These are critical areas in which the County desired a back-up cooling system in the event that the primary chilled water system was to fail.

Air Handling Units: Conditioned air is distributed throughout the building by nine chilled water air handling units (AHUs), three chilled water fan coil units, and two back-up split systems. Of the eleven air handling units, four of them are Variable Air Volume (VAV) and the remaining seven AHUs are constant volume, single zone systems.

HVAC System Controls: The building utilizes a Johnson Controls Metasys Building Automation System (BAS) that was installed when the building was constructed. The BAS is not utilized to its full potential as much of the HVAC equipment is not scheduled appropriately.

African American Library HVAC Equipment Inventory

Chiller Summary Table

Sorial	Puilding	Tag	Manufacturor	Model	Tuno	Nominal			Compres	sor			Co	ondenser	Fans	
Serial	Building	Tay	Wallulacture	woder	Type	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase
RMKM001818 A	African American Library	CH-1	York	YCAS0250EC46XFASB	Air-Cooled	243	3	460	128	3	R-22	12		460	4	3

Note: County To Replace Chiller

Air Handling Unit Data

Tag	Air Handler	Air Handler Model	Serial				Motor		Cooling Coil	Heating Coil	Manf. Date	Area
-	wanutacturer			SP (in wc)	HP	Volts	Amps	Phase	Туре	Туре		Served
AHU-1	York	AP-80	CLKM08231D	2.74	5.00	460	6.6	3	CHW	Primary Heat	2001	Stage
AHU-2	York	AP-215	CLKM08232D	3.59	15.0	460	19.3	3	CHW	Primary Heat & Zone Heat	2001	Auditorium
AHU-3	York	AP-215	CLKM08234D	3.65	15.0	460	19.3	3	CHW	Primary Heat	2001	Seminar
AHU-4	York	AP-215	CLKM08235D	3.55	15.0	460	19.3	3	CHW	Primary Heat	2001	Lobby
AHU-5	York	AP-215	CLKM08236D	3.72	15.0	460	19.3	3	CHW	Primary Heat	2001	Exhibit
AHU-5A	Carrier	40RUAA12A2A6A0A0A0	1513U14087		2.4	208	6.7	3	DX	7.5 kW EDH	2013	Exhibit (Backup)
AHU-6	York	AP-80	CLKM08237D	2.67	7.5	460	10.8	3	CHW	Zone Heat	2001	Dress Rm
AHU-7	York	AP-105	CLKM08239D	3.38	7.5	460	9.7	3	CHW	Zone Heat	2001	Youth Service
AHU-8	York	AP-360	CLKM08241D	4.56	30.0	460	36.6	3	CHW	Primary Heat & Zone Heat	2001	Gen. Coll.
AHU-9	York	AP-105	CLKM08240D	4.1	10.00	460	13.4	3	CHW	Primary Heat	2001	SP. Collect
AHU-9A	Carrier	40RUAA12A2A6A0A0A0	2413U23671		2.4	208	6.7	3	DX		2013	SP. Collect (Backup)
FC-1	Carrier	39MN10D021ZE011XKS	3413U32485						CHW		2013	
FC-2	Carrier	39MN06D021ZE111XKS	3413U32486		2.00	460	2.9	3	CHW		2013	
FC-3	Carrier	39MN08D02264L11XGS	4713U42098						CHW		2013	

DX Condenser / Compressor Summary

Ten	Employment Comment	Manufactures	11- del	Onviat	Terre			Com	oressor				Condens	er Fans		Mand Data
rag	Equipment Served	wanutacturer	woder	Serial	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Mant. Date
CU-5A	AHU-5A	Carrier	38AUZA12A0B5A0A0A0	3515C93988	10	1	208	30.1	3	R-410A	2		230	1.5	1	2015
CU-9A	AHU-9A	Carrier	38AUZA12A0B6A0A0A0	2615C92305	10	1	460	16.7	3	R-410A	2		460	0.8	1	2015

Pump Summary Data

Tag	Forwige	Bump Manufacturor	Bump Madal	CPM	Hood (ft)			Motor Specif	ied Data	
Tay	Service	Fump Manufacturer	Fullip Model	GFIW	neau (IL)	RPM	HP	Volts	Amps	Phase
CHWP-1	Chilled Water Loop	Taco	FE4010	580	90	1765	25.0	460	29.5	3
CHWP-2	Chilled Water Loop	Taco	FE4010	580	90	1760	25.0	460	30	3

Note: Pump Nameplate not accessible. Data shown was the original equipment selection, per Construction Documents

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Southwest Regional Library

16835 Sheridan ST., Pembroke Pines, FL 33331

Area: 79,747 sf

Year Built: 2000

Major Additions: None

Wall Type: Tilt-Up Concrete

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilized many different lighting technologies including LED, Compact Fluorescent, Linear Fluorescent, HID, Halogen, etc. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

10:00 am to 6:00 pm; Thursday thru Sunday 10:00 am to 8:00 pm; Monday thru Wednesday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in the terminal units.

Cooling Source: Chilled water is provided to the Southwest Regional Library by the neighboring Pembroke Pines Charter School. There is a BTU meter installed at the facility; however, it appeared to be unreliable and not data was provided to OpTerra for review.

Air Handling Units: Conditioned air is distributed throughout the building by five chilled water air handling units (AHUs) and three chilled water fan coil unit. All five primary AHUs are Variable Air Volume (VAV).

HVAC System Controls: The building utilizes a Trane Building Automation System (BAS) with a Niagara AX Graphical User Interface that was installed when the building was constructed. All five AHUs had reasonable schedules assigned to them.

Electric Note: In addition to chilled water, the Southwest Regional Library also receives electric utility from the Charter School. There is a sub-meter installed in the library; however, no consumption or expenditure data was provided to OpTerra.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Southwest Regional Library HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler	Air Handler Model	Serial			Мо	otor		Cooling Coil	Heating Coil	Manf. Date	Area
	Manufacturer			SP (in wc)	HP	Volts	Amps	Phase	Туре	Туре		Served
AHU-R1	Trane	MCCA035UB0A00000U	K99L01249O	4.1	20.00	460	24.8	3	CHW	VAV EDH	1999	1st FL West
AHU-R2	Trane	MCCA017JBG0C0B000A	K99L01256O	3.6	10.0	460	13.4	3	CHW	VAV EDH	1999	1st FL East
AHU-R3	Trane	MCCA010GAX0BB0C00F0ECA00	K99L01263O	3.4	7.50	460	9.7	3	CHW	VAV EDH	1999	1st FL Multi-Purpose Rm
AHU-R4	Trane	MCCA035JBG0C0B000A	K99L01266O	4.4	25.00	460	30.3	3	CHW	VAV EDH	1999	2nd FL West
AHU-R5	Trane	MCCA035JBG0C0B000A	K99L01271O	3.9	15.00	460	18.9	3	CHW	VAV EDH	1999	2nd FL East
FCU-R1	Trane	SCCB-080		0.4	320w	115		1	CHW	N/A	1999	1st FL Telcom Rm
FCU-R2	Trane	SCCB-080		0.4	320w	115		1	CHW	N/A	1999	1st FL Server Rm
FCU-R3	Trane	SCCB-080		0.4	320w	115		1	CHW	N/A	1999	2nd FL Telcom Rm

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

West Regional Library

100 North Pine Island RD., Plantation, FL 33324

Area: 72,000 sf

Year Built: 2005

Major Additions: None

Wall Type: CMU w/Stucco Finish

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilized many different lighting technologies including LED, Compact Fluorescent, Linear Fluorescent, HID, Halogen, etc. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

10:00 am to 6:00 pm; Thursday thru Sunday 10:00 am to 8:00 pm; Monday thru Wednesday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in the terminal units.

Cooling Source: The majority of cooling is provided by two 132 ton water-cooled chillers that are located in a ground floor mechanical room. Additionally, there are two small mini-split systems which utilize direct expansion to provide cooling for data closets.

Air Handling Units: Conditioned air is distributed throughout the building by six chilled water air handling units (AHUs) and one chilled water fan coil unit. AHU-6 also includes an outside air pretreatment unit that utilizes a chilled water coil to pre-cool ventilation. All six primary AHUs and the pretreatment unit are Variable Air Volume (VAV).

HVAC System Controls: The building utilizes a Johnson Controls Metasys Building Automation System (BAS) that was installed when the building was constructed. Many of the HVAC systems did have schedules assigned in the BAS; however, they were not optimized to minimize annual energy consumption.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

West Regional Library HVAC Equipment Inventory

Chiller Summary Table

Carial	Building	Tam	Manufacturer	Madal	Tumo	Nominal			Compres	ssor			C	ondenser	Fans	
Serial	Building	Tag	Wanutacturer	woder	туре	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase
U05L05112	West Regional Library	CH-1	Trane	RTHB130MG00LWP000UNN 3LF2LF000U0	Water-Cooled	132	1	460	129	3	R-22		I	Not Applic	able	
U05L05114	West Regional Library	CH-2	Trane	RTHB130MG00LWP000UNN 3LF2LF000U0	Water-Cooled	132	1	460	129	3	R-22		1	Not Applic	able	

Cooling Tower Summary Table

Building	Tag	Monufacturer	Madal	Sovial		Ма	tor	
Building	lag	Wanuacturer	woder	Serial	HP	Volts	Amps	Phase
West Regional Library	CT-1	Marley	21221	C-248950-A2 NC8301EL2CS-04	10	460		3
West Regional Library	CT-2	Marley	21221		10	460		3

Pump Summary Data

Tog	Forwige	Bump Manufacturar	Bump Model	Design C	Conditions			Motor Specif	ied Data	
Tay	Service	Fump Manufacturer	Fump Woder	GPM	Head (ft.)	RPM	HP	Volts	Amps	Phase
CHWP-1	Chilled Water	Bell & Gossett	1510 BF 10.625 4E	640	90	1770	20.0	460	25.6	3
CHWP-2	Chilled Water	Bell & Gossett	1510 BF 10.625 4E	640	90	1770	20.0	460	25.6	3
CWP-1	Condenser Water	Bell & Gossett	1510 BF 7.875 3BC	400	50	1760	7.5	460	9.8	3
CWP-2	Condenser Water	Bell & Gossett	1510 BF 7.875 3BC	400	50	1760	7.5	460	9.8	3
CWP-3	Condenser Water	Bell & Gossett	1510 BE 7 875 3BC	400	50	1760	75	460	9.8	3

Air Handling Unit Data

Tan	Air Handler Manufacturer	Air Handler Model	Sorial			1	Notor		Cooling	Heating	Manf Date
iug			Gentar	SP (in wc)	HP	Volts	Amps	Phase	Туре	Туре	marn. Dute
AHU-1	Trane	MCCB030UA0C0UA	K05l38489a	2	20.00	460	24.8	3	CHW	None	2005
AHU-2	Trane	MCCB025UA0C0UB	K05L38496A	2	10.0	460	12.5	3	CHW	None	2005
AHU-3	Trane		K05L38503A	2	15.00	460	19	3	CHW	None	2005
AHU-4	Trane	MCCB021UA0C0UA	K05L38510A	2	10.00	460	11.9	3	CHW	None	2005
AHU-5	Trane	MCCB017UA0C0UA	K05L38518A	2	10.00	460	13.3	3	CHW	None	2005
AHU-6	Trane	MCCB008UA0C0UB	K05L38525A	1.5	5.00	460	6.4	3	CHW	30 kW EDH	2005
AHU-6-OA	Trane	MCCB0060UB	K05L38537A			No Fan			CHW	None	2005
FCU-1	Trane			0	0.20	277		1			2005
MS-1	Diaken	FTXN09KEYJUS		0	0.20	208	0.18	1	DX	None	2014
MS-2	Diaken	ETXN09KEY.IUS		0	0.20	208	0.18	1	DX	None	2014

DX Condenser / Compressor Summary

ſ	Tog	Equipment Conved	Manufacturar	Madal	Coriol	Tone			Comp	pressor				Condens	er Fans		Manf Data
I	Tay	Equipment Served	manulacturer	woder	Serial	TONS	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Man. Date
Г	CU-1	MS-1	Diaken	RKN09KEVJU5	G000627	0.75	1	208	3.3	1	R-410A	1	33 Watts	208	0.17	1	2013
Г	CU-2	MS-2	Diaken	RKN09KEVJU5	G001020	0.75	1	208	3.3	1	R-410A	1	33 Watts	208	0.17	1	2013

Ventilation Fan Schedule

Tee		For Model	Carial	De	sign Criteri	a		Ма	otor		Mané Data	Area	
Tag	Fan Manufacturer	Fan woder	Serial	Туре	SP (in wc)	CFM	HP/Watts	Volts	Amps	Phase	Marr. Date	Served	Control Type
OAF-1	Greenheck	BSQ-180-10		Outside Air	0.125	4400	1.00	277		1	2005	AHU-1	Interlock w/AHU-1
OAF-2	Greenheck	BSQ-140-5		Outside Air	0.125	2450	0.5	277		1	2005	AHU-2	Interlock w/AHU-2
OAF-3	Greenheck	BSQ-160-5		Outside Air	0.125	3050	0.50	277		1	2005	AHU-3	Interlock w/AHU-3
OAF-4	Greenheck	BSQ-140-5		Outside Air	0.125	2400	0.50	277		1	2005	AHU-4	Interlock w/AHU-4
OAF-5	Greenheck	BSQ-140-7		Outside Air	0.125	2700	0.75	277		1	2005	AHU-5	Interlock w/AHU-5
OAF-6	Greenheck	BSQ-130-7		Outside Air	0.5	2000	0.75	277		1	2005	AHU-6	Interlock w/AHU-6
EF-1	Greenheck	CSP-A710		Exhaust	0.25	450	325 watts	277		1	2005	Toilet	Interlock w/AHU-2
EF-2	Greenheck	CSP-A710		Exhaust	0.25	450	325 watts	277		1	2005	Toilet	Interlock w/AHU-2
EF-3	Greenheck	SP-A190		Exhaust	0.25	100	113 watts	277		1	2005	Toilet	Interlock w/AHU-2
EF-4	Greenheck	SP-A190		Exhaust	0.25	100	113 watts	277		1	2005	Toilet	Interlock w/AHU-2
EF-5	Greenheck	SP-A190		Exhaust	0.25	100	113 watts	277		1	2005	Toilet	Interlock w/AHU-2
EF-6	Greenheck	CSP-A780		Exhaust	0.25	600	405 watts	277		1	2005	Toilet	Interlock w/AHU-1
EF-7	Greenheck	SP-A710		Exhaust	0.25	400	285 watts	277		1	2005	Electrical Rm	Thermostat
EF-8	Greenheck	CSP-A780		Exhaust	0.125	600	405 watts	277		1	2005	Toilet	Interlock w/AHU-3
EF-9	Greenheck	SP-A110		Exhaust	0.125	100	49 watts	277		1	2005	Toilet	Interlock w/AHU-4
EF-10	Greenheck	SP-A110		Exhaust	0.125	100	49 watts	277		1	2005	Toilet	Interlock w/AHU-4
EF-11	Greenheck	SP-A390		Exhaust	0.125	300	135 watts	277		1	2005	Electrical Rm	Thermostat
EF-12	Greenheck	BSQ-130-10		Exhaust	0.125	2500	1.00	277		1	2005	Mechanical Rm	Refr. Monitor

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Northwest Regional Library

3151 University DR., Coral Springs, FL 33071

Area: 72,000 sf

Year Built: Tenant Build-Out in 2000 (Original Building Age Unknown)

Major Additions: None

Wall Type: Tilt-Up Concrete

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilized many different lighting technologies including LED, Compact Fluorescent, Linear Fluorescent, HID, Halogen, etc. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

10:00 am to 6:00 pm; Thursday thru Sunday 10:00 am to 8:00 pm; Monday thru Wednesday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in the terminal units.

Cooling Source: The majority of cooling is provided by two 100 ton air-cooled chillers that are located on the first floor roof. Additionally, there are two small split systems which utilize direct expansion to provide cooling for data closets.

Air Handling Units: Conditioned air is distributed throughout the building by five chilled water air handling units (AHUs) and two direct expansion fan coil units. Of the five primary air handling units, two of them are Variable Air Volume (VAV) and the remaining three AHUs are constant volume.

HVAC System Controls: The building utilizes a Johnson Controls Metasys Building Automation System (BAS) that was installed when the building was constructed. Many of the HVAC systems did have schedules assigned in the BAS; however, they were not optimized to minimize annual energy consumption.

Northwest Regional Library HVAC Equipment Inventory

Chiller Summary Table

1	Carial	Building	Tag	Manufacturer	Madal	Tumo	Nominal			Compres	ssor			Co	ondenser	Fans	
	Serial	Building	Tay	Wanuacturer	woder	туре	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase
	U00D08427	NW Regional Library	ECH-1	Trane	RTAA1004XL01A3D0BF0	Air-Cooled	100	2	460	84	3	R-22	10	1	460	3	3
	U00D08426	NW Regional Library	ECH-2	Trane	RTAA1004XL01A3D0BF0	Air-Cooled	100	2	460	84	3	R-22	10	1	460	3	3

Pump Summary Data

Tom	Formion	Bump Manufacturar	Bump Model	Design (Conditions			Motor Specif	ied Data	
Tay	Service	Fump Manufacturer	Fump Model	GPM	Head (ft.)	RPM	HP	Volts	Amps	Phase
CWP-1	Chilled Water	No Access	s/Insulated	240	85	1770	10.0	460	13.5	3
CWP-2	Chilled Water	No Access	s/Insulated	240	85	1770	10.0	460	13.5	3

Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial			I	Motor		Cooling Coil	Heating Coil	Manf. Date	Area
				SP (in wc)	HP	Volts	Amps	Phase	Type	Type		Served
AHU-1	Trane	MCCA050UB000A000U	K00C47310	3	25.00	460	30.5	3	CHW	N/A	2000	Library - First Floor
AHU-2	Trane	MCCA006HBE0C0A0S00000	K00C47315	1.5	2.0	460	2.8	3	CHW	N/A	2000	Receiving - First Floor
AHU-3	Trane	MCCA012HBE0C0B0S00000	K00C47319	1.5	7.50	460	9.7	3	CHW	N/A	2000	Multi-Purpose Room
AHU-4	Trane		K00C48423	3	30.00	460	34	3	CHW	N/A	2000	Library - Second Floor
AHU-5	Trane	MCC-08 Series		1.5	5.00	460		3	CHW	N/A	2000	Staff/Quiet - First Floor
AC-1	Trane	TWE-030P13	N/A	0.25	0.33	208		1	CHW	N/A	2000	Comm Rm - First Floor
AC-2	Trane	TWE-024P13	N/A	0.25	0.25	208		1	CHW	N/A	2000	Comm Rm - Second Floo

DX Condenser / Compressor Summary

Tog	Equipment Convod	Manufacturar	Madal	Carial	Tono			Com	pressor				Condens	er Fans		Manf Data
Tay	Equipment Served	manufacturer	Woder	Senai	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Man. Date
ACCU-1	AC-1	Trane	TTP030D100A0	R223XSJ3F	2.5	1	208	13	1	R-22	1	1/5	208	1.5	1	2000
ACCU-2	AC-2	Trane	TTP024C100A3	R204NXG2F	2	1	208	11	1	R-22	1	1/12	208	0.5	1	2000

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Weston Library

4205 Bonaventure BLVD., Weston, FL 33332

Area: 51,000 sf

Year Built: 2005

Major Additions: None

Wall Type: CMU w/Stucco Finish

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilized many

different lighting technologies including LED, Compact Fluorescent, Linear Fluorescent, HID, Halogen, etc. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

<u>Library (1st Floor)</u> 10:00 am to 6:00 pm; Thursday thru Saturday 10:00 am to 8:00 pm; Monday thru Wednesday Closed; Sunday <u>Broward College (2nd Floor)</u> 7:00 am to 10:00 pm; Monday thru Friday Closed; Saturday thru Sunday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in the terminal units.

Cooling Source: The majority of cooling is provided by a 170 ton air-cooled chiller that is located on the North side of the building. Additionally, there are three small split systems which utilize direct expansion to provide cooling for data closets.

Air Handling Units: Conditioned air is distributed throughout the building by three chilled water air handling units (AHUs) and three direct expansion fan coil units. Two AHUs are ducted in parallel and combine for a single medium pressure supply duct that serves the first floor. The third AHU is located on the second floor. All three of the primary air handling units are Variable Air Volume (VAV).

HVAC System Controls: The building utilizes a Johnson Controls Metasys Building Automation System (BAS) that was installed when the building was constructed. Many of the HVAC systems did have schedules assigned in the BAS; however, the schedules have the HVAC units operating far longer hours than necessary.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Weston Library HVAC Equipment Inventory

Chiller Summary Table

Carial	Duilding	Ten	Manufactures	Madal	Tune	VeerMe	Nominal			Compres	sor			C	ondenser	Fans	
Serial	Building	rag	wanuracturer	woder	Туре	rear wig	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase
STNU05040007	Wester Library		MaQuay	AL \$196027 EP11	Air Cooled	2005	170	1	460	129	2	P 22	12	2	460	2	2
2	Weston Library	CH-1	wicQuay	ALS180C27*EKTT	All-Cooleu	2005	170	1	460	158	3	N*22	12	2	400	3	3

Pump Summary Data

Tom	Forming	Bump Manufacturar	Bump Madal	CDM	Hoad (ft)			Motor Specif	ied Data	
Tay	Service	Fump Manufacturer	Fullip Woder	GFW	neau (n.)	RPM	HP	Volts	Amps	Phase
P-1	CHW	Taco	KV4009	410	60	1725	10.0	460	14	3
P-2	CHW	Taco	KV4009	410	60	1725	10.0	460	14	3

Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial Number			I	Motor		Cooling Coil	Heating Coil	Manf. Date	Area
-				SP (in wc)	HP	Volts	Amps	Phase	Type	Туре		Served
AHU-1	McQuay	CAH035FDAC	FBOU050300574		20.0	460	23.5	3	CHW	Electric VAV	2005	1st Floor
AHU-2	McQuay	CAH035FDAC	FBOU050300573		20.0	460	23.5	3	CHW	Electric VAV	2005	1st Floor
AHU-3	McQuay	CAH040FDAC	FBOU050300582		25.00				CHW	Electric VAV	2005	2nd Floor
AC-1	Rheem					No Access						1st Floor Telecom Rm
AC-2	Fujitsu	ASU9CQ	BCA003534			115	0.23	1	DX	N/A	2005	Book Return
AC-3	Rheem					No Access						2nd Floor Telecom Rm

DX Condenser / Compressor Summary

Torr	Equipment Conved	Manufacturar	Model	Coriol	Tono			Com	pressor				Condens	er Fans		Manf Data
Tay	Equipment Served	Manufacturer	woder	Serial	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Wall. Date
ACCU-1	AC-1	Rheem	13AJA18A01	7652W480907582	1.5	1	230	7.7	1	R-22	1	1/6	230	1	1	2009
ACCU-2	AC-2	Fujitsu	AOU9CQ	BCN011490	0.75	1	115	7	1	R-410A	1		115	0.2	1	2005
ACCU-3	AC-3	Rheem	13AJA18A01	7652W460903008	1.5	1	230	7.7	1	R-22	1	1/6	230	1	1	2009

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Lauderdale Lakes Library

3580 W Oakland Park BLVD., Lauderdale Lakes, FL 33311

Area: 20,237 sf

Year Built: 2008

Major Additions: None

Wall Type: CMU w/Stucco Finish

Roof Type: Pitched w/Barrel Tile

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilized many different lighting technologies including LED, Compact Fluorescent, Linear Fluorescent, HID, Halogen, etc. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

Library (1st Floor) 10:00 am to 6:00 pm; Monday, Wednesday, Saturday, Sunday 12:00 pm to 8:00 pm; Tuesday, Thursday Closed; Sunday <u>City of Lauderdale Lakes Civic Area (2nd Floor)</u> 8:00 am to 10:00 pm; Monday thru Sunday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in the terminal units. Reheat is provided by a heat exchanger that captures waste heat from the air-cooled chiller.

Cooling Source: Cooling is provided by a 100 ton air-cooled chiller that is located on the West side of the building.

Air Handling Units: Conditioned air is distributed throughout the building by two chilled water air handling units (AHUs), one per floor. Both air handling units are Variable Air Volume (VAV).

HVAC System Controls: The building utilizes a Johnson Controls Metasys Building Automation System (BAS) that was installed when the building was constructed. Many of the HVAC systems did have schedules assigned in the BAS; however, they were not optimized to minimize annual energy consumption.

Lauderdale Lakes Library HVAC Equipment Inventory

Chiller Summary Table

1	Sorial	Puilding	Tag	Manufacturor	Model	Turno	Voor Mfg	Nominal			Compres	sor			Co	ondenser	Fans	
	Serial	Building	Tay	wanuacturer	woder	rype	rear wig	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase
	2017000270	Laudardala Lakas Library		Vork	VCAL0104EB46VCBDBTV	Air Cooled	2009	100	3	460	30.6	3	R-407C	3		460	4	3
	211111000370	Lauderuale Lakes Library	CHI	TOIN	TCAL0104EB40ACBDBTA	All-Cooled	2000	100	2	460	38.5	3	R-407C	3		460	4	3

Pump Summary Data

Tag	Sorrigo	Rump Manufacturor	Bump Model	CDM	Hood (ft)			Motor Specif	ied Data	
Tay	Service	Fump Manufacturer	Fump woder	GFW	neau (n.)	RPM	HP	Volts	Amps	Phase
CHWP-1	CH-1	Taco	KS3007AL2JCA28911	185		1725	3.0	208-230/460	9-8.6/4.3	3
CHWP-2	CH-1	Taco	KS3007AL2JCA28911	185		1725	3.0	208-230/460	9-8.6/4.3	3
HWP-1	Heat Recovery			No	o Access					
HWP-2	Heat Recovery			N	o Access					

Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial Number			I	Motor		Cooling Coil	Heating Coil	Manf. Date	Area
				SP (in wc)	HP	Volts	Amps	Phase	Туре	Туре		Served
AHU-1	York	XTI-063X069-FALA046A	CNTMXT0120		15.00	460	20.3	3	CH	N/A	2008	1st FL
AHU-2	York	XTI-063X090-FAMA046A	CNTMXT0121		20.0	460	25	3	CH	N/A	2008	2nd FL multipurpose

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Stirling Road Library

3151 Stirling RD., Hollywood, FL 33312

Area: 20,000 sf

Year Built: 2000

Major Additions: None

Wall Type: CMU w/Stucco Finish

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilized many different lighting technologies including LED, Compact Fluorescent, Linear Fluorescent, HID, Halogen, etc. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

10:00 am to 6:00 pm; Friday thru Monday 12:00 pm to 8:00 pm; Tuesday, Thursday Closed; Wednesday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in the terminal units.

Cooling Source: Cooling is provided by a large split system utilizing an 88 ton air-cooled condensing unit which had been replaced in 2010.

Air Handling Units: Conditioned air is distributed throughout the building by a single Variable Air Volume Air Handling Unit.

HVAC System Controls: The building utilizes an old KMC Building Automation System (BAS) that was installed when the building was constructed. This BAS still utilizes a dial-up modem for Facilities Maintenance Division to access remotely. There were many issues observed with the current BAS. In addition, due to limited control, the HVAC currently operates 24/7 without night or weekend temperature setbacks.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Stirling Road Library HVAC Equipment Inventory

DX Condenser / Compressor Summary

Terr	Equipment Conved	Manufacturer	Madal	Carial	Tono	New			Com	pressor				Condens	er Fans		Manf Data
Tay	Equipment Serveu	Manuacturer	woder	Serial	TONS	EER/SEER	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Wall. Date
CU-1	AHU-1	York	YLUA0078ZE46XBASD	2MWM008854	88	11.7	6	460	23.1	3	R-410A	4		460	4	3	2010

Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial			Л	Notor		Cooling Coil	Heating Coil	Manf. Date	Area
				SP (in wc)	HP	Volts	Amps	Phase	Туре	Туре		Served
AHU-1	York	SC-RF-MB	CLLM14010D	7.37	40.00	460	47	3	DX	N/A	2000	Entire Library

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

North Lauderdale Library

6901 Kimberly Blvd, North Lauderdale, FL 33068

Area: 20,000 sf

Year Built: 2004

Major Additions: None

Wall Type: CMU w/Stucco Finish

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilized many different lighting technologies including LED, Compact Fluorescent, Linear Fluorescent, HID, Halogen, etc. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

10:00 am to 6:00 pm; Wednesday thru Saturday 12:00 pm to 8:00 pm; Monday, Tuesday Closed; Sunday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in the terminal units.

Cooling Source: Cooling is provided by a large split system utilizing two air-cooled condensing unit. A 50 ton condensing unit is coupled to a pre-cooling evaporator coil located in the pre-cooling section of AHU-1. A 40 ton condensing unit is coupled to a primary cooling evaporator coil also located in AHU-1.

Air Handling Units: Conditioned air is distributed throughout the building by a single Variable Air Volume Air Handling Unit.

HVAC System Controls: The building utilizes a newer Johnson Control Metasys Building Automation System (BAS). The BAS was found to be in very good condition with appropriate schedules assigned to HVAC equipment.

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

North Lauderdale Library HVAC Equipment Inventory

DX Condenser / Compressor Summary

Tag	Equipment Served	Manufacturor	Model	Sorial	Tons			Com	oressor				Condens	er Fans		Manf Date
rag	Equipment Serveu	manufacturer	moder	Jernar	10/13	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	mann. Date
CU-1	AHU-1	Trane	RAUCC504B		40	4	460	18.1	3	R-22	4	1	460	1.8	3	2008
CU-2	O/A Pre-cool	Trane	RAUCC404B		50	2	460	26.3	3	R-22	6	1	460	1.8	3	2008

Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial			I	Motor		Cooling Coil	Heating Coil	Manf. Date
				SP (in wc)	HP	Volts	Amps	Phase	Туре	Туре	
AHU-1	Trane	MCCB050UA0C0UA	H4A243B						DX	VAV EDH	2003

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Sunrise (Dan Pearl) Library

10500 W Oakland Park Blvd., Sunrise, FL 33351

Area: 19,500 sf

Year Built: 1995

Major Additions: None

Wall Type: CMU w/Stucco

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilizes a significant amount of HID lighting both in interior and exterior fixtures. Additionally, it utilized compact fluorescents, linear fluorescents, and halogen lighting technologies. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

10:00 am to 6:00 pm; Monday, Thursday thru Saturday 12:00 pm to 8:00 pm; Tuesday, Wednesday Closed; Sunday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in the terminal units.

Cooling Source: Cooling is provided by two split systems utilizing air-cooled condensing units. The larger splits system, a 40-ton units had two condensing units coupled with a dual circuit evaporator coil. A smaller 10-ton split system serves the multi-purpose room.

Air Handling Units: Conditioned air is distributed to the majority of the main library by a large Variable Air Volume Air Handling Unit. A smaller air handling unit provides conditioned air to the multi-purpose room.

HVAC System Controls: The building utilizes Siemens Apogee BAS. The system was found to be in fair condition; however, both Air Handling Units were found to operate 24/7 without any night or weekend set back.

Broward County Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Sunrise (Dan Pearl) Library **HVAC Equipment Inventory**

Air Handling Unit Data

1	Tag	Air Handler Manufacturer	Air Handler Model	Serial			I	Motor		Cooling Coil	Heating Coil	Manf. Date
					SP (in wc)	HP	Volts	Amps	Phase	Туре	Туре	
	AC-1	Trane	MCCA040DEE0BB000A	K93G50558		20.00				DX	EDH	1993
	AC-2	Trane	MCCA006GAE0BAB000D	K93H56388						DX	EDH	1993

DX Condenser / Compressor Summary

Torr	Equipment Conved	Manufacturar	Madal	Carial	Tono			Com	oressor				Condens	er Fans		Manf Data
Tay	Equipment Served	Manufacturer	moder	Serial	TONS	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Man. Date
CU-1A	AHU-1	Trane	RAUCC20EBX030BD00000 9	C02K09076	20	2	200	41.4	3	R-22	2	1	200	4.1	3	2002
CU-1B	AHU-1	Trane	RAUCC20EBX030BD00001 0	C03J08036	20	2	200	41.4	3	R-22	2	1	200	4.1	3	2003
CU-2	AHU-2	Trane	TTA120B300EA	4075TBPAD	10	2	208	20.7	3	R-22	1		230	6	1	2004

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Margate Library

5810 Park DR., Margate, FL 33063

Area: 15,800 sf

Year Built: 1978

Major Additions: 2004 (Renovation)

Wall Type: CMU w/Brick Façade

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilizes a variety of lighting technologies; including compact fluorescents, linear fluorescents, halogen, and HID lighting. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

10:00 am to 6:00 pm; Monday, Wednesday, Friday, Saturday 12:00 pm to 8:00 pm; Tuesday, Thursday Closed; Sunday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in the terminal units.

Cooling Source: Cooling is provided by a 50-ton air-cooled chiller located behind the library that serves the entire library. A small condensing unit, also located behind the library, provides cooling for a min-split system.

Air Handling Units: Conditioned air is distributed to the majority of the main library by a larger Variable Air Volume Air Handling Unit. A smaller air handling unit provides conditioned air to the multi-purpose room. A small direct expansion fan coil unit provides cooling for a data closet.

HVAC System Controls: The building utilizes Siemens Apogee BAS. The system was found to be in fair condition; however, both Air Handling Units were found to operate 24/7 without any night or weekend set back.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Margate Library HVAC Equipment Inventory

Chiller Summary Table

Sorial	Puilding	Tag	Manufacturor	Madal	Turno	Voor Ma	Nominal			Compres	ssor			C	ondenser	Fans	
Serial	Building	Tag	wanuracturer	woder	Type	rear wig	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase
2204E20040	Margata		Corrier	20PANIOEOK EE11AL	Air Cooled	2004	50	4	208/220	40.9	2	P 22	4	1.5	208/230	5.3	3
2304F30040	iviargate	CH-1	Carner	30RAIN050K-E5TTAL	All-Cooled	2004	50	4	200/230	40.6	3	R=22	2	4.2	208/230	13.9	3

Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial Number			I	Motor		Cooling Coil	Heating Coil	Manf. Date
				SP (in wc)	HP	Volts	Amps	Phase	Туре	Туре	
FCU-1	Carrier	40MFC009101	0215V00038		0.02	115	0.3	1	DX	N/A	2015
AHU-1	Carrier	39MCSTD01LCBXXXBHH	2404F40210						CHW	Electric	2004
AHU-2	Carrier	39MN08B0054M611SXS	2404F40169						CHW	Electric	2004

DX Condenser / Compressor Summary

Tog	Equipment Conved	Manufacturar	Madal	Corial	Tono			Com	pressor				Condens	er Fans		Mapl Data
Tay	Equipment Served	Manufacturer	moder	Serial	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Man. Date
CU-1	FCU-1	Carrier	38MFc0091	3914V07893	0.75	1	115	5.3	1	R410A	1	0.31	115	0.7	1	2014

Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Hallandale Library

300 South Federal Highway, Hallandale, FL 33009

Area: 14,700 sf

Year Built: 1980

Major Additions: None

Wall Type: CMU w/Stucco

Roof Type: Built-up roof

Window Type: Double pane with metal frames and tint. Several of the gaskets on

the existing windows have failed, leading to fogging between the panes.

Lighting Type: This facility utilizes a variety of lighting technologies; including compact fluorescents, linear fluorescents, halogen, and HID lighting. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

10:00 am to 6:00 pm; Wednesday thru Saturday 12:00 pm to 8:00 pm; Monday, Tuesday Closed; Sunday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric duct heaters that are located in the main supply ducts.

Cooling Source: Cooling is provided by four split direct expansion systems. Condensing units are all located on the back side of the library in a locked enclosure.

Air Handling Units: Conditioned air is distributed to the majority of the main library by a larger single zone, constant volume air handling unit. Three smaller air handling units provide conditioned air to the multi-purpose room, restrooms, and lobby area.

HVAC System Controls: The building utilizes standard non-programmable thermostats located in the return air duct to control space temperature. Currently, the HVAC system operate 27/7 with no night or weekend temperature setbacks.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Hallandale Library HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler	Air Handler Model	Serial			N	lotor		Cooling Coil	Heating Coil	Manf. Date	Area
	Manufacturer			SP (in wc)	HP	Volts	Amps	Phase	Туре	Туре		Served
AC-1	Trane	LPCAB25D1D0G5	T03M80676	2003					DX	EDH	2003	Main Library
AC-2	Rheem	RHLA-HM6024JA	M500703828	2007					DX	EDH	2007	Lobby/Restrooms/Kitchen
AC-3	Ruud	RHGE-100ZK	152F490314486	2003					DX	EDH	2003	Multi-Purpose Room (East)
AC-4	Ruud	RHGE-075ZK	139G359701330	1997					DX	EDH	1997	Multi-Purpose Room (West)

DX Condenser / Compressor Summary

Torr	Equipment Conved	Manufacturar	Madal	Sovial	Tono			Com	oressor				Condens	er Fans		Mapl Data
Tay	Equipment Served	Manulacturer	woder	Senai	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Man. Date
CU-1A	AC-1	Rheem	RAWL-180CAZ	7925F141301920	15	2	208/230	25	3	R-410A	3	1/3	208/230	2.4	3	2013
CU-1B	AC-1	Rheem	RAWL-180CAZ	F451302352	15	2	208/230	25	3	R-410A	3	1/3	208/230	2.4	3	2013
CU-2	AC-2	Rheem	RAKB-060CAZ	7011M480706842	5	1	208/230	18.6	3	R-22	1	1/3	208/230	1.5	3	2007
CU-3	AC-3	Ruud	RAWD-100CAZ	6239F060504284	10	1	208/230	37.8	3	R-22	2	1/3	208/230	2.2	1	2005
CU-4	AC-4	Rheem	RAWD-091CAZ	7335F410706647	7	1	208/230	22.4	3	R-22	1	1/3	208/230	4.2	1	2007

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Century Plaza Library

1890 Hillsboro BLVD., Deerfield Beach, FL 33441

Area: 11,682 sf

Year Built: Unknown

Major Additions: Tenant Build-Out (2001)

Wall Type: CMU w/Stucco

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilizes a variety of lighting technologies; including compact fluorescents, linear fluorescents, halogen, and HID lighting. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

10:00 am to 6:00 pm; Monday thru Saturday Closed; Sunday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric duct heaters that are located in the main supply ducts.

Cooling Source: Cooling is provided by four rooftop packaged units.

Air Handling Units: The single-zone packaged rooftop unit distribute conditioned air to all spaces inside the library.

HVAC System Controls: The building utilizes standard wall mounted thermostats to control space temperature. Currently, the HVAC system operate 27/7 with no night or weekend temperature setbacks.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Dania Beach Library

1 Park Avenue E., Dania, FL 33004

Area: 9,970 sf

Year Built: 2011

Major Additions: None

Wall Type: CMU w/Stucco

Roof Type: Standing Seam Metal Roof with small section of Built-up roof

Window Type: Double pane with metal frames and tint.

Lighting Type: This facility utilizes a variety of lighting technologies; including compact fluorescents, linear fluorescents, halogen, and HID lighting. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

10:00 am to 6:00 pm; Tuesday, Wednesday, Friday, Saturday 12:00 pm to 8:00 pm; Monday, Thursday Closed; Sunday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heaters located in the terminal units.

Cooling Source: Cooling is provided to the library by two condensing units located on the West side of the building. These condensing units are piped to a single, dual circuit evaporator coil located in the primary Air Handling Unit. A smaller mini-split condensing unit provides cooling for a data room.

Air Handling Units: Conditioned air is distributed throughout the library by a large Variable Air Volume air handling unit.

HVAC System Controls: The building utilizes a Reliable Building Automation System that was installed during building construction in 2010. The system was found in fair condition; however, the HVAC schedules and set point should be optimized.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Dania Beach Library HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial Number			I	Motor		Cooling Coil	Heating Coil	Manf. Date
				SP (in wc)	HP	Volts	Amps	Phase	Туре	Туре	
AHU-1	York	XTI-048X090-FAJA017A	CHWMXT0180		7.50	200	21.4	3	DX	Electric	2010
AHU-2	Mitsubishi	PKA-A18HA				208/230		1	DX	N/A	2010

DX Condenser / Compressor Summary

J.	Tog	Equipment Served	Monufacturor	Madal	Sorial	Tons			Comp	pressor				Condens	er Fans	
P	Tay	Equipment Serveu	Manulacturer	woder	Serial	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase
Е	CU-1A	AHU-1	Johnson Controls	YC150C00A2	Unknown	12.5	2	208/230	22.4	3	R-410A	2	3/4	208/230	3	1
Г	CU-1B	AHU-1	Johnson Controls	YC150C00A2	Unknown	12.5	2	208/230	22.4	3	R-410A	2	3/4	208/230	3	1
Е	CU-2	AHU-2	Mitsubishi													

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Carver Ranches Library

4733 SW 18th ST., West Park, FL 33323

Area: 16,700 sf – Includes Library and Family Success Center

Year Built: 1980

Major Additions: 2001 Renovation

Wall Type: CMU

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint.

Lighting Type: This facility utilizes a variety of lighting technologies; including compact fluorescents, linear fluorescents, halogen, and HID lighting. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

10:00 am to 6:00 pm; Tuesday, Thursday thru Saturday 12:00 pm to 8:00 pm; Monday, Wednesday Closed; Sunday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heaters located in the terminal units or in the supply ductwork.

Cooling Source: Cooling is provided to the library by two condensing units located outside of the building. These condensing units are piped to a single, dual circuit evaporator coil located in the primary Air Handling Unit. The Family Success Center which is located on the same property is cooled by four rooftop package units.

Air Handling Units: Conditioned air is distributed throughout the library by a large Variable Air Volume air handling unit. The single zone, constant volume rooftop units distribute conditioned air throughout the Family Success Center.

HVAC System Controls: The Library utilizes a Johnson Controls Metasys Building Automation System that was installed during building the renovation in 2001. The system was found in fair condition; however, the HVAC schedules and set point should be optimized. The Family Success Center utilizes standard wall-mounted thermostats to control the rooftop units.

*Please note, the Family Success Center receives electric service from the Carver Ranches Library. As a result, OpTerra included this building in the Group B facility assessment.

Carver Ranches Library HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler	Air Handler Model	Serial			Ι	Notor		Cooling Coil	Heating Coil	Manf. Date
	wanuracturer			SP (in wc)	HP	Volts	Amps	Phase	Туре	Туре	
AHU-1	Trane	MCCB030UA0A0UB	K05D52427	1.5	15.00				DX	EDH (Zone)	2005

DX Condenser / Compressor Summary

Tag	Equipment Conved	Monulooturor	Model	Carlal	Tono	New			Com	pressor				Condens	er Fans		Manf. Data
Tay	Equipment Serveu	Wallulacturer	woder	Serial	Tons	EER/SEER	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Marri. Date
CU-1A	AHU-1	Trane	TTA240B300FA	5222L4BAD	20	9.8	2	208	33.7	3	R-22	2		230	6	1	2005
CU-1B	AHU-1	Trane	TTA180B300FA	5204M8YAD	15	10.3	2	208	25.1	3	R-22	2		230	3.1	1	2005

Family Success Center

HVAC Equipment Inventory

Rooftop/Package Unit Nameplate Data

Terr	Manufastura	Marial	Carial	Defining and	Rated		S	upply Fa	n			Comp	pressor			Cor	ndenser F	ans		Manual Data
Tag	wanuracturer	woder	Serial	Remgerant	Clg. Tons	Qty	HP	Volts	Amps	Phase	Qty	Volts	Amps	Phase	Qty	HP	Volts	Amps	Phase	wanur Date
RTU-1	Rheem	RSNL-B036CK	7420F021005438	R-410A	3	1	1/2	230	2.4	1	1	208	10.4	3	1	1/3	230	1.3	1	2010
RTU-2	International Comfort	PAE090H000AA	G054240604	R-22	7.5	1		208	5.8	3	2	208	14	3	2		230	1.4	1	2005
RTU-3	Rheem	RSKA-A060CK	6673F040411664	R-22	5	1	3/4	230	4.4	1	1	208	18.6	3	1	1/3	230	1.7	1	2004
RTU-4	International Comfort	PAS120H00AA	G063420892	R-22	10	1		208	5.8	3	2	208	15.8	3	2		230	1.4	1	2006

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Northwest Branch (Pompano) Library

1580 NW 3rd AVE., Pompano Beach 33060

Area: 10,000 sf

Year Built: 2004

Major Additions: 2001 Renovation

Wall Type: CMU w/Stucco

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint.

Lighting Type: This facility utilizes a variety of lighting technologies; including compact fluorescents, linear fluorescents, halogen, and HID lighting. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

10:00 am to 6:00 pm; Tuesday, Thursday thru Saturday 12:00 pm to 8:00 pm; Monday, Wednesday Closed; Sunday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heaters located in the terminal units.

Cooling Source: Cooling is provided to the library by a 35-ton air-cooled chiller located on the North side of the building.

Air Handling Units: Conditioned air is distributed throughout the library by a large Variable Air Volume air handling unit.

HVAC System Controls: The Library utilizes a Johnson Controls Metasys Building Automation System that was installed during building the renovation in 2001. The system was found in good condition; however, the HVAC schedules and set point should be optimized.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Northwest Branch Library HVAC Equipment Inventory

Chiller Summary Table

1	Puilding	Tag	Manufacturor	Model	Tuno	Voor Mfg	Nominal			Compres	ssor			Co	ondenser	Fans	
	Building	Tay	Wanulacturei	woder	туре	rear wig	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase
	Pompano	CH-1	Carrier	30RAN035	Air-Cooled	2004	35				NO	ACCESS TO	NAMEPL	ATE			

Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial Number			л	Notor		Cooling Coil	Heating Coil	Manf. Date
				SP (in wc)	HP	Volts	Amps	Phase	Туре	Туре	
AHU-1	Carrier	39MCSTD01JFBXXXBGM	3904F61046		0.75	208-230/115	5.5/11	1	CHW	Electric	2004
AHU-1 -O/A	Carrier	39MN06B0055P011SXS	3904F61053								2004

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Public Safety Complex

2602 West Broward BLVD., Fort Lauderdale, FL 33312

Area: 300,720 sf Total PSB - 253,076 sf BSO District 5 - 20,250 sf Inventory & Evidence Bldgs - 20,704 sf Logistics Warehouse - 6,690

Year Built: 1989

Major Additions: None

Wall Type: Pre-Cast Concrete w/Stucco

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint

Lighting Type: This facility utilizes a variety of lighting technologies; including LED, compact fluorescents, linear fluorescents, halogen, and HID lighting. A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule:

8:00 am to 6:00 pm; Monday thru Friday Closed; Saturday-Sunday *Note: 1st Floor Records is open 24/7.*

HVAC System Types:

Public Safety Building

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in the VAV boxes.

Cooling Source: The cooling is provided by three 325-ton water-cooled chillers that are located in the ground floor mechanical room. The three chillers are coupled with a 3-cell cooling tower that is located on the 1st Floor roof on the North side of the building.

Air Handling Units: Conditioned air is distributed throughout the building by nineteen chilled water air handling units (AHUs). The building is generally separated into an East Tower that is 5 stories and a West Tower that is 3 Stories. There are two air handling units per floor per tower with the exception of the second floor, as there is an additional two air handling units for the kitchen and dining area. Additionally, there is a small air handling unit (AHU-19) on the 5th floor that serves a small administration office.

HVAC System Controls: The PSB utilizes an old Johnson Controls Building Automation System (DSC-8500) that was installed during original building construction. This system is obsolete and has limited local support available for any issues that may arise. This early

generation DDC system provided electronic overlay and graphical user interface for pneumatic field devices/actuators, including all terminal units. As a result, the central front-end software does not have any ability to monitor or control individual HVAC zones. Additionally, very limited scheduling is being utilized resulting in excessive energy consumption for the building.

BSO District 5 Office

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in the VAV boxes.

Cooling/Air Handling Units: The BSO District 5 Office is conditioned by five large rooftop units. These units were originally configured as variable volume variable temperature units; however, new controls equipment was installed to convert them to full variable air volume systems.

HVAC System Controls: The BSO District 5 Office utilizes a Johnson Controls Metasys Building Automation System that was found in fair condition; however, the HVAC schedules and set point should be optimized.

Central Supply Warehouse

Heating Source: All heating in this facility is accomplished with electric duct heaters installed in the main supply duct.

Cooling/Air Handling Units: The building is conditioned by a single split system that is coupled with two rooftop mounted condensing units (dual circuit evaporator coil).

HVAC System Controls: The split system is controlled with a standard wall mounted thermostat.

Logistics Warehouse

Heating Source: All heating in this facility is accomplished with electric duct heaters installed in the main supply duct.

Cooling/Air Handling Units: The building is conditioned by a single split system that is coupled with two rooftop mounted condensing units (dual circuit evaporator coil).

HVAC System Controls: The split system is controlled with a standard wall mounted thermostat.

Tactical Training Building

Heating Source: All heating in this facility is accomplished with electric duct heaters installed in the main supply duct.

Cooling/Air Handling Units: The building is conditioned by two split systems that are coupled with rooftop mounted condensing units. The building also utilizes two rooftop packaged units to condition the South area of the building.

HVAC System Controls: All HVAC units are controlled with standard wall mounted thermostats.

Tables on the following pages detail the HVAC equipment for this facility.

Public Safety Complex HVAC Equipment Inventory

Chiller Summary Table

Sorial	Building	Tag	Manufacturor	Model	Tuno	Nominal			Compres	ssor			Co	ondenser	Fans	
Serial	Building	Tay	Manulacturer	woder	Type	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase
YAYM 636705	Public Safety	CH-1	York	YT G3 H3 E1 - CN F	Centrifugal	325	1	480	257	3	R-11					
YAYM 626704	Public Safety	CH-2	York	YT G3 H3 E1 - CN F	Centrifugal	325	1	480	257	3	R-11					
YAYM 636706	Public Safety	CH-3	York	YT G3 H3 E1 - CN F	Centrifugal	325	1	480	257	3	R-11					

Cooling Tower Summary Table

Building	Tag	Manufacturor	Model		Мо	otor	
Building	Tay	Wallulacturei	Woder	HP	Volts	Amps	Phase
Safety Building	CT-1	Marley	AV-244183-A1	20	460		3

Pump Summary Data

Terr	Comulao	Dump Manufactures	Dumm Madal					Motor Specif	ied Data	
Tay	Service	Fump Manufacturer	Pullip Model	GPM	Head (ft.)	RPM	HP	Volts	Amps	Phase
CHWP-1	CH-1	Bell & Gossett	5BC	780	74	1750	25.0	460	30.3	3
CHWP-2	CH-2	Bell & Gossett	5BC	780	74	1750	25.0	460	31	3
CHWP-3	CH-3	Bell & Gossett	5BC	780	74	1750	25.0	460	31	3
CHWP-4		Bay empty								
CWP-1	CTs	Bell & Gossett	1510 5BC	975	60	1750	20.0	460	24	3
CWP-2	CTs	Bell & Gossett	1510 5BC	975	60	1750	20.0	460	24.8	3
CWP-3	CTs	Bell & Gossett	1510 5BC	975	60	1750	20.0	460	24.8	3
CWP-4	CTs	Bell & Gossett	1510 5BC	975	60	1750	20.0	460	N/A	3

DX Condenser / Compressor Summary

Torr	Equipment Conved	Manufacturar	Madal	Carial	Tono			Com	pressor				Condens	er Fans		Manf Data
Tay	Equipment Served	Wanuacturer	woder	Serial	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Wall. Date
Cooler		Kolpak	PR199MOP	410016315		1	230	10.9	1	R-404A	1	1/6	230	1.1	1	2010
Freezer		Kolpak	PR249LOP	410016297		1	230	16.7	1	R-404A	1	1/6	230	1.1	1	2010
CACU-9		Liebert	DCDF308-A	1146C39012				Not A	oplicable		1	3/4	460	2.5	1	2011
											2	3/4	460	1./	3	
CACU-10		Liebert						Not Ap	oplicable							2011
040114		Linkard	DODE2000 A	0040045070				Net A	Kankla		1	3/4	460	2.5	1	0000
CACU-1		Liebert	DCDF308-A	0840015878				NOT A	opiicable		2	3/4	460	1.7	3	2008
CACILIA		Liebert	DCDE208 A	0940015971				Not A	nlionhla		1	3/4	460	2.5	1	2008
CACO-2		Liebert	DCDF308-A	0040013871				NOLA	oplicable		2	3/4	460	1.7	3	2008
CACIL-3		Liebert	DCDE308-A	0840015876				Not A	onlicable		1	3/4	460	2.5	1	2008
0400-3		LIGDOIL	BCBI 300-A	0040013070				NOLA	plicable		2	3/4	460	1.7	3	2000
CACILA		Liebert	DCDE251-A	1130037082				Not Ar	onlicable		1	3/4	460	2.5	1	2011
0700-4		LIEDEIT	DODI 231-A	1133037302				NOLA	opilcable		2	3/4	460	1.7	3	2011
CACU-5		Liebert	DCDE165-A	1139C37972				Not Ar	oplicable		1	3/4	460	2.5	1	2011
											1	3/4	460	1.7	3	
CACU-6		Liebert	DCDF165-A	1139C37969				Not A	oplicable		1	3/4	460	2.5	1	2011
											1	3/4	460	1.7	3	
CACU-7		Liebert	DCDF104-A	1139C38002				Not A	oplicable		1	3/4	460	2.5	1	2011
CACU-8		Liebert	DCDF205-A	1139C38097				Not A	oplicable		1	3/4	460	2.5	1	2011
011.4	Legistics Weekswas	The second Zeroe	T744 00004757	050010004000577	7.0		400	. 40.0		D 00	1	3/4	460	1.7	3	0040
CU-1	Logistics Warehouse	Thermal Zone	1ZAA-090DA757	8560W091323577	7.5	1	460	10.9	3	R-22	1	1/3	460	1.3	3	2013
CU-2	Logistics Warehouse	Thermal Zone	TZAA-090DA757	8560W091323559	7.5	1	460	10.9	3	R-22	1	1/3	460	1.3	3	2013
CU-1	Tactical Training Bldg	Thermal Zone	TZAA-090DA757	8560F2112006604	7.5	1	460	10.9	3	R-22	1	1/3	460	1.3	3	2012
CU-2	Tactical Training Bldg		Unknown	Unknown						R-22						
CU-1.1	Central Supply	Carrier	38AKS016-K621	3208G10053	15	1	460	29.3	3	R-22	2	0.75	460	2.1	1	2008
CU-1.2	Central Supply	Carrier	38AKS016-K621	2608G40091	15	1	460	29.3	3	R-22	2	0.75	460	2.1	1	2008

Rooftop/Package Unit & Heat Pump Nameplate Data

Terr	Manufactures	11-1-1	Oculat	Rated		5	Supply Fa	n				Compres	sor			Cor	ndenser l	Fans		Manuf
rag	wanutacturer	woder	Serial	Clg. Tons	Qty	HP	Volts	Amps	Phase	Qty	Volts	Amps	Phase	Refrig.	Qty	HP	Volts	Amps	Phase	Date
PSB	Trane	TCD150D400BA	420100913D	12.5	1	3	460	4.8	3	2	460	10.8	3	R-22	2	0.5	460	1.5	3	2004
PSB	Trane	TSC060A1B0A002L		5										R-22						2007
PSB	Trane	TSC036A4E0A002	740101463U	3										R-22						2007
PSB	Carrier	50TM-005V601	4307G40220	4	1		460	1.8	1	1	460	8.3	3	R-22	1		460	0.8	1	
Tactical Training	Carrier	50HJ-014-HV651	2309G50375	12.5	1		460	7.4	3	2	460	9	3	R-22	2		460	0.7	1	2009
Tactical Training	Carrier	50HJ-014-HV651	2309G50378	12.5	1		460	7.4	3	2	460	9	3	R-22	2		460	0.7	1	2009
BSO - RTU-1	Daiken	MPS01FE4DV3YYYY	FBOU131101156		1	5	460	6.6	3	2	460	12.65	3	R-410A	2	1	460	2	3	2013
BSO - RTU-2	Carrier	50TC-D12A2B6A0A0A0	2013G30084		1		460	5.3	3	2	460	7.7	3	R-410A	2		460	0.8	1	2013
BSO - RTU-3	Daiken	MPS026GE4DV3YYYY	FBOU131101153		1	7.5	460	9.7	3	3	460	12.2	3	R-410A	3	1	460	2	3	2013
BSO - RTU-4	Trane	THD210G4R0A03	153210945D	17.5	1	5	460	7.6	3	2	460	13.15	3	R410A	2	1	460	2.9	1	2015
BSO - RTU-5	Trane	THD210G4R0A03	153210929D	17.5	1	5	460	7.6	3	2	460	13.15	3	R410A	2	1	460	2.9	1	2015

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County Broward County - RFP No: R1243101PI --Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Air Handling Unit Data

_	Air Handler					M	otor		Cooling	Heating	Manf.		
Tag	Manufacturer	Air Handler Model	Serial	SP (in wc)	HP	Volts	Amns	Phase	Coll	Coil	Date	Area Served	Comments
AHU-1	Carrier	39EF57	0891T29940	2.9	40.00	460	47.5	3	СНЖ	Zone EDH	1991	1st FL West	Leaking Eco Damer, corroded actuators. Mech Rm 64F, VFD @ 50%, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-2	Carrier	39EF57	0891T29943	3.7	40.00	460	47.5	3	CHW	Zone EDH	1991	1st FL West	Leaking Eco Damer, corroded actuators. Mech Rm 64F, VFD @ 34Hz, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-3	Carrier	39EF36	0891T29945	3.1	25.00	460	31.5	3	2-Way CHW	Zone EDH	1991	1st FL East	Mech Rm 63F, VFD @ 79%, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-4	Carrier	39EF36	0891T29948	3.5	25.00	460	31.5	3	2-Way CHW	Zone EDH	1991	1st FL East	Mech Rm 63F, VFD @ 69%, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-5	Carrier	39EF29	0891T29951	2.8	25.00	460	31.5	3	2-Way CHW	Zone EDH	1991	2nd FL East	Leaking Econo Damper, Mech Rm 63F, VFD @ 43Hz, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-6	Carrier	39EF36	0891T29953	3	25.00	460	30.3	3	2-Way CHW	Zone EDH	1991	2nd FL East	Leaking Econo Damper, Mech Rm 63F, VFD @ 38Hz, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-7	Carrier	39EF36	0891T29954	3.6	30.00	460	37	3	2-Way CHW	Zone EDH	1991	2nd FL West	Mech Rm 61F, VFD @ 74%, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-8	Carrier	39ED36	0891T29937	4.4	25.00	460	31.5	3	2-Way CHW	Zone EDH	1991	2nd FL West	Mech Rm 61F, VFD @ 38Hz, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-9	Carrier	39ED13	0891T29938	2.7	10.00	460		3	CHW	Zone EDH	1991	Kitchen	Leaking Dampers, VFD
AHU-10	Carrier	39ED19	0891T29939	3	7.50	460	12.6	3	CHW	N/A	1991	Kitchen	Leaking Dampers, VFD
AHU-11	Carrier	39EF29	0891T29956	2.4	30.00	460	37	3	3-Way CHW	Zone EDH	1991	3rd FL East	Mech Rm 65F, VFD @ 48%, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-12	Carrier	39EF29	0891T29957	4	20.00	460	25	3	3-Way CHW	Zone EDH	1991	3rd FL East	Mech Rm 65F, VFD @ 44%, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-13	Carrier	39ED36	0891T29959	3.2	40.00	460	48	3	2-Way CHW	Zone EDH	1991	3rd FL West	Mech Rm 61F, VFD @ 41%, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-14	Carrier	39ED36	0891T29960	4.3	30.00	460	37	3	2-Way CHW	Zone EDH	1991	3rd FL West	Mech Rm 61F, VFD @ 77%, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-15	Carrier	39ED36	0891T29947	3.3	25.00	460	31.5	3	2-Way CHW	Zone EDH	1991	4th FL West	Leaking Dampers, Mech Rm 68F, VFD @ 69%, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-16	Carrier	39EF29	0891T29962	3.4	20.00	460	25	3	2-Way CHW	Zone EDH	1991	4th FL West	Leaking Dampers, Mech Rm 68F, VFD @ 81%, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-17	Carrier	39EF48	0891T29963	4	40.00	460	48	3	3-Way CHW	Zone EDH	1991	5th FL West	Mech Rm 71F, VFD @ 73%, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AHU-18	Carrier	39EF48	0891T29964	2.6	40.00	460	46	3	3-Way CHW	Zone EDH	1991	5th FL West	Mech Rm 71F, VFD @ 73%, Pneumatic Actuators (RA, Eco, CHW), Manual OA Damper, UV Filter
AUL 10	1			4.05		400		2	CL BA/	Zene CDU			

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

North Regional Courthouse

1600 W. Hillsboro BLVD., Deerfield Beach, FL 33442

Area: 200,000 sf

Year Built: 1995 renovation

Major Additions: None

Wall Type: Concrete element

Roof Type: New Built-up roof

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A2.

Occupancy Schedule: 8:00 am to 5:00 pm, Monday through Friday; staff 7:00 am to 10:00 pm, some Saturday operations.

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in the VAV boxes.

Cooling Source: The cooling is provided by three 200 100 ton water-cooled chillers that are located on the first-floor mechanical room. Additionally, there are two DX systems which utilize direct expansion to provide cooling for maintenance offices and shops.

Air Handling Units: Conditioned air is distributed throughout the building by 14 chilled water air handling units (AHUs). Of the 14 primary air handling units, five have been replaced recently and are Variable Air Volume (VAV) and the remaining AHUs are constant volume.

HVAC System Controls: The building utilizes a Johnson Controls Metasys Building Automation System (BAS) that was installed when the building was renovated. Many of the HVAC systems did have schedules assigned in the BAS; however, they were not optimized to minimize annual energy consumption.

Chiller Summary Table

Building	Tag	Manufacturor	Model	Sorial	Туро	Tons			Compres	ssor	
Building	1 ag	Wanuacturer	wouer	Serial	Type	10113	#	Volts	Amps	Phase	Refrigerant
NRCH	CH-1	YORK	YT B1 B2 B3 - CG E	YGXM-561834	Centrifugal	200	1	480	178	3	R-11
NRCH	CH-2	YORK	YT B1 B2 B3 - CG E	YGXM-561833	Centrifugal	200	1	480	178	3	R-11
NRCH	Ch-3	YORK	YT B1 B2 B3 - CG E	N/A	Centrifugal	200	1	480	178	3	R-11

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Pump Summary Data

Tag	Sorvico	Pump Manufacturor	Pump Model				Moto	or Specifie	ed Data	
Tay	Service	Fump Manuacturer	Fullip Woder	GPM	Head (ft.)	RPM	HP	Volts	Amps	Phase
CHWP-1	CH-1	TACO	No Name plate	480	120	1780	25.0	230/460	60/80	3
CHWP-2	CH-2	TACO	No Name plate	480	120	1780	25.0	230/460	60/80	3
CHWP-3	CH-3	TACO	No Name plate	480	120	1780	25	230/460	60/80	3
CWR-1	CH-1	TACO	TA1224 7 7 B2G1 A1L0	600	50	1760	10.0	230/460	25/12.5	3
CWR-2	CH-2	TACO	TA1224B2G1A2LU	600	50	1755	10.0	230/460	24.3/12.2	3
CWR-3	CH-3	TACO	TA1224 7 7 B2G1 A1L0	600	50	1760	10.0	230/460	28.4/14.2	3

Cooling Tower Summary Table

Building	Tag Manufacturer		Madal		Motor							
Bunung	Tay	wanuacturer	woder	Serial	HP Volts		Amps	Phase				
NRCH	CT-1	EVAPCO	USS 217-511	16-782497	10	460	12.4	3				
NRCH	CT-2	EVAPCO	USS 217-511	16-782496	10	460	12.4	3				

Air Handling Unit Data

Tag	Air Handler	Air Handler Model	Serial		Мс	otor		Cooling Coil	Heating Coil	Manf. Date	Area
-	Manufacturer			HP	Volts	Amps	Phase	Туре	Туре		Served
AHU-1	McQuay	CAH020GDAM	E020817800300	15.00	460		3	CHW	Elect. In VAV	2015	Z1 - Offices
AHU-2	McQuay	CAH049GDAM	E020817800400	30.0	460	35	3	CHW	Elect. In VAV	2015	Z2 - Clerk of Courts
AHU-3	Trane	CCDB21D50M	K90F18887	15.00	460	18.3	3	CHW	Elect. In VAV	1995	Z3 - Property Appraiser
AHU-4	Trane	CCDB14E50M	K90F18888	10.00	460	12.2	3	CHW	Elect. In VAV	1995	Z4 - Revenue Collection
AHU-5	McQuay	CAH052GDAM	E020817800500	30.00	460	35	3	CHW	Elect. In VAV	2015	Z5 - Courts
AHU-6	Trane	CCDB17HEOM	K90F19417	15.00	460	18.3	3	CHW	Elect. In VAV	1995	Z6 - 2nd floor
AHU-7	Trane	CCDB12E30OM	K90F18889	7.50	460	9.6	3	CHW	Elect. In VAV	1995	Z7 - Surplus
AHU-8	Trane	CCDB35ME0M	K90G22482	20.00	460	20	3	CHW	Elect. In VAV	1995	Z8 - Records
AHU-9	McQuay	N/A	N/A	1.00	460		3	CHW	Elect. In VAV	2015	Z9 - SE Offices
AHU-10	McQuay	CAH013GDAM	E020817800100	5.00	460		3	CHW	Elect. In VAV	2015	Z10 - Clear of Courts Storage
AHU-11	Trane	MCCA017LCD	K94H60562	5.00	460	6.3	3	CHW	N/A	1995	Z11 - Warehouse #2
AHU-12	Trane	MCCA030LCD	K96C20084	10.00	460	12.5	3	CHW	N/A	1995	Z12 - Warehouse #3
AHU-13	Trane	LPCAF08F2DOE	T04E30836	3.00	460	4.3	3	CHW	Elect. 20kW	Unk	Z13 - Storage
AC-14	Goodman				208/230		1	CHW		2002	Z14 - Maintenance shops

Package Unit & Heat Pump Nameplate Data

Tag	Tag Manufacturer	Model	Serial	Rated	Supply Fan				Compressor					Condenser Fans					Manuf Data		
ray				Clg. Tons	Output MBH	Qty	HP	Volts	Amps	Ph	Qty	Volts	Amps	Ph	Refrig.	Qty	HP	Volts	Amps	Ph	manui Dale
CU-15	American Standard	4TCC3048A3000AA	6395JUK9H	4	5 kW	1	3/4	208/230	4	1	1	208/230	14.6	3	R410A	1	1/4	208/230	1.4	1	2006

DX Condenser / Compressor Summary

Tag	Equipment	Manufacturar	Madal	Carriel	Tama	New	Compressor						Condenser Fans					
rag	Served	wanuacturer	woder	Serial	Tons	EER/SEER	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	wan. Date	
CU-14	AC-14	Goodman	CLJ60-1	0206476279	5	11.0	1	208/230	25	1	R-22	1	1/4	208/230	1.8	1	2002	

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Government Center West

1 North University DR., Plantation, FL 33324

Area: 184,820 sf

Year Built: 1983

Major Additions: 2004 (Renovation)

Wall Type: Pre-Cast w/Stucco

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint

Occupancy Schedule: 8:00 am to 5:00 pm, Monday through Friday; closed, Saturday-Sunday

HVAC System Types:

Heating Source: All heating in this facility is accomplished with electric strip heating that is located in the VAV boxes.

Cooling Source: The cooling is provided by two 250-ton water-cooled chillers that are located in a rooftop penthouse mechanical room. The two chillers are coupled with a cooling tower that is also located on the rooftop.

Air Handling Units: Conditioned air is distributed throughout the building by twelve chilled water air handling units (AHUs). The building is separated into two towers, four stories each. A-Tower is served by AHU-1 thru AHU-4 and B-Tower is served by AHU-5 thru AHU-8. The enclosed atrium is conditioned by four AHUs (AHU-9 thru AHU-12) that are located on the 2nd and 4th Floors of each Tower. Additionally, there are two rooftop package units that provide pre-conditioned outside air to the Air Handling Units.

HVAC System Controls: The building utilizes a Carrier Comfort Network Building Automation System (BAS) that was installed when the building was renovated. The BAS was in fair condition; however, it does not have many of the energy efficiency features that are available on newer BAS systems. Many of the schedules assigned to HVAC equipment were not optimized for current building occupancy.

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Government Center West HVAC Equipment Inventory

Chiller Summary Table

Sorial	Puilding	Tag	Manufacturar	Madal	Tuno	Nominal			Compres	sor		Mfg Voor
Serial	Building	Tay	Wallulacturer	Woder	Type	Tons	#	Volts	Amps	Phase	Refrigerant	wig rear
67925	Govt Center West	CH-1	Carrier	19XRV4041354CM864	Water-Cooled	250	1	460	346	3	R-134a	2003
511M013700	Govt Center West	CH-2	McQuay	C2612CLYY2-A	Water-Cooled	250						2011

Pump Summary Data

Torr	Sorrigo	Bump Manufacturar	Bump Model					Motor Specif	fied Data	
Tay	Service	Fump Manufacturer	Fullip Woder	GPM	Head (ft.)	RPM	HP	Volts	Amps	Phase
CHWP-1	Chilled Water	Bell & Gossett	1510 BF 10.625	640	90	1770	25.0	460	30	3
CHWP-2	Chilled Water	Bell & Gossett	1510 BF 10.625	640	90	1770	25.0	460	30	3
CWP-1	Condenser Water	Taco	FI6013F2LAL	1133	45		20.0	460	28.5	3
CWP-2	Condenser Water	Taco	FI6013F2LAL	1133	45		20.0	460	28.5	3

Air Handling Unit Data

Tag	Air Handler	Air Handler Model	Serial			М	otor		Cooling Coil	Heating Coil	Manf.	Area
Ŭ	Manufacturer			SP (in wc)	HP	Volts	Amps	Phase	Туре	Туре	Date	Served
AHU-1	Carrier	39ED48	1983D09980	3					CHW	N/A	1983	1st FL A Bldg
AHU-2	Carrier	39ED48	1983D09982	3	25.0	460	31	3	CHW	N/A	1983	2nd FL A Bldg
AHU-3	Carrier	No Nameplate	No Nameplate	3	30.00	460	34.6	3	CHW	N/A	1983	3rd FL A Bldg
AHU-4	Carrier	39ED48	1983D09986	3	30.00	460	34	3	CHW	N/A	1983	4th FL A Bldg
AHU-5	Carrier	39ED39	2383T09988	3	25.00	460	28.5	3	CHW	N/A	1983	1st FL B Bldg
AHU-6	Carrier	39ED39	2383T09990	3					CHW	N/A	1983	2nd FL B Bldg
AHU-7	Carrier	39ED48	1983D09991	3	25.0	460		3	CHW	N/A	1983	3rd FL B Bldg
AHU-8	Carrier	39ED48	1983D09992	3	25.0	460	30.5	3	CHW	N/A	1983	4th FL B Bldg
AHU-9	Carrier	39MN14B0052K422CXS	0304F12221	0.64					CHW	N/A	2004	A Bldg Lobby/Atrium
AHU-10	Carrier	39M1STD01HKKCGXMG4	0304F12244	0.64					CHW	N/A	2004	A Bldg Lobby/Atrium
AHU-11	Carrier	39MN12B0052K622CXS	0304F12217						CHW	N/A	2004	B Bldg Lobby/Atrium
AHU-12	Carrier	39MN12B0052K722CXS	0304F12241						CHW	N/A	2004	B Bldg Lobby/Atrium

Rooftop Air Handling Units

Tog	Manufacturar	Madal	Carlal		S	upply Fa	n				Compres:	sor			Cor	ndenser F	Fans	Manuf Data
Tay	Walturacturer	woder	Serial	Qty	HP	Volts	Amps	Phase	Qty	Volts	Amps	Phase	Refrig.	Qty	HP	Volts	Amps Phase	Manui Date
AHU-OA-2	Carrier	39NC26	1303V117811	1	15	460	19.3	3	hase Qty Volts Amps Phase Ref. 3 Not Applicable					N	ot Applica	ble	2003	
AHU-OA-1	Carrier	39NC26	1303V11780	1	15	460	19.3	3			Not Applic:	able			N	ot Applica	ble	2003

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Page 218 of 490 OPTERRA

TRAF ENG Administration North

2300 W. Commercial BLVD., Fort Lauderdale, FL 33309

Part Two - Investment Grade Audit Report

Area: 71,346 sf

Year Built: 2005

Major Additions: None

Wall Type: Architectural finish concrete block

Roof Type: Membrane

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: Traffic control operates 24/7

HVAC System Types:

Heating Source: VAV boxes utilize electric strips to provide heating to the building.

Cooling Source: (2) Air-cooled scroll chillers provide chilled water to the AHUs.

HVAC System Controls: Siemens system controls the equipment in the building.

Chiller Summary Table

Puilding	Tag	Manufacturor	Model	Tuno	Nominal			Con	npressor			0	Conden	ser Fans	;
Building	Tay	Wanulacturer	Woder	Type	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase
All	East	York	YLAA070SE	A/C	70	3	460	24.4	3	410A	4		460	4	3
/	Chiller	10	10010.002	100	10	3	460	24.4	3						
All	West	York	YLAA070SE	A/C	70	3	460	24.4	3	410A	4		460	4	3
7.11	Chiller	1 OIK	1 E/ W KO/ OOE	100	10	3	460	24.4	3						

Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Park Administration Complex

950 NW 38th ST., Oakland Park, FL 33309

Area: 35,296 sf

Year Built: 1960

Major Additions: North, South and Warehouse

Wall Type: CMU w/Stucco Finish

Roof Type: Rolled asphalt with fiberglass

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: 8:00 am to 5:00 pm, Monday through Friday; same Saturday operations. Warehouse open only when receiving material.

HVAC System Types:

Heating Source: Rooftop and split DX units utilize electric strip heaters to provide heating to the building.

Cooling Source: Rooftop units on North building, Split DX units are cooling South building, Warehouse office cooled by package DX unit.

Air Handling Units: Rheem and Ruud air-handling unit serve South building.

HVAC System Controls: Programmable thermostats are utilized to control the equipment in all building.

Park Administration Complex **HVAC Equipment Inventory**

Tag	Air Handler	Air Handler Model	Serial		Мо	tor		Cooling Coil	Heating Coil	Manf. Date
	Manulacturer			HP	Volts	Amps	Phase	Туре	Туре	
AC-1 North	Fujitsu	Mini-Split	N/A	0.15	115	0.7	1	DX		2008
AC-2 North	Rheem	RBHC-14J07SFG	T M2904 08138	0.2	208/240	6	1	DX	5.3 kW	2005
AC-1 South	Allegiance	N/A	N/A	0.33	208/240		1	DX		2010
AC-2 South	Ruud	N/A	N/A	0.33	208/240		1	DX		2012
AC-3 South	Ruud	N/A	N/A	0.33	208/240		1	DX		2013
AC-4 South	Ruud	N/A	N/A	0.33	208/240		1	DX		2012

Air Handling Unit Data

Broward County Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

DX Condenser / Compressor Summary

Tag	Equipment	Manufacturar	Madal	Seriel	Tana	New			Compres	ssor			Co	ondenser Fa	ans		Manf. Data
Tay	Served	Wanulacturer	woder	Selidi	TONS	EER/SEER	#	Volts	Amps	Ph	Refrigerant	#	HP	Volts	Amps	Ph	Wall. Date
CU-1 North	AC-1 North	Fujitsu	AOU12RL2	EYN 034239	1	12.8	1	115	9.2	1	R-410A	1	2/25	115	0.7	1	2008
CU-2 North	AC-2 North	Rheem	RAND-018JAZ	7292F480524614	1.5	12.3	1	208/230	7.7	1	R-22	1	1/10	208/230	0.6	1	2005
CU-1 South	AC-1 South	Allegiance 13	4A7A3060D1000AA	10305YK22F	5	11.2	1	208/230	26.8	1	R-410A	1	1/5	208/230	1	1	2010
CU-2 South	AC-2 South	Ruud	14AJM60A01	7999W311202268	5	11.8	1	208/230	26.4	1	R-410A	1	1/3	208/230	2.8	1	2012
CU-3 South	AC-3 South	Ruud	14AJM60A01	7999W141313911	5	11.8	1	208/230	26.4	1	R-410A	1	1/3	208/230	2.8	1	2013
CU-4 South	AC-4 South	Ruud	14AJM60A01	7999W311202263	5	11.8	1	208/230	26.4	1	R-410A	1	1/3	208/230	2.8	1	2012

Rooftop/Package Unit & Heat Pump Nameplate Data

				Patod	Potod Hta			Supply F	an				Compress	or			Con	ndenser F	ans		
Tag	Manufacturer	Model	Serial	Clg. Tons	Output MBH	Qty	HP	Volts	Amps	Ph	Qty	Volts	Amps	Ph	Refrig.	Qty	HP	Volts	Amps	Ph	Manuf Date
AC-1 Warehouse	Bard MFG	PA13482-A	288J082532604-1	4	5 kW	1	0.75	230/208	4.5	1	1	230/208	17/18.7	1	R-410A	1	0.25	230/208	1.5	1	2008
RTU-1 North	Carrier	50ES-A48-50	0311C30297	4	4 kW	1	1	208/230	3.6	1	1	208/230	13.7	3	R-410A	1	0.2	208/230	1.2	1	2011
RTU-2 North	Carrier	50GS-048-511	4305G31140	4	4 kW	1	1	208/230	7.6	1	1	208/230	11.6	3	R-22	1	0.5	208/230	2.1	1	2005
RTU-3 North	Carrier	50ES-A48-50	2413C46045	4	4 kW	1	1	208/230	7.6	1	1	208/230	13.7	3	R-410A	1	0.2	208/230	1.2	1	2013

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

INTEG WAST South Landfill

6541-7101 SW 205th AVE., Fort Lauderdale, FL 33332

Area: 17,847 sf

Year Built: 1990

Major Additions: None

Wall Type: Pre-cast concrete

Roof Type: Built-up roof

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: 8:00 am to 5:00 pm, Monday through Friday; closed, Sunday

HVAC System Types:

Heating Source: AHUs utilize electric strips to provide heating to the building.

Cooling Source: Air handling units and split systems utilize direct expansion to provide cooling to the building.

Air Handling Units: Carrier air handling units serve the building.

HVAC System Controls: Siemens Apogee building automation system controls portions of the building. Programmable thermostats are utilized to control some equipment in the building.

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Central Homeless Assistance Center

920 NW 7th AVE., Fort Lauderdale, FL 33311

Area: 63,244 sf

Year Built: 1997

Major Additions: None

Wall Type: CMU w/ stucco

Roof Type: Membrane

Window Type: Single pane with metal frames

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: Temporary housing is occupied 24/7.

HVAC System Types:

Heating Source: Natural gas fired hot water boilers supply hot water for heating to some of the building. Electric strip heaters provide heating to some of the building.

Cooling Source: (2) Air cooled scroll chiller utilize chilled water to providing cooling to the building.

Air Handling Units: Multiple York air handling units serve the building.

HVAC System Controls: Siemens controls the chiller plant; programmable thermostats provide local control.

Chiller Summary Table

Puilding	Tag	Manufacturor	Model	Tuno	Nominal			Con	npressor			0	Conden	ser Fans	;
Bunung	Tay	wanuacturer	wouer	Type	Tons	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase
Main	CH-1 2	Trane	CGAM110F2C02	A/C	110	2	460	42	3	410A	6	1.27	460	3.2	3
main	011 1,2	Trano	2002	700	110	2	460	51	3						

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Booher Building

3275 NW 99th Way, Coral Springs, FL 33065

Area: 53,060 sf

Year Built: 1984

Major Additions: None

Wall Type: CMU w/ stucco

Roof Type: Membrane

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: Temporary housing is occupied 24/7

HVAC System Types:

Heating Source: Natural gas hot water boilers provide hot water to reheat coils for heating.

Cooling Source: (4) Rooftop units utilize direct expansion to provide cooling to the building.

HVAC System Controls: Electronic thermostats are utilized to control the equipment in the building.

Rooftop Unit Nameplate Data

Tag	Manufacturor	Model	Rated Clg.		S	Supply Fa	an			Com	oressor			Cor	ndenser l	Fans		Manuf Data
Tay	Wallulacturer	wouer	Tons	Qty	HP	Volts	Amps	Phase	Qty	Volts	Amps	Phase	Qty	HP	Volts	Amps	Phase	Wallul Dale
1	McQuay	RPS050CSY	50	6		460	1.8	3	4	460	26.3	3	6		460	1.8	3	2008
2	McQuay	RPS050CSY	55	6		460	1.8	3	2	460	26.3	3	6		460	1.8	3	2008
									2	460	18.1	3						
3	McQuay	RPS050CSY	50	6		460	1.8	3	4	460	26.3	3	6		460	1.8	3	2008
4	McQuay	RPS050CSY	55	6		460	1.8	3	2	460	26.3	3	6		460	1.8	3	2008
									2	460	18.1	3						

Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

North Homeless Assistance Center

1700 Blount RD., Pompano Beach, FL 33069

Area: 44,254 sf

Year Built: 2001

Major Additions: None

Wall Type: CMU w/ stucco

Roof Type: Asphalt shingle

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: Temporary housing is occupied 24/7.

HVAC System Types:

Heating Source: Electric strips in the AHUs provide heating to the building.

Cooling Source: Split system units utilize direct expansion to provide cooling to the building.

HVAC System Controls: Local thermostats provide set point control; units operate 24/7.

DX Condenser / Compressor Summary

Tag	Manufacturor	Model	Tons			Con	npressor				Cond	denser Fans		Manf Dato
Tay	Manulacturer	Woder	10/15	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Wall. Date
CU-1A, 1B	Rheem	RAWL-120CAZ	10		230	30.1	3	410A	2	1/3	230	2.4		2014
CU-2A	Rheem	RAWL-180CAZ	15		230	25	3	410A	3	1/3	230	2.4		2013
CU-2B	Rheem	RAWL-060CAZ	5		230	15.6	3	410A	1		230	1.2		2014
CU-3	Rheem	RAWL-240CAZ	20		230	33.3	3	410A	3	1/3	230	2.4		2010
CU-4A	Rheem	RAWL-240CAZ	20		230	33.3	3	410A	3	1/3	230	2.4		2013
CU-4B	Rheem	RAWL-150CAZ	12.5		230	22.4	3	410A	2	1/3	230	2.4		2012

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

North Family Success Center

2011 NW 3rd AVE., Pompano Beach, FL 33060

Area: 11,929 sf

Year Built: 1984

Major Additions: None

Wall Type: CMU w/ stucco

Roof Type: Membrane

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: Family Services operates 7:30 am to 5:30 pm, Tue, Wed, & Fri and till 6:30 pm Mon & Thu. The Health Clinic operates 8:00 am until 5:00 pm weekdays, except Wednesdays when it stays open until 9:00 pm. It is closed weekends and holidays.

HVAC System Types:

Heating Source: Electric resistance strips are used in the RTUs to provide heating to the building.

Cooling Source: Rooftop units utilize direct expansion to provide cooling to the building.

HVAC System Controls: Programmable thermostats are utilized to control the equipment in the building.

DX Condenser / Compressor Summary

		Existing Unit	Existing	Design Cooling	Capacity (MBH)	Design Heating	Supply	Design Supply	Return
Tag #	Bldg	Manufacturer	Model	Total	Sensible	Capacity, kW	Fan, hp	Fan, CFM	Fan, hp
1	4	Trane		83.4	61.2	9.3	1.5	3,200	N/A
2	4	Trane		60.3	32.9	9.3	0.75	1,750	N/A
3	3	Trane - older	TCC04CF300BD	37.2	27.1	10	0.75	1,450	N/A
4	3	Trane - older	TCC042F300BC	45	35.8	10	0.33	1,800	N/A
5	2	Trane		86.4	61	9.3	1	3,000	N/A
6	1	Trane - newer (2009)		DO NOT REPLACE - S	TRAIGHTEN FINS	ON CONDENSING	G SECTION	l	
7	1	Trane - newer (2014)			DO NOT REPL	ACE			

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Sexual Assault Treatment Center

400 NE 4th ST., Fort Lauderdale, FL 33301

Area: 10,643 sf

Year Built: 1956

Major Additions: None

Wall Type: CMU w/Stucco Finish

Roof Type: Rolled asphalt with fiberglass

Window Type: Single pane with metal frames

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: Operates 24 hours a day, 7 days a week.

HVAC System Types:

Heating Source: Split DX system utilize electric strips to provide heating to the building.

Cooling Source: Direct expansion condenser units provides cooling to the building.

Air Handling Units: Five air handling units and two dedicated outside air units serve the entire building.

HVAC System Controls: Electronic thermostats / programmable thermostats.

Sexual Assault Treatment Center HVAC Equipment Inventory

DX Condenser / Compressor Summary

Tag	Equipment	Mako	Model	Sorial	Tons	New			Compre	essor			Cone	denser	Fans		Manf.
Tay	Served	wake	wouer	Serial	10115	EER	#	Volts	Amps	Ph	Refrigerant	#	HP	Volts	Amps	Ph	Date
CU-1	AHU-1	Ruud	RANL-060CAZ	7394W270900331	5	11.5	1	208	15.6	3	R-410A	1	1/5	230	1.2	1	2009
CU-2	AHU-2	Ruud	RANL-060CAZ	7394W061000286	5	11.5	1	208	15.6	3	R-410A	1	1/5	230	1.2	1	2010
CU-3	AHU-3	Ruud	UAKB060CAZ	7011M290711372	5	9.2	1	208	18.6	3	R-22	1	1/3	230	1.5	1	2007
CU-4	AHU-4	Ruud	RANL-060CAZ	7394W331011982	5	11.5	1	208	15.6	3	R-410A	1	1/5	230	1.2	1	2010
CU-5	AHU-5	Ruud	RANL-060CAZ	7394W061000311	5	11.5	1	208	15.6	3	R-410A	1	1/5	230	1.2	1	2010
CU-OAU1	OAU-1	Trane	4TTA3060D3000CA	15351SC15F	5	11.5	1	208	15.6	3	R-410A	1	1/5	230	1.2	1	2015
CU-OAU2	OAU-2	Trane	4TTA3060D3000CA	15351UDD5F	5	11.5	1	208	15.6	3	R-410A	1	1/5	230	1.2	1	2015

Note: The Air Handling Unit data not available - no access to ceiling space.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

EPD Environmental Monitoring Facility

3211 College AVE., Davie, FL 33317

Area: 10,643 sf

Year Built: 2007

Major Additions: None

Wall Type: CMU w/Stucco Finish

Roof Type: Rolled asphalt with fiberglass

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: 7:00 am to 6:00 pm, Monday through Friday; some operation on Saturday and Sunday.

HVAC System Types:

Heating Source: Rooftop units and AHU units utilize electric strips to provide heating to the building.

Cooling Source: Venmar 50 ton rooftop DX units provide 100% outside air to lab area. Split DX units provide cooling to lab offices and common areas.

Air Handling Units: Lennox and Carrier air handling units serve offices and common areas.

HVAC System Controls: The building utilizes a Siemens Building Automation System (BAS). The system controls lab exhaust and fresh air control in addition to standard HVAC control.

EPD Environmental Monitoring Facility HVAC Equipment Inventory Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial		Moto	or		Cooling Coil	Heating Coil	Manf.	Area
	manulacturer			HP	Volts	Amps	Phase	Туре	Туре	Date	Served
AHU-1	Lennox	CBX32MV-036-230-6-04	N/A	0.50		4.3	1	DX	Elect. 8 kW	2007	Lab Offices
AHU-2	Lennox	CBX32MV-036-230-6-04	5807M20445	0.50	208/230	4.3	1	DX	Elect. 8 kW	2007	Offices
AHU-3	Lennox	CBX32MV-060-230-6-03	5807L19000	1.00	208/230	9.1	1	DX	Elect. 10 kW	2007	Lab
AHU-4	Lennox	CBX32MV-060-230-6-03	5807L20521	1.00	208/230	9.1	1	DX	Elect. 10 kW	2007	Lab
AHU-5	Lennox	CBX32MV-036-230-6-04	N/A	0.50	208/230	4.3	1	DX	N/A	2007	Offices
AHU-6	Lennox	CBX32MV-024/030-230-6-03	5808A20589	0.50	208/230	4.3	1	DX	Elect. 6 kW	2008	Offices
AHU-7	Lennox	CBX32MV-024-230-6-04	N/A	0.50	208/230	4.3	1	DX	Elect. 5 kW	2007	Conference
AHU-8	Lennox	CBX32MV-060-230-6-03	N/A	1.00	208/230	9.1	1	DX	Elect. 10 kW	2007	Lab
AHU-9	Lennox	CBX32MV-060-230-6-03	N/A	1.00	208/230	9.1	1	DX	Elect. 10 kW	2007	Small lab rms
AHU-10	Lennox	CBX32MV-060-230-6-03	N/A	1.00	208/230	9.1	1	DX	Elect. 10 kW	2007	Offices
AHU-11	Carrier	Split Unit Cassette	N/A		208/230		1	DX	N/A	2015	

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

DX Condenser / Compressor Summary

Tee	Equipment	Manufactures	Madal	Covial	Terre	New			Compres	sor			Co	ondenser Fa	ns		Mark Data
Tay	Served	Manulacturer	woder	Serial	Tons	EER/SEER	#	Volts	Amps	Ph	Refrigerant	#	HP	Volts	Amps	Ph	Wall. Dale
CU-1	AHU-1	Lennox	XC21-036-230-03	5807M20596	3	11.0	1	208/230	16.7	1	R-410A	1	1/3	208/230	2.8	1	2007
CU-2	AHU-2	Lennox	XC21-036-230-03	5807M20604	3	11.0	1	208/230	16.7	1	R-410A	1	1/3	208/230	2.8	1	2007
CU-3	AHU-3	Lennox	XC21-060-230-03	5807M15050	5	11.2	1	208/230	25.7	1	R-410A	1	1/3	208/230	2.8	1	2007
CU-4	AHU-4	Lennox	XC21-060-230-03	5808A10731	5	11.2	1	208/230	25.7	1	R-410A	1	1/3	208/230	2.8	1	2008
CU-6	AHU-6	Lennox	XC21-036-230-03	5808D10402	3	11.0	1	208/230	16.7	1	R-410A	1	1/3	208/230	2.8	1	2008
CU-5	AHU-5	Lennox	XC21-036-230-03	5807M20603	3	11.0	1	208/230	16.7	1	R-410A	1	1/3	208/230	2.8	1	2007
CU-7	AHU-7	Lennox	XC21-024-230-03	5807M13161	2	11.0	1	208/230	10.3	1	R-410A	1	1/3	208/230	2.8	1	2007
CU-8	AHU-8	Lennox	XC21-060-230-03	5807M15908	5	11.2	1	208/230	25.7	1	R-410A	1	1/3	208/230	2.8	1	2007
CU-9	AHU-9	Lennox	XC21-060-230-03	5807M15909	5	11.2	1	208/230	25.7	1	R-410A	1	1/3	208/230	2.8	1	2007
CU-10	AHU-10	Lennox	XC21-060-230-03	5808A10730	5	11.2	1	208/231	25.7	1	R-410A	1	1/3	208/231	2.8	1	2008
CU-11	AHU-11	Carrier	24AHA418A300	2715X93421	5	11.5	1	208/232	9	1	R-410A	1	1/12	208/232	0.5	1	2015

Rooftop/Package Unit & Heat Pump Nameplate Data

Tarr	Monufacturar	Model	Sorial	Rated	Rated Htg.		Si	ıpply F	an				Compress	or			Col	ndenser	Fans		Manuf Data
Tay	wanuacturei	wouer	Serial	Clg. Tons	Output MBH	Qty	HP	Volts	Amps	Ph	Qty	Volts	Amps	Ph	Refrig.	Qty	HP	Volts	Amps	Ph	Manui Dale
OARTU-1	Venmar	AHE500-75H-24S-0.16	SO003389-01	40	Elect. 60kW	1	7.5	208	19.9	3	4	208	38.5/47.1	3	R-22	2		208	8.2	3	2007
OARTU-2	Venmar	AHE500-75H-24S-0.16	SO003389-02	40	Elect. 60kW	1	7.5	208	19.9	3	4	208	38.5/47.1	3	R-22	2		208	8.2	3	2007

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

EAP Our House

408 NE 4th ST., Fort Lauderdale, FL 33301

Area: 1,127 sf

Year Built: 1952

Major Additions: None

Wall Type: Wood frame

Roof Type: Asphalt shingle

Window Type: Single pane with metal frames

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: 24 hours a day, 7 days a week, operations.

HVAC System Types:

Heating Source: Split DX system utilize electric strips to provide heating to the building.

Cooling Source: Direct expansion condenser unit provides cooling to the building.

Air Handling Units: Ruud air handling unit serves the entire building.

HVAC System Controls: Electronic thermostats / programmable thermostats.

EAP Our House HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial		Мо	otor		Cooling Coil	Heating Coil	Manf. Date
	Manuacturer			HP	Volts	Amps	Phase	Туре	Туре	
AHU-1	Ruud	UHSA-HM3017JA	M0608 02339	0.25				DX	EDH (Zone)	2008

DX Condenser / Compressor Summary

Tag	Equipment	Manufacturor	Model	Sorial	Tons	New			Compr	essor			Con	ndenser	Fans		Manf.
Tay	Served	Manulacturer	woder	Serial	Tons	EER/SEER	#	Volts	Amps	Ph	Refrig.	#	HP	Volts	Amps	Ph	Date
CU-1	AHU-1	Ruud	13AJA30A01757	8343W221127969	2.5	11.5	1	230	14.1	1	R-22	1	1/6	230	0.8	1	2011

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Mass TRAN, North Maintenance

3201 Copans RD., Pompano Ranch, FL 33069

Area: 195,189 sf

Year Built: 1983

Major Additions: Building 2 was added in 2005. Advised that Buildings 1 and 3 will be demolished in near future but timeline is uncertain; Buildings 2 and 4 will remain.

Wall Type: CMU w/ stucco

Roof Type: Building 4 is metal, others are membrane

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: Approximately 7:00 am to 5:00 pm, Monday through Friday; Operations is operated 7 days a week.

HVAC System Types:

Cooling Source: Buildings 1 and 4 are conditioned with (3) air-cooled chillers totaling about 180 tons that deliver chilled water to provide cooling to the buildings. Building 2 is conditioned with split systems. BARD packaged units, portable A/C units, split systems, and Air Handling units utilize direct expansion to provide cooling to the building.

HVAC System Controls: Electronic thermostats are utilized to control the equipment in the building.

DX Condenser / Compressor Summary

	Existing Unit	Existing	C	ompresso	r			Condense	r	
AreaServed	Manufacturer	Model	Volts	Amps	Phase	Qty	hp	Volts	Amps	Phase
Bldg 2 - Maint. Office in SE Corner		R2A360GHR200	208/230	16.4	3	1	0.25	208/230	1.4	1
Bldg 4 - CU #3 - Print Shop	Trane	TTA120A400FA	460	16.5	3	1	1.1.1	460	2.7	1

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

BSO Maintenance Facility

2001 NW 31st AVE., Lauderdale Lakes, FL 33311

Area: 14,800 sf

Year Built: Unknown

Major Additions: None

Wall Type: CMU w/ stucco finish

Roof Type: Membrane

Window Type: None

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: 7:00 am to 10:00 pm, Monday through Saturday

HVAC System Types:

Heating Source: Air handling units utilize electric heat strips.

Cooling Source: Direct expansion split systems condition select offices.

Air Handling Units: Air handling units are located in the mezzanine.

HVAC System Controls: Local thermostats control the units and typically operate 24/7.

Tag	Equipment	Manufacturor	Model	Sorial	Tons			Comp	ressor			C	Conden	ser Fans		Manf Dato
Tay	Served	manulacturei	wouer	Serial	10115	#	Volts	Amps	Phase	Refrigerant	#	HP	Volts	Amps	Phase	Man. Date
CU-1, 2	Office AHUs	Rheem	13AJN48	8394W341102487	4	1	230	21.8	1	410A	1	1/5	230	1.2	1	2011

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Page 232 of 490 OPTERRA

BCJC South Parking Garage

612-644 South Andrews AVE., Fort Lauderdale, FL 33301

Area: 14,397 sf (Office & Retail)

Year Built: 2013

Major Additions: None

Wall Type: Concrete

Roof Type: No roof.

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: 8:00 am to 7:30 pm, Monday through Sunday. Garage open extended hours. Office area 7:00 am to 5:00 pm, Monday through Friday.

HVAC System Types:

Heating Source: Heating in this facility is accomplished with electric strip heating that are in either the air handling units, mounted in the ductwork.

Cooling Source: 50 Ton Air-cooled chiller provides chilled water to the retail and office area located on the first floor of the building.

Air Handling Units: One York AHU with VFD serves the first-floor office and retail areas.

HVAC System Controls: First floor office area HVAC equipment is controlled by Johnson Controls Building Automation System (BAS) that was installed when the building was constructed.

BCJC South Parking Garage HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial		Мо	otor		Cooling Coil	Heating Coil	Manf.	Area
	wanuacurer			HP	Volts	Amps	Phase	Туре	Туре	Dale	Served
AHU-T1	York	XTI-060X108-BALA046A	CMAM XT0041	15.00	460	17.7	3	DX	Elect.	2013	Retail & Offices

DX Condenser / Compressor Summary

Tag	Equipment	Manufacturor	Model	Sorial	Tons	New			Compr	essor				Condenser	Fans		Manf Dato
ray	Served	manulacturei	wouer	Serial	10113	EER/SEER	#	Volts	Amps	Ph	Refrig.	#	HP	Volts	Amps	Phase	main. Date
CU-Roof	AHU-1 Office	York	J40YDC00A4AAA1A	N1L3167217	50	11.6	4	460	16.7	3	R410A	2	1 1/2	460	2.9	3	2013

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

HIGH & BRDG Mosquito Control

1200 South University DR., Pembroke Park, FL 33325

Area: 9,865 sf

Year Built: 1970

Major Additions: None

Wall Type: CMU w/Stucco Finish

Roof Type: Rolled asphalt with fiberglass, Metal

Window Type: Single pane with metal frames

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: 8:00 am to 5:00 pm, Monday through Friday; extended and weekend operations is seasonal.

HVAC System Types:

Heating Source: DX units utilize electric strips to provide heating to the building.

Cooling Source: Cooling is provided by direct expansion condenser units to the building.

Air Handling Units: AHU units serve office area and chemical storage.

HVAC System Controls: Electronic thermostats / programmable thermostats are utilized to control the equipment with in the buildings.

HIGH & BRDG Mosquito Control HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial		Мс	otor		Cooling Coil	Heating Coil	Manf.	Area
	Wallulacturei	Woder		HP	Volts	Amps	Phase	Туре	Туре	Dale	Served
AHU-1	Rheem	RHGE-075ZL	140F080404489	1.50	208	5.8	3	DX	EDH (Zone)	2004	Main Office Bldg
MS-1	Mitsubishi	MSY-GL24NA	5004003 T	0.1	230	0.76	1	DX	None		Chemical Storage

DX Condenser / Compressor Summary

Tag	Equipment	Manufacturor	Model	Sorial	Tons			Compres	sor			Con	denser	Fans		Manf.
Tay	Served	wanuacturer	Woder	Seria	10115	#	Volts	Amps	Ph	Refrig.	#	HP	Volts	Amps	Ph	Date
CU-1	AHU-1	Rheem	RAWD-078CAZ	6996F400707516	6.5	1	208	20.8	3	R-22	1	1/3	230	2.2	1	2007
MSCU-1	MS-1	Mitsubishi	MUY-GL24NA		2	1	230	12.9	1	R-410A	1		230	0.93	1	

Broward County Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Tag Manufacturor Model		Model	Tons	New	Electrical Data				ŀ	Manf.	
Tay	wanuacturer	woder	10/15	EER/SEER	Volts	Amps	Phase	Refrigerant	Туре	Btu/hr Output	Date
WAC-1	LG	LW2412HR	2	8.5	230	16	1	R-410A	Electric Strip	11600	2014
WAC-2	LG	LW2412HR	2	8.5	230	16	1	R-410A	Electric Strip	11600	2014
WAC-3	LG	LW2412HR	2	8.5	230	16	1	R-410A	Electric Strip	11600	2014

Window AC / Compressor Summary

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

South Maintenance Shop

8500 Griffin RD., Davie, FL 33328

Area: 6,024 sf

Year Built: 1988

Major Additions: Various

Wall Type: CMU w/Stucco Finish

Roof Type: Rolled asphalt with fiberglass, Metal

Window Type: Single pane with metal frames, tinted

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: 7:00 am to 5:00 pm, Monday through Friday; occasional after-hours operations.

HVAC System Types:

Heating Source: DX systems utilize electric duct heaters to provide heating to the building.

Cooling Source: Cooling is provided by direct expansion condenser units to the building.

Air Handling Units: AHU units serve Building A and Building C at the facility.

HVAC System Controls: Electronic thermostats / programmable thermostats are utilized to control the equipment with in the buildings.

South Maintenance Shop HVAC Equipment Inventory

Air Handling Unit Data

Tag	Air Handler Manufacturer	Air Handler Model	Serial		Мо	otor		Cooling Coil	Heating Coil	Manf. Date	
	manulacturer	moder		HP	Volts	Amps	Phase	Туре	Туре	Date	
AHU-1	Goodman	AR61-1	207448906	0.75	230	3.9	1	DX	EDH (Zone)	2007	
AHU-2	Goodman	AR36-1	202437329	0.3	230	2.15	1	DX	EDH (Zone)	2002	

DX Condenser / Compressor Summary

Tag	Equipment Served	Manufacturor	Model	Sorial	Tons				Compre	ssor			Co	ndense	r Fans		Manf.
Tay	Equipment Serveu	wanuacturer	Woder	Serial	TOTIS New EEK	#	Volts	Amps	Ph	Refrig.	#	HP	Volts	Amps	Ph	Date	
CU-1	CU-1 (Bldg A)	Goodman	CLJ60-1	206543647	5	10.7	1	230	25	1	R-22	1	1/4	230	1.8	1	2006
CU-2	CU-2 (Bldg C)	Goodman	GSC030361DE	707660177	3	11.5	1	230	12.2	1	R-22	1	1/6	230	1.1	1	2007

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

MASS Tran Northeast Terminal

304 Hammondville BLVD., Pompano Beach, FL 33060

Area: 2,000 sf

Year Built: 2007

Major Additions: None

Wall Type: CMU w/ stucco

Roof Type: Membrane

Window Type: Single pane with metal frames and tint

Lighting Type: A detailed inventory of the existing lighting system is included in Appendix A.

Occupancy Schedule: Office hours vary

HVAC System Types:

Cooling Source: (1) Rooftop unit utilizes direct expansion to provide cooling to the building.

HVAC System Controls: Local thermostat control only

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

5. Measurement & Verification Plan

The heart of any performance contract is the guarantees with which it is associated. Not only the guaranteed price of the installation but the guaranteed savings generated from the installation of the energy conservation measures. While the installation guarantee is easy to track and verify, the savings guarantee is more complex, can be done in various ways, and can be left open to interpretation. However, when done correctly, not only can the savings be measured and verified, but the County can achieve many additional benefits from the equipment installed, over and above the guaranteed savings.

The following section introduces OpTerra's Energy Management Group, and outlines some of the services it can provide. Specifically, these topics will address:

- Energy Management Group Overview Including its staff, experience, and capabilities.
- Measurement and Verification (M&V) of Savings What are the options, when should they be applied, and what are the benefits of each.
- Client Specific Recommendation Based on the parameters of this analysis, these are our recommendations for a workable M&V plan that gives the greatest ongoing benefit, and ongoing Monitoring Services. These are included in the base Monitoring fee.
- Monitoring Services The scope of Standard Services included from the Energy Management Group.

Energy Management Group Overview

OpTerra has one of the largest and most experienced M&V Departments in the industry. A professional engineer with over 25 years in performance contracting leads a team of 13 full-time dedicated staff, with an average tenure in energy services of over 10 years each. The Energy Management Group has overseen hundreds of guarantees and currently has over 120 clients with ongoing guarantees that total over 500 million dollars.

The depth and diversity of the personnel prepares them to handle a variety of ongoing services, as detailed in this report. In general, these tasks are overseen by three divisions, each with its own area of expertise.

Energy Accounting: This team oversees the guarantee portion of the monitoring contracts. They are responsible for analyzing the utility consumption, generating the monitoring reports, tracking changes to the facilities, and maximizing the energy savings. This team includes on-site dedicated Energy Resource Managers for some of our larger contracts.

Electronic Monitoring: The Electronic Monitoring division has extensive experience in monitoring, commissioning, and troubleshooting over 25 different types of Building Automation Systems (BAS). This group has daily responsibility for tracking the performance of the building automation systems installed or upgraded as part of virtually all OpTerra contracts. BAS installation/improvements often account for 25% of the energy savings on a project, but their effectiveness can be diminished over time by building occupants through "unmanaged equipment-overrides". Through continuous periodic monitoring of these systems, unintentional

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

overrides and control component failures are detected and reported back to our customers before substantial energy savings are lost.

Support Services: This team of professionals handles most of the extended services detailed below, including UtilityVision®, OpTerra's suite of services centered on a Cellular-based energy information system. UtilityVision integrates seamlessly throughout the Monitoring program, allowing the Energy Management Group to offer a greater level of service to our Clients at a lower ongoing cost.

Most importantly, the OpTerra Energy Management Group works as a team to deliver a program specifically designed to meet the needs of each client.

Measurement & Verification of Savings

One key to successfully achieving the predicted savings of any project is the accuracy measurement techniques employed, and the validity of the energy baselines. To assure confidence in these processes, OpTerra will follow the International Performance Measurement and Verification Protocol (IPMVP). This protocol is recognized by the National Association of Energy Service Companies (NAESCO) as the standard guideline of how savings resulting from energy conservation projects should be measured.

The IPMVP defines four broad options for measurement and verification of energy savings. Each option is applicable to specific situations; and, oftentimes, more than one option is possible. Multiple options are often implemented on a single project. The broad categories of the IPMVP lay out as follows:

- Option A Partially Measured Retrofit Isolation End-use measurements, some stipulations.
- Option B Retrofit Isolation Complete end-use measurements.
- Option C Whole Building Energy use analysis on multiple systems.
- Option D Calibrated Simulation Computer modeled building savings.

Implementation of a verification plan for the diverse types of ECMs typically involved in a performance contract usually requires a combination of methods to successfully measure savings. Even for a given ECM, verification categories may be crossed by combining a stipulated and an end-use measurement component into the savings calculation. Factors that guide the selection of an M&V method for each ECM include:

* Cost of measurement vs. savings	* Complexity of ECMs to be installed
* Timing of measure installation	* Level of interaction between ECMs
 * Likelihood of future ECMs at the same facility 	* Dynamics of the facility's energy baselines
 * Likelihood of future construction at the facility 	 * Likelihood of sustainable savings from the measures
 Degree of sub-metering within the facility 	

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Due to the variables and dynamics that are unique to each performance contract, and often to each facility within a performance contract, an individual measurement and verification plan must be developed for each situation. While the specifics may vary, the general method employed will always follow one of the methods outlined in the IPMVP.

The following paragraphs detail the four potential M&V methods:

Option A – Partially Measured Retrofit Isolation

This option allows for the energy savings to be calculated using a sampling of field measurements combined with stipulated parameters. The savings, once calculated, are usually stipulated to for the life of the project. Ongoing actual measurements may or may not be used in this verification technique depending on whether the predicted savings and/or volatility of the measures implemented warrant the expenditure of additional field measurements.

A possible application for using this option would be for lighting efficiency improvements whose performance may be relatively stable and not interdependent with other measures. The savings for the lighting upgrade would be quantified by measuring before and after power consumption for a representative sample of lighting circuits and by stipulating or agreeing to the hours of operation of each circuit.

Option B – Retrofit Isolation

Energy savings performance of energy conservation measures are measured and verified at the-end use site. Option B techniques are designed for projects where long-term continuous measurement of performance is desired and warranted. Under Option B, individual loads are continuously monitored to determine performance; and this measured performance is compared with a baseline to determine savings.

A possible application for Option B measurement would be for chiller efficiency improvements in a setting of continuous change at a facility. The savings for the chiller upgrade would be quantified by measuring the existing chiller's performance in kW/Ton at several points in load while maintaining steady condensing temperature. The same chiller performance curve would be developed for other steady condensing temperatures, resulting in a three-dimensional load curve for the existing chiller or chillers. After the retrofit, a similar 3-D load curve would be measured for the chiller. Instrumentation would be installed to sample the actual tonnage being delivered to the building cooling loads during the entire measurement period, and the power reduction interpolated from the before and after performance curves.

This type of measurement can be expensive and complex, but may be implemented as an alternative to Option C to ensure the long-term success of the energy conservation measures.

Option C – Whole Building

Option C verification techniques measure savings by comparing the post-retrofit overall energy use in a building or facility with pre-retrofit energy baselines. Implicit in this measurement option is the necessity of identifying and accounting for the effects of changes to the facilities during the measurement period that are beyond the scope of the measures installed. The impact of building additions, changes in operating hours, remodeling projects, etc., that are implemented by the customer during the measurement period must have their energy impact accounted for

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

if the true savings from the energy conservation measures is to be assessed. This process can be time consuming and expensive in facilities that are very dynamic.

However, there are many benefits to an Option C measurement. When significant interactions between energy consuming systems and energy conservation measures are present, and for assessing savings for measures that are not easily measured directly, Option C may be the only viable method. Option C savings calculations also most closely emulate the bills from the utility company, and the calculations are easy to understand and explain. The typical calculation of savings is as follows:

Total Energy Savings (\$) = (Energy Use Baseline – Actual Usage) * Contractual Energy Rates

Where:

Energy Use Base – Historical Energy Consumption; modified over time to account for changes to the facility.

Actual Usage - Actual energy usage through the meter.

Contractual Energy Rates – Energy rates derived from current utility bills and rate structures, which are used for the calculation of savings.

Option D – Calibrated Simulation

Option D verification techniques calculate savings by utilizing a carefully calibrated hourly building simulation model to examine building performance before and after the digital implementation of energy conservation measures. Obviously, a high degree of comfort in both the simulation and the operator is necessary for this method to work to the satisfaction of both parties.

Calculated Savings - Stipulated

While not directly defined as an IPMVP option, the protocol recognizes that there are instances when measurement and verification of the savings is not warranted. In cases where the cost of measurement is too high as compared to the savings, where the parameters preclude accurate measurements, or where the confidence of the savings projections is high, the Client and OpTerra may agree to stipulate to those projected savings for the term of the project without any additional measurement and verification of the savings.

Monitoring Services

The long-term success of any performance contract relies on the continued efforts of the Owner and the Energy Service Company. To this end, OpTerra offers a monitoring service as part of the energy guarantee that focuses on the measurement, verification, and the maintenance of the energy savings. This section describes the standard and optional services which can be provided. However, it is understood that the needs of our clients vary, and every effort will be made to meet any additional needs that may arise.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Recommended Program

Based on the proposed scope of the project, OpTerra recommends an M&V plan that balances verification of guaranteed savings with on-going service fees. The proposed scope spans forty-five sites which account for more than 150 electric meters. To provide on-going monitoring services on that number of electric meters would result in a substantial investment by the County, negating all or most of the projected savings at the majority of these facilities. As a result, OpTerra is proposing an M&V Plan that includes Option A, Option B, Option C and a small amount of stipulated energy savings.

M&V Method	Parks	Libraries	Office & Courthouse	Health & Lab	Park, Wrhs, Repair	Total Energy Savings	% of Total		
Option A	\$82,263	\$86,582	\$59,531	\$38,581	\$130,228	\$397,185	34.1%		
Option C	\$0	\$170,130	\$438,272	\$6,332	\$84,639	\$699,373	60.0%		
Stipulated	\$15,482	\$18,879	\$26,372	\$5,746	\$1,673	\$68,152	5.9%		
TOTAL	\$97,745	\$275,591	\$524,175	\$50,659	\$216,540	\$1,164,710	100.0%		

Proposed Measurement & Verification Plan (Breakdown by Method)

Note: There is a small percentage (approx. 4.8%) of Option A savings that is attributed to indirect airconditioning savings which is a result of reduced heat gain within the occupied space. These savings will be stipulated; however, they will be reported in the Option A report and therefore, included in the Option A line item.

To minimize monitoring equipment costs and on-going service fees, OpTerra is proposing Option C (Whole Building) measurement and verification at six of the largest facilities for Energy Conservation Measures and Option B at another five facilities that are proposed for Solar PV installations. The following buildings and specific meters are recommended to follow Option C procedure, which will require their utility meters to be tied into our Energy Website www.utilityvision.com.

Site	ECM Types	Meter Type	Meter #	Applicable Rate
Public Safety Building Building End-Use & Solar PV		Electric	RV558V0	CILC-1D
North Regional Courthouse	Building End-Use & Solar PV	Electric	RV850V0	GSLD-1
Government Center West	Building End-Use & Solar PV	Electric	RV755V0	GSLDT-1
African American Library	Building End-Use	Electric	MV76938	GSDT-1
West Regional Library	Building End-Use & Solar PV	Electric	RV713V0	GSD-1
Northwest Regional Library	Building End-Use & Solar PV	Electric	KV78257	GSD-1

Option C (Whole Building) Sites

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

BCJC South Parking Garage	Solar PV	Electric	KV52580	GSD-1
Fomily Success Contor		Electric	KJ39709	GSD-1
Family success Center	301AI PV	Electric	KJ39744	GSD-1
Mass Trans North Maintenance	Solar PV	Electric	MV87032	GSDT-1
Traffic Engineering	Solar PV	Electric	MV54711	GSDT-1
Weston Library	Building End-Use & Solar	Electric	KV51568	GSD-1

Lighting generates a significant amount of energy savings for this project and also the simplest to accurately measure at a reasonable cost. The remaining energy conservation measures, while valid and valuable to the project, are more costly to measure and the cost of the measurement is relatively higher when compared to the projected savings. Specifically, OpTerra recommends:

Site	ECM Category	Meter Type	Meter #	Applicable Rate	Recommended M&V Plan
	Interior/Exterior/ Site Lighting	Electric	Various	Various	Option A
	Water Conservation	Water	Various	Various	Option A
All Sites (Except	Building Envelope	Electric	Various	Various	Calculated Savings - Stipulated
Sites)	Controls	Electric	Various	Various	Calculated Savings - Stipulated
	Mechanical	Electric	Various	Various	Calculated Savings - Stipulated
	Other	Electric	Various	Various	Calculated Savings - Stipulated

Interior/Exterior/Site Lighting Upgrades - Option A

Option A Method will be used to measure and verify the electricity savings from this retrofit. The difference in the existing lighting wattage versus the new lighting wattage shall be measured for a representative sample of the lighting circuits. The operating hours for each usage type classification will be stipulated and agreed upon between OpTerra and Broward County. The measured savings shall then be calculated by multiplying the measured wattage difference by the lighting on time hours.

Once measured and verified, these savings will be agreed to be sustained for the term of the contract.

Water Conservation Upgrades - Option A

Option A Method will be used to measure and verify the water savings from this retrofit. The difference in the existing fixture usage versus the retrofitted fixture usage shall be measured for a representative sample of each type of retrofit. The measurement and verification process adheres to IPMVP recommendations and FEMP guidelines. Sample size is compliant with guidelines established in the FEMP Measurement and Verification for Federal Energy Projects, Option A (Retrofit Isolation with Key Parameter Measurement) Version 3.0. The usage

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

assumptions for each fixture type will be stipulated and agreed upon between OpTerra and Broward County. The measured savings shall then be calculated by multiplying the measured wattage difference by the fixture usage.

Once measured and verified, these savings will be agreed to be sustained for the term of the contract.

Remaining ECM's - Calculated Savings-Stipulated

Due to the cost of providing measurement and verification services versus the expected savings, no additional or ongoing measurements will be taken for these measures. The expected savings will be stipulated for the term of the contract.

Utilityvision® (Provided for all Option C meters)

UtilityVision[®] is an enhanced automation and utility monitoring system available from OpTerra. As an energy management data analysis tool, the web-based energy consumption tracking system collects and reports energy consumption data to customers over the Internet. OpTerra developed UtilityVision[®] for use in building complexes such as commercial developments, educational institutions, manufacturing facilities, housing developments, and municipalities.

UtilityVision[®] allows customers to become more self-sufficient in analyzing energy consumption for energy management purposes. The system will integrate with your existing Ethernet LAN or use a dedicated cellular link. It consists of a Transmission Control Protocol/Internet Protocol (TCP/IP) network host that receives consumption information from customer meters and presents data as tables or charts from the UtilityVision[®] website. Customers may view and print reports of historical, as well as real-time energy consumption data.

UtilityVision® was developed to give customers a pricing advantage in negotiating rates in deregulated markets. Although the ability to collect detailed electricity usage data represents the primary benefit for customers, the system can also monitor other types of energy consumption such as hot or chilled water, natural gas, or steam. The proposed UV systems for the Broward County project is monitoring main electric meters.

The UtilityVision[®] system is a turnkey installation that involves mounting the metering platform and meters, installing cabling and connections, and configuring the interface. The system's modular structure makes it easy to install, reconfigure and expand in response to additional customer requirements.

Three components of OpTerra's UtilityVision® service are currently available to help customers begin the data collection process.

Load Profiling – Web-based reports profile electric consumption and demand data by day, week and year for individual meters. UtilityVision® accumulates data in 15-minute intervals for each meter and reports energy information for up to 13 months and graphs up to a year's worth of information. UtilityVision® also monitors other electric properties such as power factor, amps and voltage, as requested.

Meter Aggregation Analysis – The aggregation of consumer data from various meters into a single analysis report provides a cumulative profile of electric consumption and demand data by day or day of week for a month. A cumulative report accurately represents the overall peak impact of all meters for the requested reporting units.

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Sub-metering (optional) – Installation of sub-meters on buildings or individual units whose consumption is also registered by another meter along with other buildings or units. Sub-metering allows customers to accumulate data for energy analysis, cost allocation, or troubleshooting by reporting unit. For example, customers could sub-meter based on such factors as buildings, floors, manufacturing processes, or housing units, and obtain usage data by day of week and/or by year.

On the following pages you will see some sample reports that can be viewed from our www.utilityvision.com website.

Report	Description	Sample View
Energy Analysis	The Energy Analysis facility provides a wide range of analysis techniques for all types of data. This includes viewing as a graph or table, exporting the data and viewing the cost of energy.	transmission of the set of t
Single Meter Analysis	The Single Meter Analysis facility provides a wide range of analysis techniques for all types of data. This includes viewing as a graph or table, exporting the data and viewing the cost of energy specific to a single meter.	
Electricity Analysis	 The Electricity Analysis facility provides a range of techniques specific to Electricity Meters. This includes: Contract Analysis Peak Demand Load Factor Power Factor. 	

Sample Reports

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Report	Description	Sample View
Performance Analysis	The Performance Analysis facility allows the comparison of consumption data with production or degree day data using a number of analysis techniques.	
Baseload Analysis	The Baseload Analysis facility provides the ability to view the baseload consumption of a meter. This can be viewed for the active or inactive periods as defined by the meter configuration.	
KPI Ranking	KPI Ranking analysis allows the comparison of sites or meters based on a range of Key Performance Indicators.	Main Meters Man Elec NWh [38.2.3] Bockingsey Kon Considere Electricity Mater Buckingsey Considere Electricity Mater Buckingsey Considere Electricity Mater Buckingsey Considere Electricity Mater Delectrophysics Order House Deler 3 Elec (2.3.3) Order House Deler 2 Elec (2.3.3)
Batch Processing	Batch Processing Analysis allows the comparison of consumption data of each batch run over a selected period of time.	
Data Export	Data Export allows the extract of a specific date range to a common format.	

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in July, 2017. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101Pl – Consultant Services, Energy Audit and Performance Consultant Services: Part Two - Investment Grade Audit Report

Report	Description	Sample View
Energy Temperature Analysis	Energy Temperature Analysis allows the analysis of energy usage against outside temperature. The target line is derived from either the previous year's usage or pre-set with the graph highlighted over usage, under usage or normal usage compared to a percentage deviation from this target.	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Trend Line Analysis	Trend Line Analysis allows you to plot up to 4 trend lines on a single graph. This could be consumption, cost, CO2 or CO2e and can also be displayed as a ratio when combined with production data. The data could also be either from actual data, MVLR predicted models or budget data.	

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

CONTROLS and MECHANICAL Savings Calculations

- M1 Install New Chiller
- M4 Replace R-22 Split System (Evap Coil & Condensing Unit Only)
- M5 Replace R-22 Rooftop Unit (RTU)
- M7 CHW Coil Cleaning
- M8 Install New AHU
- M12 Repair Smoke Damper Leakage
- M13 Eliminate Uncontrolled Supply Air Diffusers in Mechanical

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Building Simulations Models

Building energy simulation was performed for select buildings: Public Safety Building, African American Library, North Regional Courthouse, Government Center West, Hallandale Library, Stirling Road Library, Sexual Assault Treatment Center, and Dan Pearl Library. The simulations were performed using eQUEST® is energy simulation tool. eQUEST® uses the DOE-2 energy simulation program, which is industry standard, originally developed by the U.S. Department of Energy.

Government Center West Model

Public Safety Building Model

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

North Regional Courthouse: Actual (Solid Blue Line) vs Modeled (Columns)

Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services:

Energy Savings Calculations - Spreadsheets

Building energy savings calculations for ECMs not simulated were performed utilizing spread calculations. This alternate method utilized for calculating energy and water savings was modeling of the individual ECMs with spreadsheets utilizing bin weather data, annual load variation, equipment energy use, and schedule parameters. The savings were calculated as the difference between existing equipment definition (efficiencies, full load energy use and capacities, part-load profiles, and operating schedule) and proposed equipment modification or replacement.

BECalc - INPUT

General and Envelope information:							
Occupants	People	100					
	Sensible H _s	215	(BTU)				
	Latent H _L	185	(BTU)				
	Туре	Office					
Building	Floor Area	5848	(Sq.Ft.)				
	Ground Floor	3672					
Roof	Roof area	3672	(Sq.Ft.)				
	Roof Ts	1.38	(mult. for radiation)				
	U-Value	0.16	6.25 R				
Ext. Walls	Total Area	3872					
	Wall Ts	1.05	(mult. for radiation)				
	U-value	0.20	5.00 R				
Windows	Total Area	928					
Win	dow Multiplier	0.34	(mult. for windows)				
Building Equipment information:							

Building Equipment information

Lighting	Indor	6.37	(kW)	1.1 W/sf
	Outdoor	0.67	(kW)	
Equipment	Office	2.25	(kW)	
	Other	4.60	(kW)	Kitchen, Ref.
	Outdoor Eq.	1.65	(kW)	Elev, Soda

	_	Walls	Wins	Net Wall
Wall & Win	North	748	0	748
Areas	East	1428	464	964
	South	748	0	748
	West	1428	464	964
		4352	928	3424

Setpoints and Airdistribution:							
Cooling	Cooling Temp	76	(F)				
	Cond. Wet Bulb	55					
	Supply Air Temp	55					
Heating	Heating Temp	70	(F)				
	Heating needed @	62	below	below (F) Outdoor			
	Heating Capacity	17	(kW)	(total xxkW)			
Fans	Supply FANS	3.2	(kW)				
		8230	(CFM)				
	Outside Air	10%	(%)				
		823	(CFM)				
	Exhaust FANS	0.4	(kW)				
		625	(CFM)				
	Infiltration	3.0%	(%)	of Fan CFM			
		246.9	(CFM)				

Airconditioning Equipmet: AC Unit kW/Ton 1.249 11.2 kW k₩ Tons Compressor 7.5 1.49 kW/Ton (Calculated) 9.00 EER (new, est) Note: kW/Ton - (includes comp & condenser fans & aux. equip.)

> **Efficiency Conversion Formulas:** EER = COP * 3.413 COP = 1 / EIRkW/ Ton = 12/ EER EIR = (kW/Ton) * (3413/12000)

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Exhibit 1 Page 250 of 490

OPTERRA

An CNGIC company

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

kv

HL _{kw} .oads

DewP

Ē

Time Tavg

Date

0

l/ 1/2015

1/1/2015

ECalc - CALCULATIONS I

Ft Laud.

FAWN Sta

Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services:

 $\begin{array}{c} 1.1 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.3 \\ 1.4 \\$

Internal L HS _{KW} HL BTU 710 812 812 913 913 913 913 913 1353 2233 22233 22233 22238 4060 4060 4060 4060 2328 4872 23276 4872 23276 11827 11827 11524 11524 11524 11524 11524 11527 115777 115777 115777 115777 115777 115777 115777 115777 115777 OA & INF HS BTU 10209 12251 12251 12251 9671 7307 6877 5158 5158 5158 5158 5158 5158 3224 10746 2579 2579 2418 2418 2418 2418 3654 6125 6125 9027 9027 INF CFM 34.44 34.44 34.44 34.44 34.44 34.44 45.92 45.92 68.89 91.85 114.8 114.8 114.8 137.8 137.8 137.8 114.8 91.85 91.85 68.89 68.89 68.89 57.4 45.92 0.6 0.9 1.5 1.5 1.8 1.8 1.8 1.8 1.8 1.2 1.2 0.9 0.9 0.7 0.6 k٧ 0.4 0.4 0.4 0.4 0.4 0.6 CFM H5 m -2350 -2350 -2350 -2938 -2938 -2938 -2938 16744 16744 5934 5934 4312 2350 2350 2350 2350 2350 2350 2350 2338 5934 17555 5934 5934 5123 1763 **71.0** 71.0 70.0 70.0 70.0 70.0 70.0 104.9 103.5 103.5 102.1 102.1 102.1 102.1 72.0 99.4 71.0 71.0 71.0 71.0 71.0 70.0 70.0 Roof 02.1 00.7 Floor HS BTU 570 570 570 570 570 570 HS BTU 1517 1441 1205 1132 1057 Win 952 880 1985 5203 9291 Walls HS _{kw} 0.184 0.46 0.46 0.46 0.46 0.69 0.69 0.184 0.184 0.184 0.184 0.184 0.184 0.322 0.46 0.46 0.46 0.46 0.23 0.23 0.23 0.23 0.23 OTH Equip % 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.07 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.15 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.225 0.338 0.338 0.338 0.338 0.338 0.338 0.225 0.225 0.113 HS _{KW} 0.113 0.113 0.675 0.113 0.113 0.113 0.113 quip
 %
 %

 0.05
 0.05

 0.05
 0.05

 0.05
 0.05

 0.05
 0.05

 0.05
 0.05

 0.05
 0.05

 0.05
 0.05

 0.05
 0.05

 0.05
 0.05

 0.15
 0.15

 0.15
 0.15

 0.15
 0.15

 0.15
 0.15

 0.15
 0.15

 0.15
 0.15

 0.15
 0.15

 0.15
 0.15

 0.15
 0.15

 0.15
 0.15

 0.05
 0.05

 0.05
 0.05
 Office **HS** кw 0.637 0.637 0.637 0.637 0.637 0.637 0.637 0.637 3.187 3.187 3.187 3.187 3.187 3.187 4.462 4.462 4.462 0.637 3.824 3.187 3.187 1.912 1.912 1.275 0.637 0.637 0.637 Lighting $\frac{\%}{100}$ BTU 0 0 0 0 0 0 0 850 .850 .850 850 7700 7700 850 850 850 Ŧ 150 150 2150 2150 2150 4300 4300 2150 2150 2150 150 C 0 0 0 0 0 HS BTU 0.1 0.1 $\begin{array}{c} 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \end{array}$ % Sch # Holi day (H) ഗഗ Day of Wk (F) WB avg % 표 avg

//1/2015 //1

Page 252 of 490 OPTERRA An CNGIC company

Exhibit 1

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015 1/1/2015

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Max	32.1	Demand	kW	1.7	1.7	1.7	1.7	1.7	1.7	3.4	1.9	8.0	8.9	10.7	12.8	14.0	15.6	15.4	14.6	12.0	8.9	4.0	3.3	2.7	2.7	2.6	2.4
			Month	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
			kW	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.4	4.7	6.1	7.2	7.7	7.5	6.7	4.9	3.3	0.0	0.0	0.0	0.0	0.0	0.0
			Tons								,		2.72	3.76	4.87	5.80	6.17	5.98	5.39	3.95	2.64						ī
		Cooling	HT (Btu/hr)		,		,		,		,		32,650	45,120	58,383	69,593	74,059	71,776	64,723	47,396	31,697	,					,
	ĺ		Temp	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75
			kW		,		,		,	1.6	0.1	5.7	,	,	,		,	,	,		,	,					,
			kW		,		,		,	1.6	0.1	5.7	,	,	,	,	,	,	,	,	,	,					,
			Heat (BTUH)		,			,	,	5,389	230	19,314	,	,			,	,			,	,		,			ī
		Heating	Temp	55	55	55	55	55	55	58	60	68	68	68	68	68	68	68	68	68	68	55	55	55	55	55	55
		Indoor	Temp	55	55	55	59	55	55	58	60	89	75	75	52	75	75	5	52	75	75	63	62	09	59	09	60
	Heat=1	Cool=0	н/с	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
		L Lighting	% HS kw	0.2 0.13	0.2 0.13	0.2 0.13	0.2 0.13	0.2 0.13	0.2 0.13	0.2 0.13	0	0 0	000	000	0 0	0	000	0	0 0	0	000	000	1 0.67	1 0.67	1 0.67	1 0.67	1 0.67
		out Equip. O	% kw	0.1 0.17	0.1 0.17	0.1 0.17	0.1 0.17	0.1 0.17	0.1 0.17	0.1 0.17	0.1 0.17	0.1 0.17	0.2 0.33	0.3 0.5	0.3 0.5	0.3 0.5	0.3 0.5	0.3 0.5	0.3 0.5	0.3 0.5	0.3 0.5	0.1 0.17	0.1 0.17	0.1 0.17	0.1 0.17	0.1 0.17	0.1 0.17
		0	kw	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0
			CFM	0	0	0	0	0	0	0	0	125	125	125	187.5	187.5	187.5	187.5	187.5	125	125	0	0	0	0	0	0
	External:	Exhaust	%	0	0	0	0	0	0	0	0	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0	0	0	0	0	0
			Time	115 0	115 1	115 2	115 3	115 4	115 5	115 6	115 7	115 8	115 9	115 10	115 11	115 12	115 13	115 14	115 115	115 16	115 17	115 18	115 19	115 20	15 21	115 22	115 23
			Date	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20	1/6/20

FAWN Sta Ft Laud.

ECalc - CALCULATIONS Internal Load

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Calculated Energy Use and Demand:

	Electrical Load	s/Use:							
	22.9%	2.0%	4.4%	0.5%	12.1%	2.9%	1.9%	1.3%	51.9%
	Lighting	Equip	OTH Eq.	Exhaust	Fans	Out Eq.	OL	Heating	Cooling
	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh
Jan	1,659	140	324	40	876	210	132	438	2,297
Feb	1,474	128	286	35	777	189	120	367	2,172
Mar	1,611	143	312	38	848	210	132	18	2,936
Apr	1,565	138	303	37	824	203	128	5	3,222
May	1,659	140	324	40	876	210	132	0	3,868
Jun	1,565	138	303	37	824	203	128	0	4,438
Jul	1,635	141	318	39	862	210	132	0	4,942
Aug	1,635	141	318	39	862	210	132	0	5,136
Sep	1,565	138	303	37	824	203	128	0	4,558
Oct	1,659	140	324	40	876	210	132	2	4,116
Nov	1,565	138	303	37	824	203	128	37	3,226
Dec	1,554	142	303	36	832	207	132	226	2,502
	19,146	1,665	3,719	455	10,103	2,466	1,558	1,093	43,413
	3,004						Fu	Il load hours	3,876
							Т	otal Electric	83,619

5.3%	17.4%	5.9%	23.5%
Walls	Win	Floor	Roof
(kWh)	(kWh)	(kWh)	(kWh)
-682	720	124	719
-540	763	4	725
-220	1,146	-6	1,175
110	1,204	49	1,417
475	1,354	280	1,766
1,117	1,476	493	2,275
1,354	1,609	708	2,527
1,520	1,653	834	2,667
1,097	1,458	818	2,257
548	1,336	743	1,831
56	1,034	532	1,353
-390	818	328	976
4,446	14,569	4,908	19,689

Demand:	
	Demand
Month	kW
Jan	29.3
Feb	28.9
Mar	28.7
Apr	30.5
May	31.0
Jun	32.1
Jul	31.5
Aug	31.6
Sep	31.2
Oct	31.3
Nov	29.3
Dec	28.9

Building or Ar	ea - Calcula	ted Energy l	Jse:											
End-Use	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	%
Lighting	1,659	1,474	1,611	1,565	1,659	1,565	1,635	1,635	1,565	1,659	1,565	1,554	19,146	22.9%
OFF Equip.	140	128	143	138	140	138	141	141	138	140	138	142	1,665	2.0%
OTH Equip.	324	286	312	303	324	303	318	318	303	324	303	303	3,719	4.4%
Exhaust	40	35	38	37	40	37	39	39	37	40	37	36	455	0.5%
FANS	876	777	848	824	876	824	862	862	824	876	824	832	10,103	12.1%
Heating	438	367	18	5	0	0	0	0	0	2	37	226	1,093	1.3%
Cooling	2,297	2,172	2,936	3,222	3,868	4,438	4,942	5,136	4,558	4,116	3,226	2,502	43,413	51.9%
Out Equip.	210	189	210	203	210	203	210	210	203	210	203	207	2,466	2.9%
Out Lights	132	120	132	128	132	128	132	132	128	132	128	132	1,558	1.9%
Total (kWh)	6,115	5,548	6,247	6,425	7,248	7,636	8,279	8,472	7,756	7,497	6,461	5,934	83,619	Calc.
Demand	29.3	28.9	28.7	30.5	31.0	32.1	31.5	31.6	31.2	31.3	29.3	28.9		\$/kWh
Cost (\$)	728	690	729	760	815	850	880	894	846	832	748	713	9,484	0.1134

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Utility Information:

Monthly Charges (\$)

	Electric Data:	(Billed)	Rate:	GSD-1											
U	2016	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	
	kWh	6,330	5,880	5,880	6,240	6,450	7,500	9,270	7,140	8,880	7,410	6,540	6,330	83,850	Calc.
	kW	26	26	28	33	27	28	34	31	33	30	34	29	29.9	\$/kWh
	\$	668	643	669	737	688	754	926	768	885	767	768	699	8,972	0.1070

Model Energy Use & Demand	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	TOT/ Max
Demand (kW)	29.3	28.9	28.7	30.5	31.0	32.1	31.5	31.6	31.2	31.3	29.3	28.9	32.1
Energy Use (kWh)	6,115	5,548	6,247	6,425	7,248	7,636	8,279	8,472	7,756	7,497	6,461	5,934	83,619
GSD-1													
Demand (kW)	29	29	29	31	31	32	31	32	31	31	29	29	32.1
Energy Use (kWh)	6,115	5,548	6,247	6,425	7,248	7,636	8,279	8,472	7,756	7,497	6,461	5,934	83,619
Customer Charge (\$)	25	25	25	25	25	25	25	25	25	25	25	25	25
Energy Charge (\$)	329	298	336	345	390	410	445	455	417	403	347	319	0.0538
Demand Charge (\$)	311	306	305	324	329	341	333	335	330	331	310	306	10.6
Storm Charge (\$)	5	5	5	5	6	6	6	6	6	6	5	5	0.78%
Тах	17	16	17	18	19	20	21	21	20	20	18	17	2.56%
Franchise & Tax	41	39	41	43	46	48	50	51	48	47	42	40	6.00%

815

760

850

880

894

846

748

713

832

9,484

Summary of Mechanical Savings Calculations with Spreadsheets

690

729

728

ID	Site	#	ECM	Lighting	Equip	OTH Eq.	Exhaust	Fans	Out Eq.	OL	Heating	Cooling	Total	Savings
				(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)	(kWh)
BP8	FERN FOREST	0	Basecase	19,146	1,628	3,288	455	10,568	2,167	1,558	1,096	43,933	83,839	0
		3	AC replace	10,342	1,628	3,288	455	10,103	2,167	1,558	961	32,212	62,714	6,362
BP2	TY Park Office	0	Basecase	15,455	4,211	2,248	974	12,313	2,604	7,008	1,044	42,571	88,428	0
		3	AC replace	7,028	4,211	2,248	974	12,313	2,604	7,008	873	31,900	69,160	6,428
BP2	TY Maintenance	0	Basecase	8,918	1,418	901	203	2,190	497	624	394	14,057	29,202	0
		3	AC replace	4,055	1,418	901	203	1,956	497	624	353	10,628	20,634	1,521
BP2	TY Campground Bldg.	0	Basecase	4,642	263	13,437	158	1,916	46,218	1,248	452	19,470	87,804	0
		3	AC replace	2,115	263	13,437	158	1,676	46,218	1,248	447	16,334	81,897	2,338
BP5	LONG KEY	0	Basecase	47,369	3,971	7,809	1,578	28,668	8,629	13,009	2,213	143,305	256,552	0
		3	AC replace	18,786	3,971	7,809	1,578	28,668	8,629	13,009	1,979	113,998	198,427	17,160
BP6	WEST LAKE / Anne Kolb NC	0	Basecase	12,023	6,541	2,676	594	14,530	3,868	19,814	1,152	42,185	103,382	0
	Visitor Center	3	AC replace	4,529	6,541	2,676	594	14,530	3,868	19,814	1,002	35,710	89,264	17,866
		4	Duct Repair	4,529	6,541	2,676	594	14,530	3,868	19,814	1,002	35,364	88,918	346
		5	Arrestors	4,529	6,541	2,676	594	14,530	3,868	19,814	1,002	35,364	88,918	0
BP6	WEST LAKE / Anne Kolb NC	0	Basecase	8,592	2,092	2,605	722	5,062	2,035	1,814	622	30,817	54,361	0
	Marina	3	AC replace	2,920	2,092	2,605	722	5,062	2,035	1,814	558	19,725	37,534	8,061
BP6	WEST LAKE / Anne Kolb NC	0	Basecase	15	0	2,409	0	1,124	0	0	0	2,915	6,463	0
	Pump room	1	AC replace	15	0	2,409	0	1,124	0	0	0	2,223	5,770	693

Broward County Energy Savings Performance Contract whole Building Energy Mode) African American Library

Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services:

Dasaline	1,00	3,1140	Tech	0											
Envr	-2	8%		IDIVAR.	_	1									
F MODEL	-	-	-	-	-	-	-	-	-	-			_		
EMI ELECTRICITY KWH MAXWW	130,050 303.8	FER 110,305 122.5	MAR 193,811 313.5	APR 157,394 340 7	MAV 106,781 142.0	JUN 141,626 368.6	JUL 146,127 304.2	AU0 151,124 303.2	EEP 142,247 307.1	00T 141,907 060-2	191,126 330.9	DSC 130,260 336	ARIN 1.626,709 204.2		
DAY HE	29/14	27/14	42813	24/14	42961	42809	43022	21/14	42830	42780	2019	1919	42926		
THERM MAX THERM/HR DAV INF	n. 0 0/0	U U D) D	0 U 0/0	0 0 00	a a a	0 10 10/0	0 a aya	0 0 0	0 0 0 0 0	0	11 12 10 11	n U W H	ara		
aliting Savings		-	_	-	_	-	-	-	-	-	-	-	_		
EM1 ELECTRICITY	JAN	FEB	MAR	APR	SAM	JUN	JUL	AUG	SEP	OCT	NOV	DEC	A3471		
MAXIOV	291.9	298.3	284.8 42810	317.2	311.4	237 42869	362.4	351 2	355.7	332 7 42780	285.9	289.1	382.4		
FMI NATURALOAS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUD	SEP	OCT	NOV	DEC	ANN		
THERM MAX THERMINIR DAY/HR	0,0	0,0	0,0	000	000	0,0	000	000	000	0,0	000	000	0.0		
BAVINOS NON RAVINOS	JAN 18 309	15.897	MAR	APR	MAY	16.219	30L	AU0	3EE	19182	NOV.	DEC 18635	ANN 212 962	Savings Percent of Baseline	
THERM SAVINGS	0 31,90	0 33 20	0 28.70	0 31,50	0	0 71.60	0 73 80	92.00	0 31,90	83.60	9 45,00	0	0 71 80	#Div/0 74.91	Avg Montriv Key Saron
timize HVAC Sch (Existing)		-	-		_	-		-	-	_					
EMT ELECTRICITY	JAN	FEB	MAR	APR	MAY	JUN NIG	JUL	AUG	8EP	00T	NÓV	DEC	ANN		
MAX KW	271.9	268	257 3 42010	293.9 24/14	288.8	312 42869	338.7 43022	326.8	330 E 42839	311.7	266 23/17	263.9	338.2		
FM1 NATURAL-GAS	JAN	FEB	MAR	APR	MAY	301	JUL	AUG	SEP	OCT	NOV	DEC	ANN		
THERM MAS THERMAR DAV/HR	010	10 U	0,0	0 0 0	0r0	0 0 0	010	0.0	0.6	0,0	0r 0	000	0.0 0		
BAVINGS KWH SAVINGS	JAN 23.606	FEB 21.299	21 890	APR 20.723	- MAV 22.545	23 488	23.400	AUG 23.717	3EP	00T	100V	QEC 22.501	270.618	Savings Percent of Baseline 16.1%	
THERM SAVINGS KW SAVINGS	0 20,00	0	0 27.50	0 23 30	0 22.60	0 25.00	0 74.20	0 24.40	0 24 60	0 21,00	0 16,90	0 25 20	0 24 20	#DIV/D 23.33	Avg Monthly KW Savin
arov EW Upotadise (Optimize D	Sectors)														
EMI ELECTRICITY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANN		
KANIH MADE KAN	57,920 258.1	64,807 260.6	77,836 250.6	00,933 282.6	87,467 278.6	96,570 298.6	101,002	104,583	96,169 312 7	92,077 296.8	77,93€ 258,4	257.4	1,019,443		
DAYAIR	23/14	27/14	42810	24/14	28/14	42059	43022	21/14	42639	42780	29/18	15/18	42928		
THERM	JAN	0 0	0 0	0 0	MAY U	0	JUL	0 0	0 0	0CT	U O	0 0	ANN U		
DAVINE	0/9	are	0.0	ov e	0.0	0/0	Brg	0.0	010	010	WO	0 0	0.0		
BAVINDS KWH EAVINGE	JAN 20,207	FEB 17,302	MAR. 16,180	APR. 12,997	MAY 10,172	3.041	JUL 4,220	AUG 3,522	3EP 4,000	001 7,096	NOV	DEC 17,097	ANN 120,740	Samos Percent of Baseline 7.9%	
THERM DAVINOD	13-80	U 7.40	0 670	11 30	10.20	15:40	0 18.70	17.70	17.96	-0 14.90	7.60	U 9.50	0 1870	#DIV/0 12.30	Ave Monthly MV Save
S System Checkout						_			-		-	_			
EMI ELECTRICITY	JAN	FED	MAR	APR	MAY	2014	HUL	AUG	SEP	OCT	NOV	DEC	ANN		
KWH MACEKW	97,440 255.3	64,100 258,2	77,172 248.5	00,449 279.8	07,084 275.9	96,271 293.5	101,374	104,131 306.5	95,024 309.4	91,555 294	77,609 256	70,981 265 2	1,014,242 316.3		
DAVMR	23/14	27/14	42010	24/14	29/14	43069	41022	21/14	42039	42700	29/10	15/10	41926		
THERM	JAN	750	MARY	APR 0	MAY	JUN 0	JUL 0	AUG	SEP	007	NOV 0	DEC	ANN		
DAVAHR	0 0/0	000	010	000	0,0	0/0	Bre	0.9	010	64.0	0.0	W O	010		
SAVINGS.	-IAN -995-	FEB 478	MAR.	APR	MAY	3UN 307	30L	AUG	SEP 245	001	140V	DEC	ANN 5.201	Savings Percent of Baseline 0.3%	
THERM SAVINGS KW SAVINGS	0 2.60	0 2.40	¥ 2.10	280	U 2.70	9 3:10	0 3.20	9 310	0 3.30	0 2.80	U 2:40	0 2 20	0 3.20	#Drv/0 7:74	Ave Monthly WY Savin
riable Flow CIAW Duping					in all			1115			Link				
RWH	61,588	58,763	89,997	72,337	MAY 11,229	84,532	30L 88,679	91,208	3EP 83,890	80,758	NOV 69,446	64,313	902,738		
DAV/NR	23/14	27/14	42010	24/14	280.1	43069	43022	21/14	42839	42700	29/18	15/10	42926		
EM1 NATURAL GAS	JAN	FED	MAR	APR	MAY	3.04	JUL	AUG	SEP	ÖCT 0	NOV	DEC	ANN		
MAX THERMANR DAY MR	0	0	0 0	0/0	0	0,0	0.0	00	0/0	0,0	0	0 D/ 0	0.0		
SAVENOS	JAN	FED	MAR	APR	MAY	JUN	JUL	AUO	ste	OCT	NOV	DEC	ANN	Savings Percent of Baseline	
HWH BAVINOS THERM SAVINOS	5,852	5,620 0	0,175	8,111	9,825	11,739	12,695	12,923	11,934 6	0,797	8,164	6,668	111,504	6.6% #DIV/0	
KW SAVINGS	15.80	15,80	16:10	15.60	15.80	15.30	15:10	15.30	14.90	15,50	15.90	15:90	1510	15.58	Avg Monthly Sty Saving

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Split System - Savings Summary

Facility	Carver Ranches Library
Unit Location	AHU-1

Existing Conditions

Mfg	Trane Split System	Peak kW	101
Model #	MCCB030UA0A0UB	kWh	300,600
Date Mfg	2005		

Proposed Conditions

Mfg	TBD	
Model #	TBD	

Energy Usage

Existing Conditions	00-08 Hrs	42.0	kW	22,241	kWh	0	Therms	
	09-16 Hrs	42.0	kW	40,956	kWh	0	Therms	
	17-00 Hrs	42.0	kW	32,237	kWh	0	Therms	
	Total	42.0	kW	95,434	kWh	0	Therms	
		41.5%		31.7%				
Proposed Conditions	00-08 Hrs	38.9	kW	17,231	kWh	0	Therms	
	09-16 Hrs	38.9	kW	35,255	kWh	0	Therms	
	17-00 Hrs	38.9	kW	26,612	kWh	0	Therms	
	Total	38.9	kW	79,098	kWh	0	Therms	
		38.5%		26.3%				
Total Annual Energy	Savings	3.1	kW					
		16,336	kWh					
		0	Therms					

Baseline Data

					Split and I	Packaged DX Syst	em - Energy Us ting Conditions	age				
acility nit Location Ig Jodel #	Carver Ranch AHU-1 Trane Split S MCCB030UA	nes Ubrary /stem CADUE										
Head Text reverter alimated SF Servers as Cooking Load as Heating I and esign GA Heating begin GA Heating begin GA Heating begin GA Heating begins and the Cooking test Cooking test Cooking test Cooking test Cooking test Cooking test Cooking test Heating test Heating test Heating	by Unit errp errp Area gass > Temp > Temp	10680 318.0 1315.3 37 40 50 6.7 72 70 70 17 200.0 715 6.0 70 70 70 70 50 85 5	SF kbu/hr kbu/hr org-F org-F kbu/hr drg-F kau/h degF drg-F bau/h degF drg-F	4005F/Ton 12 6 MEH41COBSF	TAG AHU A	LOCATION Thray	MEG Trivin Split System	MODEL IXTB03C IAGAC	MFG YR 2007	EER. 1001	COP 1 07	
N Cooling System		30 420 10.01 198 2 44.55	tons libtu/hr New EER/SEB IoWTon Age of Unit (yrs Full Load KW(c	9:PLV) legraced 0.5% per year;	"Repaire Units in	iel .						
eating System		0 99990656999.00 12 0.00	ldtuthr COP Age of Unit lyrs kbtuthr Input	1								
ectric Heating Cap	inty -	133.00	INV									
erage Electric Cos erage Natural Gas	Cost	0.000 0.000	\$3635h \$7Therm									
OOLING ENERGY	CONSUMPTI	ON										
Temp Bin (F) 102 97 92 87 82 77 72	Temp diff. (F) 30.5 25.5 20.5 15.5 10.5 6.5 0.5	Westher Bin Data (Hrs) 0 0 54 643 865 624 2,190	Heat Loss Rate (klotu/hr) 384.7 321.7 258.7 195.7 132.7 89.7 8.7	e DX Capacity (ktru/hr) 383 8 410 1 426 5 442 9 459 3 459 3 475 7 492 0	Cycling Capacity Adj. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Adjusted DX Capacity (kbtu/hr) 39338 410.1 426.5 442.8 459.3 475.7 492.0	Rated Electric Input (KVM) 44.55 44.55 44.55 44.55 44.55 44.55 44.55 44.55	Cycling Time Fraction 0.98 0.78 0.61 0.44 0.29 0.15 0.01	Dx Electric Counsumption (MAh) 0 1,083 8,274 5,870 377 16,383			
A TING ENERGY	CONSUMPTI	ON										
Temp Bin (F) 82	Temp diff. (F) 8.5	Weather Bin Data (Hnt) 185	Heat Loss Rate (kbtu/hr) -28.3	e Fumace Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adj. Furnace Capacity (kbtu/hr)	Heat Pump Input (iBtu)	Cycling Time Fraction -2.415.48	Furnace Counsumption (Therms)	Required Audilary Heat (kbtu/hr) -78.35	Required Auxiliary Heat (kVI) -8.31	Aux Electric Hi Consumption (R
57 52 47 42 37 32 27 22 17 12	11.5 11.5 21.6 21.6 31.6 36.5 41.6 46.5 51.5 56.5	123 80 43 15 6 2 0 0 0 0 433	20.3 -50.2 -72.1 -94.0 -115.8 -137.7 -159.6 -181.5 -203.3 -225.2 -247.1	00 00 00 00 00 00 00 00 00 00	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-4,515,14 -6,858,55 -9,490,74 -12,468,60 -15,966,02 -19,774,09 -24,324,17 -29,603,70 -36,091,08 -43,996,92		-50.22 -72.09 -99.97 -115.84 -137.72 -159.59 -181.47 -203.34 -225.21 -247.09	-14,71 -21,12 -27,53 -33,94 -40,35 -46,76 -53,17 -59,58 -65,99 -72,40	1,810 1,890 1,164 509 202 94 0 0 0 0 0 0 0 0
tal Cooling KVV De Ital Cooling KVM C Ital Heating KVM C Ital Heating Therm	nand onsumption onsumption Consumption	42.0 15,383 6,858 0 \$0	làN làNh làNh Therms	_								

					5	plit and Packaged 09 Hour - 16 F	d DX System - E lour: Existing Co	nergy Usage	5. m. 1				
Facility Unit Location Mfg Model #	Carver Ran AH041 Trane Splot MCCB6300	thes Utirary System AUAUUB											
THE TRANSFORMED TO TR	7 ved by Unit g Temp g Temp e in Area iest gan sign Temp ≲gn Temp	10500 515.0 420.0 87 40 50 8.7 72 70 70 5.500.0 71.5 10.500.0 69.5	SF ktowne ktowne deg F deg F ktowne deg F bruh-degF deg F btuh-degF deg F	400SF/Ton SC MDH/108CSF x D C	a Saleby Factor								
Ck Cooling Syste	m	35 420 10.01 1.199 12 44.65	tons klown/ New EER/SEER/ KWTan Age of Unit (yrs) Full Laad KW (da	11PLV graded 0.6% per year									
Heat Fumo Syste	11	0 01 9999009999 12 9 00	House COF Age of Ucit (grs) kbluite input										
Electric Healing C	apa city	135	RVV										
Average Electric (Average Natural (Cos: Sas Cóst.	0.866 8.000	\$/35h \$/Them										
Temp E	in Temp diff. (F)	Weather Bin Dat (Hrs)	a Heat Loss Rate (kbturhr)	DK Capacity (kitu/hr)	Cycling Capacity Adi, Factor	Adjusted DX Capacity (kbtu/hr)	Rated Electric Input (KW)	Cycling Time Fraction	DX Supplied Coping (MMBtu)	DK Electric Counsumption (kWh)			
102 97 92 82 87 82 77 72	30.5 25.5 20.5 15.5 10.5 5.6 0.5	0 5 174 787 816 809 279 2,669	384.7 321.7 256.7 196.7 132.7 89.7 6.7	383.6 410.1 426.5 442.9 459.3 475.7 492.0	1.000 1.000 1.000 1.000 1.000 1.000 1.000	383.0 410.1 426.5 442.9 459.3 475.7 492.0	44,55 44,55 44,55 44,55 44,55 44,55 44,55 44,55	0.98 0.78 0.61 0.44 0.29 0.15 0.01	0.00 1.61 45.01 153.99 100.28 42.43 1.85 353.14	0 175 4,701 15,488 10,600 3,973 168 35,005			
HEATING ENER	BY CONSUMP	TION											
Temp E (F) 57 52 47 42 37 32 27 22 17 12 Total Caplica 144	lin Temp diff. (F) 7.6 12.5 17.5 22.5 32.5 32.5 32.5 32.5 47.5 62.5 57.5 Composed	Weather Bin Dat (Hrs) 70 34 17 6 2 1 0 0 0 0 0 129 42.0	ta Heat Loss Rate (kotu/hr) - 105.3 - 175.3 - 245.3 - 305.3 - 305.3 - 455.3 - 525.3 - 655.3 - 655.3 - 736.3 - 806.3 - 736.3 - 806.3	Furnace Capacity (lictourner) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Dycling Capacity Adj. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Adj. Furnese Capacity (bitrufwr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (KBu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -8,27382 -15,767.39 -23,342,85 -23,342,85 -31,851,05 -41,478,28 -52,457,78 -65,087,07 -78,803,40 -87,120,85 -117,841,88 -143,043,22	Heat Pump Supplied Heating (MMBtu) - 75.78 - 5.98 - 4.17 - 1.59 - 0.77 - 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Fumace Counsumption (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary Heat (<i>datular</i>) -105.35 -175.34 -246.34 -316.34 -365.34 -465.34 -596.34 -696.34 -696.34 -696.34 -696.34 -605.34 -805.34	Required Auxiliary Heat (04%) -38.087 -51.30 -71.89 -92.40 -112.91 -133.42 -153.80 -174.43 -194.94 -216.46 -236.96	Aux Electric Heat Consumption (KVMs) 2,161 1,747 1,222 462 226 133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kW Total Cooling kW Total Heating kW Total Heating he Annual Energy C	Llemand Consumption Consumption rm Consumptio	42.0 35,005 5,951 n 0 \$0	kW kWh kWh Therms										

						3	Split and Package 17 Hour - 00 H	d DX System - E lour: Existing Co	nergy Usage	1.				
Facility Unit Locatio Mfg Model #		arver Pland HU-1 rane Split S ICCB630UA	ies Ubranj Islem DADUB											
THE TRATIS Estimated OF Max Cooling Max Heating Design CA C Design CA C Design CA C Approx # of P Inside Cooling Inside Coolin	VIEW Served & Load Load Soling Te Venple is a mailbeat g Design g Design g Design g g g g g g g g	ay Unit mp mp Area gan Temp Temp	10500 315.0 420.0 47 40 50 8.7 72 70 (2,600.0 71.5 -14000.0 63.5	SF kbtuhr kbtuhr deg-F deg-F kbuhr deg-F buh-degF deg-F deg-F deg-F	400SF/Ton 50 MBH/1000SF v 01	a Salen/ Factor								
Cis Cooling S	System		35 426 10.01 1.199 12 44.65	tons kburk/ New EER/SEER KV/Tan Age of Unit (yrs) Full Laad KV/ (de	n PLV graded 0.5% pcr year									
Heat Fund S	iystem		0 0) 9999399999 12 0 00	Howhin COF Age of Unit ((rs) kbouile input										
Electric Healt	ing Capas	aty	135	KVV										
Average Elec Average Nati	ine Cos Insi Gas (löst.	0.806 0.000	\$/85h \$/Them										
Те	mp Bin (F)	Temp diff. (F)	Weather Bin Dat (Hrs)	a Heat Loss Rate (köturhr)	DX Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adjusted DX Capacity (kbtu/hr)	Rated Electric Input (KW)	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	DX Electric Counsumption (KMh)			
_	102 97 82 87 82 77 72	30.5 25.5 20.5 15.5 10.5 5.6 0.5	0 1 276 821 882 539 2,509	364 7 321.7 256 7 196 7 132.7 89.7 8.7	383 8 410.1 426 5 442.9 459.3 476.7 492.0	1.000 1.000 1.000 1.000 1.000 1.000 1.000	383.0 410.1 426.5 442.9 458.3 475.7 492.0	44,55 44,55 44,55 44,55 44,55 44,55 44,55 44,55	0.88 0.78 0.61 0.44 0.29 0.16 0.01	0.00 0.32 2.85 63.81 100.92 60.05 3.59 229.54	0 35 297 5,412 10,664 6,824 325 22,258	-		
HEATING EN	NERGY C	ONSUMPTI	ON											
Tetal Cooling Total Cooling Total Cooling	mp Bin (F) 82 57 52 47 42 37 32 27 22 17 12 kW/Dem kW/Dem	Temp diff. (F) 76 125 175 225 375 325 375 425 575 525 575 and nsumpton	Weather Bin Dat (Hrs) 106 60 31 10 3 1 0 0 0 0 0 0 0 211 42.0 22.258 22.258	 Heat Loss Role (Idouthr) 106.3 175.3 -246.3 -305.3 -465.3 -526.3 -805.3 -805.3 -805.3 -805.3 -805.3 -805.3 -805.3 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805.4 -805	Funace Capacity ((cap/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Dyeling Capacity Adj, Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj Furnace Capachy (btrubri) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (KBu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -15,273.29 -15,767.39 -23,342.85 -31,851.95 -41,478.29 -42,457.78 -45,987.07 -78,803.40 -97,128,56 -117,841.88 -143,043,22	Heat Pump Suppled Heating (MRBu) -11.17 -10.62 -7.61 -3.15 -118 -0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Fumace Counsumption (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Audity, 1 Heat (defuhr) -105.35 -175.34 -315.34 -315.34 -455.34 -455.34 -465.34 -605.34 -605.34	Required Aurolay Heat (040) -30.87 -51.38 -71.89 -92.40 -112.81 -133.42 -153.83 -174.43 -184.94 -216.64 -236.96	Aux Electric Heat Consumption (kWh) 3,272 3,063 3,272 8,2728 9,24 9,24 339 0 0 0 0 0 0 0 0 0 0 0 0 0 9,979
Total Heating Annual Ener	Therm C gy Cost	onsumption	0 \$0	Therms	-									

							and a state of the	dentire ta la						
							Split and Package 00 Hour - 08 H	d DX System - E our: Proposed C	nergy Usag onditions	e				
Unit Location	on 1	arver Ranch HU 1	les Library		3									
Model #	- 2	_			3									
"Nets root a Estimated S Max Cooling Max Heating Design OA Design OA Design OA Design OA Agains & of Aketage into Inside Cooli Inside Cooli Inside Cooli Inside Cooli Root - Coolin Toal - Coolin Toal - Coolin Toal - Heatin Toal - Heatin	s weur SF Served g Load Cooling To Cooling To Reople in Heating Design ing Design ing Design ing Design ing hig hig hig hig hig hig hig	by Unit mp Anea gain Temp Temp	10500 215 U 131 3 85 60 5 7 70 10 15,000 0 73,8 4375 0 88,5	SF Idualine Idualine deg-F deg-F deg-F deg-F bouch deg-F deg-F bouch deg-F deg-F deg-F	400SF/Ton 12.5 MBH/1000SF	TAG	LOCATION	MFG	MODEL	MIFG YR 7037	TER IN B	COP		
DK Coping	System		98 420 10.9 111 5 90.89	tons khtuhr New EERCEER WWTon Age of Unit (yrs Far Loso IWV(c	RAPEV () Jegraced 0.5% per year	1								
Heat Pump	System		0 8999999999 0 0.00	Kistuller COP Age of Unit (yrs kistuller input	9									
Electric Hea	iting Capa	=Q.	133.00	1099										
Average Els Average Na	etric Cost wrai Gos	Cost	0.000	李永达h 李/Thann										
COOLING	ENERGY	CONSUMPTI	ION											
Т	emp Bin	Temp diff.	Weather Bin Dat	a Heat Loss Rati	e DK Capacity	Cycling Capacity	Adjusted DX Capacity	Rated Electric Input	Cycling Time	DX Supplied	DK Electric			
-	102 97 92 87 82 77 72	11) 28.4 23.4 18.4 13.4 8.4 3.4 -1.6	(Prs) 0 0 54 643 888 624 2,190	428.7 351.7 276.7 201.7 126.7 51.7 -23.3	393 8 4 10 1 4 26 5 4 42 3 4 59 3 4 75 7 4 92 0	A0, 73(0) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	(451097) 383 8 410 1 426 5 442 9 459 3 475.7 492 0	38,88 30,89 38,89 38,89 38,89 38,89 38,89 38,89 38,89 38,89	100 0.06 0.65 0.45 0.28 0.11 -0.05	Cooling (Wildst) 0.00 0.00 10.89 81.45 44.80 -14.56 122.88	Counsumption (kvin) 0 956 6,897 3,671 -1,151 10,373	-		
HEATING E	ENERGY (ONSUMPTI	ON											
т	emp Bin	Temp diff.	Weather Bin Dat	a Heat Loss Rati	e Fumace Capacity	Cycling Capacity Adi, Easter	Adj. Furnace Capacity Odptudor)	Heat Pump In put	Cycling Time Fraction	Heat Pump Supplied	Furnace Counsumption (Therm	Required Auxiliary	Required Auxiliary Heat (kW)	Aux Electric Heat
-	62 57 52 47 42 37 32 27 22 17 12	6.5 11.5 18.5 21.6 28.5 38.6 41.6 48.6 51.5 58.6	(1783) 123 80 43 16 5 2 0 0 0 0 0 433	-28.3 -50.2 -72.1 -94.0 -116.8 -137.7 -159.6 -181.6 -203.3 -225.2 -247.1	00 00 00 00 00 00 00 00 00 00 00 00 00	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	00 00 00 00 00 00 00 00 00 00 00 00 00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-2415.48 -2,415.48 -4,515.14 -8,858.55 -9,490.74 -12,468.60 -16,865.02 -18,774.89 -24,324.17 -29,683.70 -36,091.08 -43,866.92	-means (correction) -6.18 -5.77 -4.04 -0.89 -0.32 0.00 0.00 0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1,810 1,810 1,880 1,194 408 202 94 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Coolin Total Coolin Total Heatin Total Heatin Annual Ene	ng KW Den ng KWh Co ng KWh Co ng Therm C ergy Cost	nand nsumption nsumption Consumption	38.9 10,373 6,868 0 \$0	KW KWh KWh Therms	_									

				s	Split and Package 09 Hour - 16 Ho	d DX System - E our: Proposed Co	nergy Usage anditions					
Facility Carver Flanch Unit Location AHU-1 Mig Medial #	es Ubranj	_										
"HED TAXT IS/HOUT Estimates GF Served by Unit Max Councy Load Taxt Henring Load Hearton TA Coefficies Terms Hearton TA Coefficies Terms Hearton TA Coefficies Terms Institute Hearting Design Terms Institute Hearting Design Terms Histor Coefficies Design Terms Histor Coefficies Design Terms Histor Coefficies Design Terms Histor Coefficies Design Terms Histor Coefficies Terms Histor Coefficies Terms Histor Terms Tool: Hearting	10500 815,0 4200 40 50 8,7 74 74 75 6,000 73 6,000 73 6 ,000 73 6 ,000 5 9 5 5	SF ktuuhn ktauhn deg-F deg-F ktauhn deg F deg F htuh-degF deg F htuh-degF deg F	400SF/Ten SC MB##1000SF y 0 P	Salety Factor								
Os Cooling System	35 420 108 1.111 0 38.89	tons New EER/SEER/ NWTon Age of Unit (yrs) Full Laad WV (dor	PLV graded 0.6% pcr year)									
Heat Fund System	0 0) 9999009999 0 00 0	khohr COF Age of Unit (yrs) kbluðe (riput										
Electric Heating Capacity	133	KVV										
Average Electric Cos: Average Natural Gas Cost.	0.806 0.005	\$/kV/h \$/Them										
COOLING ENERGY CONSUMPTI	ION											
Temp Bin Temp diff. (F) (F)	Weather Bin Data (Hrs)	Heat Loss Rate (kbturhr)	DK Capacity (kbtu/hr)	Cycling Capacity Adi, Factor	Adjusted DX Capacity (kbtu/hr)	Rated Electric Input (KW)	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	DK Electric Counsumption (kWh)			
102 284 97 234 92 164 87 134 82 84 77 34 72 -1.8	0 5 174 816 809 278 2,868	426.7 351.7 201.7 126.7 61.7 -23.3	393 0 410.1 426 5 442.9 459 3 476.7 492.0	1.000 1.000 1.000 1.000 1.000 1.000 1.000	383.0 410.1 426.5 442.9 458.3 475.7 492.0	36.69 36.69 38.89 38.89 38.89 38.89 38.89 38.89	1.00 0.86 0.46 0.20 0.11 -0.05	0 00 1.76 40 14 158.71 103.36 31.47 -8.49 336.95	0 167 4,399 13,936 8,752 2,573 -513 29,304			
HEATING ENERGY CONSUMPTI	ON											
$\begin{array}{c} {\rm Terrop Bin \ \ Terrop \ } \\ (- \frac{6}{5})^2 & (- \frac{7}{2} \\ (- \frac{5}{2} \\ - \frac{5}{2} \\ - \frac{5}{2} \\ - \frac{5}{2} \\ - \frac{1}{2} \\ - \frac{5}{2} \\ - 5$	Weather Bin Data [Hrs] 70 34 17 5 2 1 0 0 0 0 0 129	 Heat Loss Rate (ktbu/hr) 105.3 -176.3 -246.3 -316.3 -365.3 -466.3 -526.3 -606.3 -726.3 -806.3 	Furnace Capacity (kicks/hr) 00 00 00 00 00 00 00 00 00 00 00 00 00	Oycling Capacity Adj, Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj, Furnace Capacity (btulwr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input ((8b)) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cycling Time Fraction -8,978.82 -16,787.39 -23,342,85 -31,851,85 -41,478,28 -62,457,78 -65,087,07 -79,803,40 -97,128,95 -117,841,88 -143,043,22	Heat Fump Supplied Heating (MMStu) - 7 37 - 5 98 - 4 17 - 0.77 - 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Heat Pump Electric Counsumption (Therms) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary Heat (khtuhr) -105.35 -175.34 -246.34 -315.34 -315.34 -365.34 -525.34 -525.34 -565.34 -665.34 -735.34 -005.34	Required Auxiliary Heat (IAV) -30.87 -51.38 -71.89 -02.40 -112.81 -133.42 -153.83 -174.43 -194.94 -216.46 -236.96	Aux Electric Heat <u>Consumption (kWh)</u> 2,161 1,747 1,222 226 123 0 0 0 0 0 0 0 0 0 0 0 5,951
Total Cooling KW Demand Total Cooling KWh Consumption Total Heating KWh Consumption Total Heating Therm Consumption Annual Energy Cost	38.9 29,304 5,951 0 \$0	kW kWh kWh Thems										

						Split and Package 17 Hour - 00 Ho	d DX System - E our: Proposed C	nergy Usage onditions					
Facility Unit Location Mfg	Carver Rand	hes Ubranj											
Model #				S. 1									
THE TEXT IS/IP/O Estimated OF Sam Max Cooling Load Max Heating Load Design CA Coolin Apprové of Peopl Average reternal fu Instée Cooling De Instée Cooling De Instée Cooling De Instée Cooling De Instée Cooling De Instée Cooling Mot - Heating Hail - Dooling	r vad by Unit g Temp g Temp e in Area e in Area e in Area e in Gam sign Temp sign Temp	10500 3:5,0 4200 85 40 50 8,7 74 78 6,000 0 73 8 -14000 0	SF Hawhin Hawhin degy-F degy- NHAWIN degy- bruch-segF degy- bruch-segF bruch-segF	4005F/Ten 50 MBH/1000SF v 01	ð Safetly Fástor								
Cis Cooling Syste	m	35 420 108 1.111 0 38.89	tons New EER/SEER New EER/SEER NWTon Age of Unit ((rs) Full Load KW (do	nPLV graded 0.5% per year	1								
Heat Pump System	11	10.0 202000222 0 90.0	Hotohir COF Age of Unit (grs) Kbouire input										
Electric Healing C	apa city	133	KVV										
Average Electric C Average Natural C	Coss Jas Cóst	0.806 0.007	\$7354h \$7Them										
COOLING ENER	3Y CONSUMPT	ION											
Temp E (F)	lin Temp diff. (F)	Weather Bin Data (Hrs)	 Heat Loss Rate (kbturhr) 	DK Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adjusted DX Capacity (kbtu/hr)	Rated Electric Input (kVV)	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	DK Electric Counsumption (KMh)			
102 97 92 87 82 77 72	28 4 23 4 10 4 13 4 8.4 3.4 -1.8	0 1 11 275 821 862 538 2,509	426 7 361 7 276 7 201 7 126 7 51 7 -23 3	383.6 410.1 426.5 442.9 459.3 475.7 492.0	1.000 1.000 1.000 1.000 1.000 1.000 1.000	383.6 410.1 426.5 442.9 459.3 475.7 492.0	30,89 30,89 30,89 38,89 39,89 38,89 38,89 30,89	1.00 0.86 0.46 0.28 0.11 -0.05	0 00 0.35 3 04 65.46 103.99 44.54 -12.68 184.81	0 33 277 4,870 6,006 3,841 -994 18,633			
HEATING ENERG	BY CONSUMPT	ION											
Temp E (F) 62	lin Temp diff. (F) 7.6	Weather Bin Data (Hrs) 108	a Heat Loss Rate (kbtu/hr) -105.3	Furnace Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adj. Furnace Capacity (ktruhr) 0.0	Heat Pump Input (kBtu) 0.00	Cycling Time Fraction -8,979.82	Heat Pump Supplied Heating (MMBtu) -11.17	Fumace Counsumption (Therms	Required Auxiliary Heat (kttu/hr) -105.35	Required Auxiliary Heat (IAV) -30.87	Aux Electric Heat Consumption (kWh) 3,272
67 62 47 42 37 32 27 22 17 12	12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 62.5 57.5	60 31 10 3 1 0 0 0 211	-175.3 -245.3 -315.3 -305.3 -455.3 -525.3 -695.3 -695.3 -736.3 -005.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-15,767,39 -23,342,85 -31,851,95 -41,478,28 -52,457,78 -55,087,07 -79,803,40 -97,120,95 -117,841,88 -143,043,22	-10.62 -7.61 -3.15 -0.46 0.00 0.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0 0 0 0 0 0	-175.34 -245.34 -315.34 -305.34 -525.34 -525.34 -595.34 -605.34 -735.34 -605.34 -605.34	-51.38 -71.89 -92.40 -112.81 -133.42 -153.83 -174.43 -184.94 -216.46 -236.96	3,063 2,228 924 339 133 0 0 0 0 0 0 9,979
Total Cooling kW Total Cooling kW Total Heating kW Total Heating the Annual Energy C	Demand Consumption Consumption Im Consumption	38.9 18,633 9,979 1 0 \$0	kW kWh kWh Therms										

An ENGIE company

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Broward Carver R: Optimize	County anches Library HVAC Schedules	& Set Po	ints - 1st	Floor -	AHU-1															Oranti Filting (/	19420-112 19420-111
Assumption	ns: 205 kp minimum ed Setup load smedated Betback load smedat Ovly recognizes "off	th VPDs 5 by reduction red by reduct 7 fam sayings	ion of CA tem ion of CA te for CV fails	ip equal to mip equal	setup dita tu setback	nerilat Set dillereritat	up load = Selback	MIN((CAT- kad = MIN	Lag*LSan IIIHading	up T - Spec load zoro T	OAT-L	ng zaró koa ag"(Spaco	d T) ()) / ((T Selbod	Thing the	toad T - Cox Sealing Sere	Ning zaro i Goad T - F	oad T) fouling ful	lew(T)			
Busis:	Fanopa	ration type	vid		Constant V	alume CV	VED VED	t, inter Viim	i IV, Diret	harge Dem	ner DD										
	Totel In Molor Existing averag	n moler hp. lead factor e motor eff Orive eff	15.0 % 75% 10 7% 96%	w	and appres	une 10 C v															
I and profil	e characterístics (en	ter under Eg	uip Summe	ary page).	-																
	Fullio Heating Heating 2	ed heating pefficiency ful load at see load at Delta	133 W 100 W. 40* 55*	ABDU/Ar		Aug	Full Ion Cooling fo Cooling fo Cooling 20	d cooling efficiency at load at folia at Dolla	10 0 1 14 87 70 27	kom: #Wilten	(include pr	umps&co	aling towar	fans in MA	(ten if apple	(e)(te					
Schedule:	First month of cool Last month of cool	ng season ng season:	2F II N	abnuary lov embar		Weat	hordata: 1	For Lauder	adio Terry	ioraturo Eli	15.	Annu (Na	al Cooling al Heating Elinder Di	Savings: Savings: mand Sav	14,572 1,825 ngs Claimn	kWh kWh	1.1	Baséline (Web 0.976 96,758	k¥#tan WMr	
Lond Adjus	tments: Setpoint adjustment	moderator:	08		Dampers (T changes (n sepont	s (11 =1, rs	duces loa	d chiange.)		Baselne (Baselne)	Cooling En teating En	eilli .	81,732 3,512	kivni kivni	Encrit	Baseline (19,500	kWh	
	Unoccupied se Unoccupied set Weekenits or	tback ends ack begins	855 185	anus and	tine mus	Unapole Weat	and settla	ack ends: ck begins ccupied?	85 185 No	Securi and	tine mus	Setup on	t thus my	EFUI:	2101 054	Hours					
Con	upied cooling space to Cooling setue to	ompierature Hisporature	72* 78*		Geeu	pieš coding Cooling	space ten setigiten	iperature. Iperature:	741 60*	0- 08			10001	Blaseline C Usage	436,740	of Barris	e ::				
Oct	upied Pauling space to He sting setback to	emperature emperature	70*		Occup	tied heating	space ten	d cooling operature operature	78*	On, OII	CASIN										
, han	mode during unaccode Occupied Percent (ed kesting Outside Air	10%		Fan m	ode during Occupied	Percent O	d kesting utside Air	10%	On Off.	Cycle										
	Unaccupied Percent 1	Outside Air	079-			inecomped	Philopol D	itelde Air	0%												
Bri Average (PD)	Cooling Nours	Load P	tofile 1	Occuped Vide Existing	Cooling fm Proposed	Vid F Existing	an Toposed	Cooling Existing	Proposed	Cooling	Hours	Load	Profile	Unnecupie vfd Existing	cfm Proposed	vid Existing	Fan Proposed	Cooling Existing	Energy Proposed	Fan BARA	Cooling (AMb)
107.5 102.5 97.5	0.0 0.0 0.0 0.0 4.0 4.0	0 100% 100% 100%	100% 100% 96%	100%	96%	0.0 0.0 9.8	0.0 0.0 0.7	0.0 0.0 41.6	0.0 0.0 39.0	0.0	0.0 0.0 0.0	100% 93% 76%	100% 88% 71%		I.L	0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	004	0 0 7
92.5 87.5 82.5	175.1 175.1 857.8 857.8 957.7 957.7	83% 65% 46%	77% 59% 40%	101% 65% 45%	77% 59% 40%	5.8 28 11	47 22	34.6 26.9 19.2	30.1 24.5 16.8	6.9 241.2 1227.3	8.9 241.2 1227.3	60% 43% 26%	54% 37% 21%	80% 43% 30%	54% 37% 30%	0.0	0.0	24.7 17.8 10.8	225 155 85	194 571 324	441 2,650 5,102
72 5 67.6 62.5	* 257 2 257 2 * 90.6 90.6 * 44.6 44.6	51% 0% 0%	3%	30%	30% 30%	11.4 0.4 0.4	0.4	38 0.0 0.0	1.4	7528 200.4 155.4	757 B 200.4 155.4	0%	0%	30%	30% 30% 30%	0.0	0.0	0.0	0.0	000	ELS D
57.5 52.5 47.5	17.3 17.3 5.8 5.8 0.9 0.9	0%	0% 0% 0%	30% 30% 30%	30% 30% 30%	0.4 0.4 0.4	0.4 0.4 0.4	0.0	0.0 0.0 0.0	92.7 46.2 19.1	92.7 46.2 19.1	0% 0% 0%	0% 0% 0%	30% 30% 30%	30% 30% 30%	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	000	0
42.5 37.5 32.5 27.6	-0.1 -0.1 -0.1 -0.1 0.0 0.0	0%	0% 0% 0%	30% 30%	30% 30%	0.4 0.4 0.0 0.0	0.4	0.0	0.0	7.1	7.1	0% 0% 0%	0% 0% 0%	30% 30%	30% 30%	0.0	0.0	0.0	0.0	000	0
22.5 17.5 12.5		0%	0%			0.0	0.0	0.0	0.0	0.0	0.0	0%	0%			0.0	0.0	0.0	0.0	000	0
7.5 2.5 -2.5	0.0 0.0	0%	0% 0% 0%			0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0	0.0	0% 0% 0%	0% 0% 0%			0.0	0.0	0.0 0.0 0.0	0.0	0000	0
-7.5 -12.5	0.0 0.0 0.0 0.0 3,033 3,033	0%	0%			0.0	0.0	0.0	0.0	0.0 0.0 4,239	0.0 0.0 4,239	0% 0%	0% 0%			0.0	0.0	0.0 0.0	0.0	0 0 1,094	0 0 13,478
			Öccu	pied Heat	ing	or. 1993		0.02.0			0.000		_	Unoccupie	ed Heating	a (10)				Sa	wings
Bin Average ("F)	Heating Hours Existing Proposed	Load P Existing	rofile Proposed	vfd c Existing	fm Proposed	vfd F Existing ((kW)	an Toposed (KW)	Heating Existing (therm/hr)	Energy Proposed 'therm/hr)	Heating (hrs)	Hours (hrs)	Load I Existing	Profile Retroft	vfd Existing	cfm Retroft	vfd Existing (off)	Fan Retrofit (off)	Heating Existing (therm/hr)	Energy Proposed (thorm/hr)	Fan (KWb)	Heating (therm)
107.5 102.5 97.5		0%	0% 0% 0%			0.0	0.0	0.0	0.0	0.0	0.0	0% 0% 0%	0% 0% 0%			0.0	0.0	0.0	0.0	000	0
92 5 87 5 82 5 77 5	4.0 4.0 72.1 72.1 213.8 213.8	0%	0%	30% 30%	30% 30%	0.0	0.4	0.0	0.0	0.0 0.0 6.9	0.0 0.0 6.9	0%	0%	30%	30%	0.0	0.0	0.0	0.0	0000	0
72.5 67.5 62.5	154.6 154.6 76.5 76.5 51.4 51.4	0%	0% 0% 10%	30% 30% 30%	30% 30% 30%	0.4	0.4	0.0	0.0	287.4 158.5 94.6	267.4 158.5 94.6	0%	0%	30% 30% 30%	30% 30% 30%	0.0	0.0	0.0	0.0	0000	0
57.5 62.6 47.5	27.9 27.9 14.7 14.7 4.4 4.4	30% 60% 70%	30% 60% 70%	30% 60% 70%	30% 60% 70%	0.4 1.4 3.5	0.4 1.4 3.5	0.4 0.7 0.9	0.4 0.7 0.9	81.1 67.3 34.6	81.1 67.3 34.6	13% 31% 49%	0% 16% 35%	30% 31% 49%	30% 30% 35%	0.0	0.0	0.2 0.4 0.7	0.0 0.2 0.5	0000	14 11 7
42.5 37.5 32.5	1.0 1.0 -0.3 -0.3 -0.1 -0.1	90% 100% 100%	90% 100% 100%	90% 100% 100%	90% 100% 100%	7 2 9.8 9.8	7.2 9.8 9.6	1.2 1.3 1.3	1.2 1.3 1.3	12.0 4.3 2.1	12.0 4.3 2.1	67% 85% 100%	53% 71% 89%	67% 85% 100%	53% 71% 89%	0.0	0.0	0.9 1.1 1.3	0.7 0.9 1.2	000	2 1 0
27.5 22.5 17.5		100% 100% 100%	100% 100% 100%			0.0	0.0	1.3 1.3 1.3	13	0.0	0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	13 13 13	13 13 13	000	0
12.5 7.5 2.5		100% 100% 100%	100% 100% 100%			0.0	0.0 0.0 0.0	1.3 1.3 1.3 1.3	13 13 13	0.0	0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	1.3 1.3 1.3	1.3 1.3 1.3 1.3	0	0
-7.5	0.0 0.0	100%	100% 100%			0.0	0.0	1.3	1.3	0.0	0.0	100% 100%	100%			0.0	0.0	1.3	1.3 1.3	0	0

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Pearl Library															
MODEL CALIBRATION Baseline EOUEST Aladei Error	Electr 425 431	1,270 1,372 43%	8.0	0 0 xDive	ans.										
E MODEL	-	-	-	-	-	_	_				_	_			
EM1 ELECTRICITY KWH MAK KW	JAN 31,660 95.2	PEB 29,571 97.5	MAR 34,660 93.4	APR 34,816 103	MAY 35,601 100.8	38,855 105.2	JUL 40,640 108.7	AUG 41,936 107.5	SEP 39,461 107.8	OCT 37,386 106.3	NOV 33,777 98.4	DEC 33,008 96,1	ANN 431,372 108.7		
DAYIHR FMI NATURAL-GAS THERM MAX THERMIHR DAYIHR	23/14 JAN 0 0/0	27/14 FEB 0 0/0	20/14 MAR 0 0/0	0 0 0/0	29/14 MAV 0 0/0	26/14 JUN 0 0/0	43022 JUL 0 0/0	28/14 AUG 0 0/0	43053 SEP 0 0/0	42780 0 0 0/0	23/18 0 0 0/0	25/14 DEC 0 0/0	42926 ANN 0 0/0		
hting Upgrade															
EM1 ELECTRICITY KWH MAX KW DAYJHR	JAN 17,787 48.3 23/14	FEB 16,770 50,4 27/14	MAR 19,638 46.9 20/14	APR 20,276 55.3 17/14	MAY 21,812 53.3 42961	30N 24,966 57.6 26/14	JUL 26,039 61.1 43022	AUG 26,522 59.9 28/14	SEP 24,702 60.7 43053	0CT 22,758 58.8 42780	NOV 19,854 49,7 20/14	DEC 18,682 49,7 25/14	ANN 259,206 61.1 42926		
FM1 NATURAL-GAS THERM MAX THERMAR DAYAR	JAN 0 0/0	PEB 0 0/0	MAR 0 0 0r0	APR 0 0/0	0 0 0/0	UN 0 0 0 0	0 0 JUL	AUG 0 D/ D	SEP 0 0 0/0	0 0 0'0	NOV 0 0/0	0 0 0/0	ANN 0 0/0		
SAVINGS KWH SAVINGS THERM SAVINGS KW SAVINGS	12.0723 0 46.90	12,001 0 47 10	MAR 15,022 10 49-50	APR 14,540 0 .47.70	MAY 11,700 0 47.50	3UN 11,401 0 47,60	34,007 0 47.60	AUG 15,414 0 47.60	SEP 14,759. 0 47.10	001 14,628 0 47,50	NOV 13,023 .0 .48.70	0 0 14,126 0 16,40	ANIN 172,166 D 47.60	Savings Percent of Baseline 40,1% #Div(0) 47.35	AvgMostery We Savey
unize HVAC Schedules & Se	Points	_		_	_		_		_			_	_		
EM1 ELECTRICITY NONH MAX RW DAYNE	11,000 11,000 88,7 23/14	FER 10.671 52.2 27/14	MAR 13.954 40.2 20/14	AFR 13.765 58.6 17/14	VAN 14,540 56 A 4362	309 (6.037 61.7 26/14	344. 17,772 64.0 45022	AUG- (7,947 64.4 25/14	56P 16,443 65 43053	0CT 15,087 632 42710	NOV (2,243 52,2 42160	080 12,347 512 25/14	42100 1/3.605 65 421008		
FMI NATURAL GAS THERM MAN THERMAR DAVMR	JAN 0 0 0	PEB 0 0/0	MAR D D D/0	APR 0 0 0/0	MAY'	2014 D. D D/ D	30/L 0 0/0	AUG G G O	SEP 0 0 0/0	001	HOV.	080 0 0 0/0	ANN C C		
BAVINGS ROWH SAVINGS THEOM SAVINGS RW SAVINGS	11481 0 04.00	FEB 5,009 6 -1:00	MAR 8,284 8 -1 30	4P9 6,511 D -3.50	7,464 0 -3 10	2014 7,709 Ll -4,10	JUL 8,267 0 -3 70	AUG 0.575 0 -4.50	369 10231 0 400	007 1,701 0 -4.45	NOV 6,611 6 -2,50	0EC 8.335 0 -150	ANIN 85,541 D -3,160	Savings Percent of Baseline 19,9% #CKV/03 -2,91	Avg Monthly XVV Saving
ergy Efficient Upgrades to Ba	5		-		_			_	_		_	-	_		
ENT ELECTRICITY WWH MAX KW DAYHR	JAN 11,449 46 8 23/14	FEB 10,522 59.1 27/14	MAR 12,008 46.4 29/14	AFR 13,208 55.7 17/14	MAT (3,765 53.0 42963	15,009 36,4 26/14	101 16,851 8019 43022	AUG 17,051 61 29914	SEP 15,626 61.4 43053	0CT 14,393 59,9 42780	NOV 12,751 50 42900	DEC 11,361 49.1 25/14	ANN 785-252 81.4 42989		
PMI NATURAL-DAS THERM MAX THERMAR DAVAR	JAN 0 0 0 0	PEB	MAR D D/O	49-0 0 0/0	MAY C O/D	aute B B B B B B B	JUL 0 0/0	AUG- C O/R	SEP S Di O	D D D D D	NOV Q Q Q Q	Deci D Dro	ANIN Q Di 0		
SAVINGS FWH SAVINGS	LAN 413	728 345	MAR 465	4PH 507	HAY 543 0	10W 148- 17	101- 923- 0	AUG BHo D	DEP NCB 0	007 663 0	HOV.	1350 1960	4Nh 7,410	Savings Percent of Basevine 1.7%	

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

BODEL CALIBRATION Baseline BOLE ST Model Error	Electr 317 313 -12	10 kWh (610) (801 20%	Na	Gas The D D MDFV/01	litre										
LINE MODEL		-		-	_	-					_	-	-		
EM1 ELECTRICITY RWH MACK KW DAWHH	3414 72,753 57.2 367.9	FEB 21,377 58.3 25020	MAH 73(85) 59.5 10/20	WPR 24,466 63.3 15/18	MAY 38,309 83,5 42984	JUNI 29,17,9 88,1 28,17	JUL 11,040 59.2 43672	AU8 31,447 60.5 81,19	889 290,979 70.5 42905	0C1 27,000 86.7 42783	1404 24,002 52.4 23/18	DEC. 23,170 81 42997	4555 705 42978		
FM1 INTURALIGAS THERM MAX THERMINE: DAWNER	.MH 0 0:0	FEB.	MAF) 0 0/0	APR 0 0 010	MAS II II II II II	0 0 0'0	0.0	AU0 0 000	88F 0 0 0/0	0 GT D n UFU	мфи п о с	0000 0 0 0	AMM 0 0 0 0		
- Lighting Upgrade	1.1.1						-								
ENT CLECTRICITY	JAN 10,668 52.7 36/19	FEB 17,647 54.6 25/20	MAR 19,318 47.1 10/20	AFR 20,092 60.9 2320	MAY 21,045 51,1 42963	JUN 24,657 55.9 26/17	JLA 26,448 57.5 43022	AUG 26,904 58 31/19	SEP 24,963 50,0 42935	0.CT 22,602 54.7 42780	NOV. 19,042 49.9 2319	DEC 19,091 40,5 42997	ANN 262,197 56.0 42978		
THERM MAX THERMINE DAVINE	JAN 0 0	0 9 90	MAR 0	APR 0 0	MAY 0 8	JUN 0 0	JUL 0	AUG	0 0 0	OCT 0 0	NOY 0 U	0 0 0	ANN 0 0		
SAVINOS RVVH SAVINOS THERM SAVINOS	1,000 0 0	1118 3(625) 0	MAR 4,535 0	ATTC 4.394 0	MAY 4.364 11	JUN 4,502 0	JUL 4,592 0	AU0 4,63/ 0	521 4,416 0	4,398 0	140W 4,166 0	0 11 50	AA#4 51,601 0	Savings Percent of Deselve 18,2% #DAV/DI 19,70	aut Michiel MI Press
CALORY INSS	400	570	12.40	1240	1240	12.20	1110	11.50	11 Jul	+2.00	42.50	12.90		1972	und worden and grand
- NEWWORK TSUES EMT BLECTWICITY KWIH MAX, KW TAWKER	3474 10,919 40,9	668 10,354 47.6 43mp	MAR 12,785 40.4 12745	APR 13,003 515	MAY 13,547 57 2014	JUN 16,251 59.1	JUL 18,363 59.2 43032	AU0 19,119 59,4 42014	88P 16,728 80.5	001 14,372 56.9 2014	NOV 12,176 51,9	DEC 11,508 49.6	ANDI 169,103 60.5		
FMI NATURAL-GAS	JAN	FER	MAR	APR	MAV	JUN	.JUL	AUG	SEP	OCT U	NOV.	DEC	A5051		
MAX THERMINE DAY/HR	00	10 g	0 0	0.0	00	a, d â	0.0	0.0	0.0	0.0	0,0	0,0	00		
SAVINOS RAVIN BAVINOS THERM SAVINOS ION SAVINOS	2,963 0 8,80	7,280 0 7.00	MAR 6,553 0 1.30	APR 7,009 0 2,00	MAY 0,290 0 1.90	JUN 0,406 0 2.89	0,025 0,025 0,170	AUG 7,665 0 1.49	0,237 0,170	0,230 0,230 2,20	7566 0 200	0 0 100	A1#1 90,094 0 1.70	Savings Percent of Baseline 28.3% #Dev/or 0.61	Avg Monthly MY Save
BCV	-	-	-	-	-	-	-	-	-	-	-	-	-		
EM1 ELECTROTY RWF MAX KW DAY(HY	JAN 11,202 47,5	10,508 49.4	MAR 12,911 -49.5	A198 13,005 54	MAY 13,206 53.5	dUN 15,271 577	JLA 16,603 58.9	AUG 17,053 58.9	15,528 80.1	001 13,798 57.1	1000 12,209 52.3	DEC 11,892 50,8	ANN 163,229 60,1		
FN1 NATURAL-GAS THERM MAX THERMITY	JAN 0	FER D D	MAR	APR 0 0	MAY D U	JUN 0 U	JIA D D	AU0 0. 0.	SEP 0 0	OCT 0 0	NOV 0 0	DEC 0 0	ANN 0 0		
DAWHR SAVINOS	-283	EEB -154	MAR -145	APR -83	MAY 259	JUN JUN	JUE 1.7EQ	AU0 2016	828 1,199	001 574	NOV -113	DEC -184	AAIN 5,874	Savings Mircont of Busieline 1.8%	
THERM SAVINGS HW SAVINGS	0 1.40	0 1 89	0 110	0.50	0 0.50	0.40	0 30	0.50	0 0.40	0.20	0	1.20	0.40	#D///0 -0.23	Avg Marthiy KW Save
Est Fan Control	-	-	-	-	_		-	-	-	-	-	-	_		
EMT ELECTRICITY POWH MAX ION DAWHR	JAN 11,079 45.8	FEB 10,395 48.5	MAR 12,773 48.9	APR 12,945 53	MAY 13,149 52.9	JUN 15,072 56.8	JUL 16,268 57.0	AUG 16,892 58.4	SEP 15,240 59.8	0/07 13,630 55.4	NOV 12,173 61.6	DEC 11,588 -50,2	ANIN 160,984 69.8		
FM1 NATURALIGAS	JAN O	FEB	MAR	APR	MAY	JUN 0	JUL	AUG	SEP	OCT 0	NOV	DEC	ANIN		
DAWHR	00	avo.	0,0	0/0	000	00	ao	ava	010	0/0	00	a'o	dr a		
EAVINOS KWH BAVINGB THERM SAVINGB KW GAVINGS	123 0 0.70	113 0' 0.99	MAB 138 0 6.00	140 0 140	MAY 140 0 0.70	JUN 199 0 0.99	337 0 1.30	A00 371 0 0.59	200 0 0 0.50	165 0 170	116 0 0.70	123 0 10 00	ANN 2,245 0 20,30	Savings Percent of Discelline 0.7% #DiV/0/ 13.81	HARD MOUNTH KIN GAVE
New HVAC		_	-	_	-	_	_	_	-	_	_	_			
EM1 ELECTRICITY RWH MAX KW DAYNER	JAN 10,669 64.3	10,000 45.7	MAR 12,213 40.1	APR 12,324 49.7	MAY 12,454 49.4	JUN 14,116 52.9	JUL 15,163 53,4	AU0 19,554 54.3	58P 14,278 50,5	0CT 12,896 51.6	NOV 11,599 48.3	DEC 11,111 47.1	ANN 152,376 55.5		
FM1 NATURAL-GAS THERM MAX THERMINE DAY/HE	UAN D D O VO	PER	MAR 0 000	APR 0 0/0	MAY D D D D	UUN 0 0'0	JUL D D Q O	AUG 0 0/0	SEP 0 0 0/0	OCT 0 0 0/0	000 0 000	DEC 0 0 0	AMIN 0 0 0 0		
GAVINOS RAVINSS THERM SAVINOS HW BAVINGS	410 0 2.50	FEB 395 0 2.80	MAR 560 0 780	APR 672 0 3,30	MAY 564 0 3.40	JUN 856 0 3.90	1.103 8 4.20	AU0 1,128 0 -410	8EF 870 0 4.30	0 GT 737 0 3 80	NOV 575 0 3-30	DEC 458 0 310	AMD4 8,608 8 -4 30	Savings Percent of Baseline 2.7% #Devidi 3.46	Avg Morthly MV Save
- VAV Control of SZ Units							-	-							C.0.5
EMILELECTRICITY	UAN 11,309 47,0	FEB 10,597 49.5	MAR 13,024 49.9	APR 13,210 54,2	MAY 13,429 54	JUN 15,613 58.4	JLE 16,902 59.2	AUG 17,476 59.3	8EP 15,018 60,5	0CT 13,905 57.1	12,404 52.0	DEC 11,779 51,2	Aran 185,5.34 60,5		
FMI NATURAL-GAS	JAN	FEB	MAR	APR	HAY	HUL	JUL	AUG	SEP	ÓCT	NOV	DEC	ANN		
MAXTHERMINE	00	0.0	0 0 ro	610	0 00	00	00	000	0	0,0	0	0.0	0		
BAVINOS TWO-ISLAVINOS	JAN	PED -742	MAR	APR	MAY	JUN	JUL	AUG	687	007	1100	DEC	ANN	Savings Percent of Daseline	
THERM SAVINGS	0		0	0		10	0	B		and the	0	0	9,000	at the same	

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

An ENGIE company

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Broward Lauderda	County le Lakes Li	brary																			Orman-	10-07 A 02 A 44520 13
Optimize Assumption 1) 2) 3) 4)	HVAC Schi 2015 fija mini Setup load a Betback load Ordy recogni	mum with mutated to I simulated zeto "off" fa	vf Die v reduction by reduction in spyrings	oints - 2 of DA ter on of DA t for CV for	nd Floo npequal t temp equal	er - AHU-2 o setup dift i liv selbaci	nantust S utifieruntu	atup lond = F Sylback	Mela(COAT load = Mel	- Lag"(Se N(Hoading	up T - Spar load sine T	ce T)- Cno F - CMT -	ling piro io Lag"(Space	ad T) (D) / (T Setta	Cooling full dl. T)),Q) / (load T - Co Houling zero	cling zero rioad T	iqad 77 toitting fut	food T)			
Basis:		Fanopent	ion type	wid.		ConstantA	alumu CV	VFD VFL), inlat Van	e: IV, Died	neige Dienij	DD THE										
	Existing	Totel fan r Moinr los average r	notor hp: ad factor notor eff Orive eff VFD eff	20.0 75% (9.0% 96% 97%	lψ	wer appura	me lo Cv															
L and profile	e chameterist H	ics (enter Full load Heating e Heating ful enting zen	moder Equ resting ficiency 1 load at 1 load at Celta:	455 1 100% 43* 43* 43* 43*	ary page). MERUM		~	Full Ion g. Cauling Cooling 1 Cooling 24	d cooling efficiency al load at in load at Colla:	41.7 0.99 97* 70* 27*	torra KWWtorr	(inclusio p	umps & to	oling town	face in We	Mon if apple 0.712	cable)					
Schedule:	First mentle	of cooling	geurson)	23	November		We	the data;	For Laude	rasio Tama	armura Eir	13-	Ances (%)0	al Heating Elocarie D	Savings: Savings: (mind Sav	3,100 ings Claime	kWat H)					
Load Adjust	iments: Setpoint adju	istment ne	nderator.	0.8		Dampers i Ptoposed	T changes	in section)	s (II<1.1	niuces log	t change)		Saseline I Baseline I	Cooling En Teating En	eldi. Fidi	97,459 12,001	KWN KWN	(Electric C	Strymann)			
	Unoccup V/neccup	pied selba ied selbad endo cens	k begins supjed?	20 20 No	Yns/No	_	Unocci	raipied seld Ipied setba ekondo ann	iack ends ck begins; scoupied?	8 22 No	Yos/No				EFIHe	7865 513	Hound					
Que	ipled cooling Cooling	space lem outop tem	per alura pur alura	73* 83*		Coor	cuole Cuole	g space ter g suicp Tor	nperature nperature	73 807	0.00	C.edu		10684	y Dapelina AC Ujama	312 720	of Example	0				
Que	ipind heating of Heating se	space tem (back tem	perature perature	73* 60*		Uccy	and freating Heating	g space ten setback ten	nperature nperature	73* 60*	On OR.	Cycle										
ran	Clocupied I Unoccupied F	Vercent Ou	tude Air: Iside Air:	10%		t an in	Ciccupied	Percent () Percent ()	d oexong: utside Aur utside Air	10%	UR, UR,	Cycle										
1	-		_		Occupier	i Cooling		_		_	_			_	Unoccupie	ed Conting			-		Sa	orings.
Average (%)	Cooling P Existing P	towa toposed	Load Pr Existing F	toposed	Existing	Proposed	Evisting (AW)	Proposed (NW)	Existing (KW)	Proposed (AW)	Cooling Eesting	Hours Proposed	Exerting	Profile Proposed	Evisting	Proposed	Estaing (cf)	Proposed (off)	Einsting (HW)	Eropased (MM)	Fan (KM%)	Cosing
102.5* 97.5* 92.5*	0.0 4.0 190.8	0,0 4,0 179.5	100% 100% 83%	100% 100% 83%	100%	100%	00 130 76	0,0 13.0 7.6	0,0 41.3 34,4	00 413 34.4	0.0	0.0	65% 68% 52%	85% 68% 52%	52%	52%	0.0	0.0	00 00 21 7	0.0 0.0 21,9	0	0 0 16
87.5 82.5 77.5	10/18 6 1648 6 1353 4	9/11.8 1350.3 1002.8	65% 46% 28%	66% 46% 28%	869) 469) 309)	65% 46% 30%	100	37	76.7 19,1 11.5	267 191 115	70 4 536 4 668 6	120.9 834.8 1009.3	36% 18%	38% 18% 1%	30% 30%	38% 30% 30%	0,0	0.0	143 7.4 0.4	2.8 0.4	185 440 172	650 3,502 3,872
62.51 67.62	7% F	1450 1455 76.0	0%	0%	30%	30% 30%	п.6 0.5	0.5	0.0	пп 0.0	145 A 82.6 51.6	784 (784 (124 (77 3	0%0	11%2 D%	30%	30%	0.0	0.0	0.0	0.0	20	T C
52.5° 47.5° 42.5°	25.3 8.6 2.8	12.5 3.3 0.8	0%	0% 0%	30% 30% 30%	30% 30% 30%	0.6	0.5	0.0	0.0	26.7 11.4 4.3	39.6 16.0 6	0%	0% 0%	30% 30% 30%	30% 30% 30%	0.0	0.0	0.0	0.0	6 3	000
37.5° 32.5° 27.5°	0.3	0.0	0%	0% 0%	30%		0.5	0.0	0.0	0.0	0.7	1.0	0 0%	0%	30%	30%	0.0	0.0	0.0	0.0	0	000
22.5° 17.5° 12.5°	0.0	0.0	0%	0%			0.0	0.0	0.0	0.0	0.0	0.0	0%	0% 0%			0.0	0.0	0.0	0.0	0	0
7.5	0.0	0.0	0%	0% 0%			0.0	0.0	0.0	0.0	0.0	0.0	0%	0% 0%			0.0	0.0	0.0	0.0	0	0
-7.5	0.0	0.0	0%	0%			0.0	0.0	0.0	0.0	0.0	0.0	0%	0% 0%			0.0	0.0	0.0	0.0	0	0 0 8 749
	1			000	upied Hea	ting	0		87.0± 1					_	Unoccupie	ed Heating	o	1511 AS			Sa	wings
Bin Average (*F)	Heating Heating	lours roposed	Load Pr Existing	ofile Proposed	vfd Existing	cfm Proposed	vfd Existing (kW)	Fan Proposed (kW)	Heating Existing ((therm/hr)	Energy Proposed (therm/hr)	Heating (hrs)	Hours (hrs)	Load	Profile Retroft	vfd Existing	cfm Retrofit	vid Existing (off)	Fan Retrofit (off)	Heating Existing (therm/hr)	Energy Proposed (therm/hr)	Fan (kiWh)	Heating (therm)
107.5* 102.5* 97.5*	0.0	0.0	0% 0% 0%	0% 0% 0%			0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0 0%	0% 0% 0%			0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	000	0000
92.5° 87.5° 82.5°	0.0 4.0 76.4	0.0 4.0 75.3	0% 0% 0%	0% 0% 0%	30% 30%	30% 30%	0.0	0.0	0.0	0.0	0.0 0.0 2.6	0.0	0 0%	0% 0% 0%	30%	30%	0.0	0.0	0.0 0.0 0.0	0.0	001	0
77.5° 72.5' 67.5'	296.1 313.6 158.1	266.5 243.0 117.3	0% 0% 0%	0% 0% 0%	30% 30% 30%	30% 30% 30%	0.5	0.5 0.5 0.5	0.0 0.0	0.0	45.9 128.4 76.9	74.6 199.0 117.6	5 D% 0 0% 0 0%	0% 0% 0%	30% 30% 30%	30% 30% 30%	0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	14 35 20	0000
62.5° 57.5° 52.5°	101.1 68.1 41.3	77.3 47.0 26.0	10% 30% 50%	10% 30% 50%	30% 30% 50%	30% 30% 50%	0.5 0.5 1.8	0.5 0.5 1.8	0.5 1.4 2.3	0.5	44.9 40.9 30.7	68.0 62.0 46.0	0%	0% 0% 8%	30% 30% 30%	30% 30% 30%	0.0	0.0	0.0 0.0 0.3	0.0	12 10 28	11 29 30
47.5° 42.5° 37.5°	18.9 5.9 1.3	9.3 2.5 0.0	70% 90% 100%	70% 90% 100%	70% 90% 100%	70% 90%	4.6 9.5 13.0	4.6 9.5 0.0	3.2 4.1 4.6	3.2 4.1 4.6	20.1 7.1 2.8	29.8 10.5 4.0	26% 44% 62%	26% 44% 82%	30% 44% 62%	30% 44% 62%	0.0	0.0	1.2 2.0 2.8	1.2 2.0 2.8	45 32 16	19 7 2
32.5° 27.5° 22.5°	0.6 0.0 0.0	0.0	100% 100% 100%	100% 100% 100%	100%		13.0 0.0 0.0	0.0 0.0 0.0	4.6 4.6 4.6	4.6 4.6 4.6	1.4 0.0 0.0	2.0 0.0 0.0) 80% 99%) 100%	80% 99% 100%	80%	80%	0.0	0.0 0.0 0.0	3.7 4.5 4.6	3.7 4.5 4.6	8 0 0	1 0 0
17.5 12.5 7.5	0.0	0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	4.6 4.6 4.6	4.6 4.6	0.0	0.0	0 100% 100% 100%	100% 100% 100%			0.0	0.0	4.6 4.6 4.6	4.6 4.6	000	0
2.5 -2.5 -7.5	0.0	0.0	100% 100% 100%	100% 100%			0.0	0.0	4.6 4.6 4.6	4.6 4.6	0.0	0.0	0 100% 100% 100%	100% 100% 100%			0.0	0.0	4.6 4.6 4.6	4.6 4.6	000	0
-12.5	1.084	0.0	100%	100%			0.0	0.0	4.6	4.6	0.0	0.0	100%	100%	<u>. </u>		0.0	0.0	4.6	4.6	0 220	0

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

An ENGIE company

Broward County

Broward Lauderd: BAS Sys	County ale Lakes Libra tem Checkout	ry - 1st Floor -	AHU-1																	Osenh.f Filese (/	0407402 - 1420 III -
Assumptio	no:) 20% hp minimum) Setup load ameta) Setupack load ame) Only recognizes	with VFDs and by reduction chared by reduction reff" film sayings	in of OA ter fion of OA t for OV fan	nja eguarito lomp oqua 19	i sirliip dite To selback	neritai Se dillerensal	up kad = 1 Setback 1	MPN((QA) Kad T MP	Lag"(Sati Ili)Hailing	np T - Spec load zero T	pe T) Gool F DAT - 1	ng zirin ka agʻ(Spaco	ed 1) ()) / (() T Settrad	Tooling full K T11:0) / (h	load T - Cor Sealorg zoro	ling zero h louid T - H	and TJ outing full	Scall T)			
Besis:	Fan	pearation type	100		Constant V	alame: CV	VFD. VFD	; into Vin	n: IV, Diret	naige Dem	per (DD										
	Tota Mo Existing aver	I an moler hp. ter lead factor rage motor eff Orive eff VFD off	500 75% (8.0% 96% 97%	lu-	una appuca	uie 10 C.P.															
L and profi	le characterístics (Fu Hea Heat Heata	Center under Er Dious heating Cing efficiency Ing fail loss at Ing sen loss at Palls	μώρ Summ 1471 100% 43** 15*	wry pogel MBbuthr	r.	Ju:	Fullion Caoling (Cooling fu Cooling fee	d cooling dicepcy d logd ut s load at Dalla	36.3 114 37* 70*	torra aVillari	(Include p	umps& co	oling towar	fares in MA	iten if applic	wtile)					
Schedule	First month of a Last month of a	noing season	2	February Novembar		Weat	therdata: i	Fort Laude	rasio Terre	ierature Bi	55	Annu Annu (Na	al Cooling al Heating Elistive Di	Savings: Savings: mand Sar	7,579 0 ngs Cleven	kWb kWb		Bissine	Me 0.976 96,753	k¥#tin JMh	
Lond Adja	stments: Setprint adjustme Evisting	ent moderator:	08		Dampers &	T changes	n sopont	e (17 <1, ra	iducaii Ioai	t chiange.)		Baseine Baseine	Cooling En teating En	ergy ergy	73,740 2,780	kimi kimi	EndleC	Biselne) niverson)	19,500 4	kWh	
	Unoccupied Unoccupied s Weekends	I setback ends elback begins a unoccupier?	85 185 No	Series and	tine must	Unancia Wile	weed solfan kends one	ack ands: sk bagins ccupied?	85 185 190	Serial and Yes / No	tine mu	Setue on	d three tool good	Baseline	436,740	Hours					
Cox Fan	opredicating space Casing setu mode during unact	e temperature e temperature sapnet ceolog	10°		Fan m	neă coding Cóàln; ode during	space ten setig ten unoccume	parutore peretare d sceleng	741 80*	On, Oll	Cycle			no Usaga	18%	of Barmin	MC.				
Pan	upied heating space He sting netbac mode during unoco	é temperature k temperature nipied kasting-	70* 50* CH		Ess m	Heating s Heating s ode during	space ten etback ten unocicipies	perature operature d kasting	70* 10*	On Off	Cycle										
	Occupied Perce Unoccupied Perce	of Outside Air	10%		6	Occupied	Percent Or Percent Or	delde Air. delde Air	10%												
Bri Average	Cooling Hours	Load Fuiting	Profile	Docuper vid Existing	Cooling the Proposed	vfd F Existing	an Proposed	Cooling	Entropy Proposed	Cooling	Hours	Load	Profile	Unnecupie vfd Existing	ed Caaling ofm Proposed	Existing	an Proposed	Cooling Existing	Energy Proposed	Fan BAMAS	Cooling
107.5 102.5 97.5	0.0 0.0 4.0	0.0 100% 0.0 100% 4.0 100%	100% 100% 96%	100%	96%	00 00 65	0.0 0.0 5.7	0.0 0.0 40.3	0.0 0.0 38.6	00 60 00	0.0 0.0 0.0	100% 88% 71%	100% 88% 71%		1.1	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	00	0 0 7
925 97,5 82,5 77,5	857.8 85 957.7 95 622.0 62	91 83% 78 65% 77 46% 20 70%	55% 40% 22%	65% 46% 40%	-59% 40% 40%	19 07 06	1.4 0.5	26,1 18.7 11.2	237 16.3 8.6	241.2 1227.3 1390.0	241.2 1227.3 1390.0	54% 37% 21% 4%	37% 21% 4%	40% 40% 40%	54% 40% 40% 40%	0.0	0.0	15.1 83 1.5	15.1 83 1.6	1.28 376 214 0	418 2,049 2,296 1,495
72 5 87 6 62 5 57 5	* 257.2 25 * 90.6 9 * 44.6 4 * 17.3 1	7 2 9% 0.6 0% 4.6 0% 17.3 0%	3% 0% 0%	40% 40% 40% 40%	40% 40% 40%	0.6 0.5 0.5	0.5 0.5 0.5	0.0 0.0 0.0	1.3 0.0 0.0	7528 200.4 155.4 92.7	757 B 200 4 155.4 92.7	0% 0% 0%	0% 0% 0%	40% 40% 40%	40% 40% 40%	0.0	0.0 0.0 0.0	0.0	0.0	0000	614 0 0
52.5 47.5 42.6 37.6	5.8 0.9 -0.1	5.8 0% 0.9 0% 0.1 0%	0% 0% 0%	40% 40% 40%	40% 40% 40%	0.5	0.5	0.0	0.0	46.2 19.1 7.1	46.2 19.1 7.1	0% 0% 0%	0%	40% 40% 40%	40% 40% 40%	0.0	0.0	0.0	0.0	0000	0
32.5 27.5 22.5	0.0	0.0 0%	0%		~	0.0	0.0	0.0	0.0	00	0.0	0%	0% D% D%		~~~	0.0	0.0	0.0	0.0	0000	000
12.5 7.5 2.5	* 0.0 * 0.0	0.0 0% 0.0 0% 0.0 0%	0%			0.0	0.0	0.0	0.0	00	0.0	0%	0% 0% 0%			0.0	0.0	0.0	0.0	0000	0
-7.5 -12.5	0.0 0.0 3,033 3)	0.0 0% 0.0 0% 0.0 0%	0%			0.0	0.0	0.0	0.0	0.0 0.0 4,239	4,239	0%	0% 0%			0.0	0.0	0.0	0.0	0 0 721	0 0 6,858
			Öcc	upied Hea	ing		_		_				_	Unoccupie	d Heating		_		_	Sa	vings
Average (*F) 107.5	Heating Hours Existing Propo	s Load I sed Existing	Profile Proposed	Existing	rm Proposed	Existing I (kW)	an Proposed (KW) (Existing therm/hr)	Proposed (therm/hr)	Heating (hrs)	Hours (hrs)	Load Existing	Profile Retroft	Existing	Retroft	Existing (off)	Retrofit (off)	Existing ((therm/hr) (Energy Proposed therm/hr) 0.0	Fan (kWh)	Heating (therm)
102.5 97.5 92.5	* 0.0 * 0.0 * 0.0	0.0 0% 0.0 0% 0.0 0%	0%	40.00		0.0	0.0	0.0	0.0	0.0	0.0	0%	0% 0%			0.0	0.0	0.0	0.0	000	0
82.5 77.5 72.5	72.1 7 213.8 21 154.6 15	12.1 0% 13.8 0%	0% 0% 0%	40% 40% 40%	40% 40% 40%	0.5	0.5 0.5 0.5	0.0	0.0 0.0 0.0	6.9 127.3 287.4	6.9 127.3 267.4	0% 0% 0%	0% 0% 0%	40% 40% 40%	40% 40% 40%	0.0	0.0	0.0	0.0	000	0
67.5 62.5 57.5 62.6	76.5 7 51.4 5 27.9 2 14.7 1	6.5 0% 1.4 10% 17.9 30%	0% 10% 30% 60%	40% 40% 40% 60%	40% 40% 40%	0.5	0.5 0.5 0.9	0.0 0.1 0.4 0.7	0.0 0.1 0.4 0.7	158.5 94.6 81.1 67.3	158.5 94.6 81.1 67.3	0% 0% 16%	0% 0% 0% 16%	40% 40% 40%	40% 40% 40%	0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0	0.0	0000	0
47.5 42.5 37.5 32.6	4.4 10 -0.3	4.4 70% 1.0 90% 0.3 100% 0.1 100%	70% 90% 100% 100%	70% 90% 100%	70% 90% 100% 100%	23 48 65	2.3 4.8 6.5	1.0 1.3 1.5	1.0 1.3 1.5	34.6 120 4.3 2.1	34.6 12.0 4.3 2.1	36% 53% 71%	35% 53% 71% 89%	40% 53% 71% 89%	40% 53% 71%	0.0	0.0	0.5 0.8 1.0 1.3	0.5 0.8 1.0 1.3	0000	0
27.5 22.5 17.5	0.0	0.0 100% 0.0 100% 0.0 100%	100% 100% 100%			0.0	0.0	1.5 1.5	1.5 1.5 1.5	00	0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	15 15 15	15 15	0000	000
12.5 7.5 2.5 -2.5	* 0.0 * 0.0	0.0 100% 0.0 100% 0.0 100%	100% 100% 100%			0.0	0.0 0.0 0.0	1.5 1.5 1.5	1.5 1.5 1.5	0.0	0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	1.5 1.5 1.5	1.5 1.5 1.5 1.5	0000	0
-7.5	• 0.0 620	0.0 100% 0.0 100%	100%			0.0	0.0	1.5 1.5	1.5	0.0	0.0	100%	100%			0.0	0.0	1.5 1.5	1.5	0	0

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Broward Mary also	County Library			West- DENE Martin DENE
Attaunation Attaunation	Harris Concernent and VEDs (1) 2019 For mechanisms with VEDs (2) Falop load simulated by solution (2) Settate load simulated by reduct (2) Only recognizes "rift ten savings (2) Only recognizes "rift ten savings)	e of GAllering expansion of GAllering expansion and of GAllering expansion for CV family	n ning dimentia Tariy kada MilijOAT (CayOning T. Tiyan T), Ending ana kad T), S/JCadag Ad kad T. Cadag ana bad Marabad dimentiar Bahad kad "Milijotang kadapan T. Dat. CayOngana T. Satuar Tililar Datag pananan T. Madag da ha T	
Saw.	Tan matation type	NIL.	Constant Values CV VTC VTC India Value IV. Dalmaiga Danser: DD	
	Telat läisemeter ter khiter Jusei Gester Bilsting averlagte metter att Dirker att VED att	30 M 19 0 19 0 19 0 19 0 19 0 19 0 19 0 19 0		
Logent areally	Maharacteristics (where and or Eq Fol last hosting Hosting Hosting Hosting Tal trad at Hosting Sets food at	St MBL/N St MBL/N 40° 60°	Fathaafsoning Mith Load Na Cables enforcers (Lehindo hangs Canada han sa Nither Especiality) Crivity Villian (Lehindo hang) Cables Na at 17 Cables Na at 17	
Schedule	Fiel month of confing reasons	2 February	Arrival Cooling Savorgi, 2,230 With Annual Mating Debragia U.W.M. With Debragia Claring Claring Web 02/95 Million	
Lord Adve	Last month of cooling seasors:	ff Naverb	Machen data Fort Laudel Lais Terparatura Base Baseline Chelton Destas 22,550 kWn Baseline Chelton Destas 22,550 kWn	
	Getpoort adjantment moderator:	0.0 95 min.e	Dang par Af Jinangan Ni sebondi. (Mint, Indone Van Kaling) Danaha Harting Every 0.22 kMN (De dire Conversion) Televisia Televisia	
	Denniqued refuges Seguri However uno couples ?	18.6 19.707.741	Internative rations against the first fills and the first fills an	
Qoo Far	Cooling a ship formeration	12	Doopled footing updata temperature 24 view of the set o	
Geo	uped feating space tense ature. Heating i staak tense stare:	77)* 80#	Through hauting paper temperature 77* Wald paper Amount with the second second second second second second second second second second second second	
Fas	Daniel Paris university of Fasters	01	Fairmole don's unvocabled heating. 3F Div. 37. Cycle Discused Periods Dalities do 2016	
	Line organis Passed Claritie de	0.6	Unaampled Forend Detaile for D's	
1000 1000		978 0 102010 0 102010 0 102010 0 102010 0 102010 0 102010 0 102010 0 102010 0 102010 0 102010 0 103010 0 <	Attr. Cost of the section	Image: Image:
Bis Average 107,0 000,0 00,0 000,000,0	Heading House Land F 10485 5000 600	Description H H where District 0.0% 0.0%	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Distrips Pressvet 0 Service 0 Service 0 Service 0 Service 0 Fan 64416 0 6 0

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Broward Northwes AHU-1: 0	County t Regional Library Optim Ize HVAC Sch	edules a	nd Set P	oints																Osmani Filmse (/	19407-112 (1420 10 (
Accomption	120% hp minimum with 5 Settp load umetated b Setback load smiclated Doly recognizes "off" fa	/FDs / reduction by reduction n say ings (of OA tem on of DA le for OV fails	ip equal h mip equa h	s sellip diffa (To selback	nantiat Sa dillementa	dup koadi≓i I Setbacki	MRI(CAT Rad T MR	Lag"(Sati IlijHeating I	ng T i Speec oaid zono T	DAT-1	ling zaro k Ling"(Spin	nad T) () / (o T Salba	Cooling full all Thr.Dy / (I	loard T + Cox feating tore	Ning zero i Goad T - F	oad T) fooling full	(swift)			
Besis:	Fan operat VAV	tin type tun cfm	VFD		Constant V	ble to CV	VFD VFD	; inlet Viln	n IV, Diret	aige Dem	per DD										
	Totel (an m Motor ka Custog average o	rolon hp. d factor hotse eff live eff VFD eff	25.0 h 75% (9.0% 96% 97%	w																	
L av d profik	e characterístics (enter Fulliond Heuding ful Heisting fal Heisting sare	woder Equiner heating ficiumcy hous at hous at Dall at	40 Summ 164 A 100 V 43* 55*	ary page HButhe	r.	~	Full low g Cuoling to Cooling fo Scoling zer	d cooling dicitionary di foud ut s load at Dolta	6331 7.44 92* 70* 22*	ioms William	()nzlude ;	aumps & c	ualing towa	rfans in AV	éten if appli	atie)					
Schodinie	First month of cooling	IN HOOM	27	obnuary live orbits		Waz	thornana i	For Laure	ndalo Terre	oratura Ele		Ann Ann (f	ual Coolin and Heatin 6 Electric D) Savings:) Savinge: emind Sav	66,023 4,562 ngs Claime	kWa kWa					
Lord Adjus	Unents: Setpoint adjustment not <u>Existing</u> Unoccupied setbs	docator ck entis	-0.8 II		Dampers & Planaed	T changes	in setpont copied seib	ack enits	ducen lanc H	(change)		Saseine Baseine	Cooling Br Heating Br	ergy wigy EFIHe	246,505 B,402 3521,741	KWE KWE Heure	(Electric C	onyerane)			
Óce	Weekonds week Weekonds week upred couling splice temp Cabling satup temp	orgied? orgied? iendere istrature	Nb Y 73* 78*	ins/No	Occup	We cooling Cooling	pape salas akondo una 1 space tem 1 space tem	perature perature	No 73* 80*	Yos /No			.ins	ly Bionine AC Usage	140) 120	KVMs of Electrony	6				
Fan Uco	wode during unoccupied Ipred heiding space tem Heating satback temp	cooling: peralumi seruture	0ff 65		Cocup	ode damig red freating Heating	g space ten setback ten	d codling. Iperature, Iperature	01 70* 60*	On Off.	Cycle										
Pag	Cocupied Percent Out Unoccupied Percent Out	beating side Air side Air	TUP-		f an in	Occupied	Parcent Or Parcent Or	t besting: utside Aur utside Aur	TUPS- DW	On, DR	Cycle										
-	-		_	Occupier	Cooling		-	Casher	_	_	_		_	Unoctupi	ed Coating		Ter.	Carlos		Sa	vinas.
7worage (*F) 107.5	Cooling Howa Existing Proposed 1	Load Pr niting P	toyosed	Existing	Proposed	Existing (AVM)	Proposed (KM) 0.0	Esetting JMM)	Proposed (AVA)	Cooling Eesting	Hours Proposes	Existing	Profile Proposed	Evisting	Proposed	Esizang (off) 0.0	Proposed (off) 0.0	Eirsting (KW)	Freposed INMO D D	Fan (KMh)	Cooing (NMI)
102.5 97 E 92.5	0.0 0.0 4.0 4.0 182.0 175.8	100% 100% 100%	100%	100%	100% 100%	0.0 16.2 16.2	0.0 15.2	0.0 72.4 72.4	00 724 724	00	0.0	0 1001 0 973 8 763	100% 90% 70%	-	70%	0.0	0.0	00	0.0 6.0 50.5	0	0 0 136
82.5 77.5 77.5	2184.0 1047.6 2012.0 720.4 1010.0 109.5	57%	57% 34%	47% 34%	57% 34%	32	31	81.1 24.7 0.2	411 247 82	10	1132.4 1291.8 700.7	4 369 149	25%	35%	30% 30% 30%	0,0	0.0	25.4	106 57 0.0	3,659	23,287 24,531 5,760
62.5 57.5	200.0 55.0 111.0 23.4	11% 0% 0%	17% 0% 0%	30% 30%	30% 30%	пе 0.6 0.6	0.6 0.6	0.0	0.0 0.0	20	7793 145.0 86.6	0 09	11% 0% 0%	30%	30% 30%	0.0	0.0	0.0	0.0	170 89 54	0000
52.5 47.5 42.5	52.0 8.8 20.0 2.1 7.0 0.4	0% 0% 0%	0% 0% 0%	30% 30% 30%	30% 30% 30%	0.6 0.6 0.6	0.6 0.6 0.6	0.0 0.0 0.0	0.0 0.0 0.0	0.0	43.3 17.9 6.6	3 05 9 05 05	0% 0% 0%		30% 30% 30%	0.0	0.0	0.0	0.0	27 11 4	000
37.5 32.5 27.5	1.0 0.0 0.0 0.0 0.0 0.0	0% 0% 0%	0% 0% 0%	30%		0.6 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0	1.0	0 01 01 01 01 01 01	0%		30%	0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	1 0 0	000
22.5 17.5 12.5	0.0 0.0 0.0 0.0 0.0 0.0	0% 0% 0%	0% 0% 0%			0.0	0.0	0.0	0.0	0.0	0.0	0 01 01	0% 0% 0%			0.0	0.0	0.0	0.0	000	0
7.5 2.5 -2.5	0.0 0.0 0.0 0.0 0.0 0.0	0% 0% 0%	0% 0% 0%			0.0	0.0	0.0	0.0	0.0	0.0	0 01 01 01 01 01 01	0% 0% 0%			0.0	0.0	0.0	0.0	000	0
-12.5	0.0 0.0 0.0 0.0 7,269 3,336	0% 0%	0% 0%			0.0	0.0 0.0	0.0	0.0	0.0	0.0 0.0 3,93	0 09	0%			0.0	0.0	0.0	0.0	0 0 7,463	0 0 58,560
Die			Öccu	ipied Hea	ting		fan I	Hesting	Dearco					Unoccupi	ed Heating	VIII	Eso	Hasting	Deargy	Sa	vings
Average ("F)	Heating Hours Existing Proposed I	Load Pr Existing P	ofile hoposed	Existing	Proposed	Existing (kW)	Proposed (kW)	Existing therm/hr)	Proposed (therm/hr)	Heating (hrs)	Hours (hrs)	Existing	Profile Retroft	Existing	Retroft	Existing (off)	Retrofit (off)	Existing (therm/hr)	Proposed therm/hr)	Fan (KWh)	Heating (therm)
102.5		0%	0%			0.0	0.0	0.0	0.0	0.0	0.0	0 09	0%			0.0	0.0	0.0	0.0	0	0
87.5 82.5 77.6	40 40 780 726 3410 2238	0%	0%	30% 30%	30% 30%	0.6	0.6	0.0	0.0	0.0	0.0 6.4	01 01	0%	30%	30%	0.0	0.0	0.0	0.0	0372	0
72.5 67.5	442.0 175.5 236.0 87.6	0%	0%	30%	30%	0.6	0.6	0.0	0.0	-1.0	266.5	5 05 4 03	0%	30%	30%	0.0	0.0	0.0	0.0	164 91	0
57.5 52.5 47.5	109.0 33.5 72.0 18.5 39.0 6.5	30%	30% 50% 70%	30% 50% 70%	30% 50% 70%	0.6	0.6	0.6	0.6	0.0	75.8 53.4 32.4	5 139 5 319 4 499	0%		30%	0.0	0.0	0.2	0.0	46 121 187	42
42.5 37.5 32.5	130 18 40 00 20 00	90% 100% 100%	90% 100%	90% 100%	90%	11.9 16.2 16.2	11.9	1.7 1.8 1.8	17	0.0	11.3	673 0 853 0 1004	53%		53% 71%	0.0	0.0	1.2	1.0 1.3 1.6	134 65 32	8
27.5		100%	100%	100794		0.0	0.0	1.8	1.8	0.0	0.0	0 1009	100%		00%	0.0	0.0	1.8	1.8	000	0
12.5	0.0 0.0	100%	100%			0.0	0.0	1.8	1.8	0.0	0.0	0 1005	100%			0.0	0.0	1.8	1.8	0000	000
-2.5 -7.5		100%	100%			00	0.0	1.8	1.8	0.0	0.0	1009	100%			0.0	0.0	1.8	1.8	0000	0
-12.5	1,486 682	10076	10076	-		0.0	0.0	1.8	1.8	0.0	804	4 1007	q 100%			0,0	0.0	1.8	1.8	970	-

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward Northwes	County t Regional Library																			0788044 74654 1/	0-0/ A-02 144220-18
AHU-2: C	optimize HVAC Sch SJ 2015 ha minimum with Setup load amelated I Setback load simulated I Only recognizes "off"	NT De by (eduction d by reduct an savings	nd Set P not DA ten ion of DA t for GV fan	ofints opequal t umpequal t	a setup diffe 110 colbaci	erantusi - 5 differentis	enup toud = A Selbaci	MIN((OAT	- Lag 750 Nijekating	up T Spa load sino '	cert)-Cne T-OAT-	uing ziro lo Lugʻ(Spuci	nd T) () / (T Setta	Cooling ful cl. T)) (J) / (load T - Co Houling zer	oling zwo) 9 road T - H	ioad 1) Nothing for	food T)			
Busis:	Fanopan	tion type	CV		Constant V	olume C	VFD VF	D , inlet Van	n: IV, Diard	hurge Dern	per DD										
	Totel fan Motor le Existing average	motor hp: ad factor motor eff Drive eff VFD eff	207 75% (9.0% 96% 97%	W																	
L and profile	e charactoristics (ento Fullicae Heating Houting th Heating te	efficiency it load at biefficiency it load at bieffic Cieffic	uip Summa 48 * 100% 43* 55*	iry paini) VEBU/hr		~	Full for g Cluding Cooling 1 Cooling 24	efficiency efficiency full food of en load at Cella.	8 1 1 14 87* 70* 27*	toms WWten	(inclusio)	Annu Annu	uling lowe	fans in W Savings:	Mun if appli 1,000	kWh					
S. Harrist	Find menth of coolin Last month of cooling	g georson) g season	11	abruary Nevenbar		We	athor data.	For Laude	rasio Tamp	saratura Eli	65	(6)(Electric D	emand Sa	ings Claime	e)					
Load Adjus	tments: Sepont adjustment n <u>Evering</u> Unoccupied sets Unoccupied sets	nderator: ack and a ck begins	08 76 1925		Dampers & <u>Plandsed</u>	T changed Linos Unocci	i in selpcin icipied sel ipied selbi	la (II <1_) back ands ack begins:	educes loa H 19	d change.)		Saseline Baseline	Dooling En leating En	ergy ergy EFLHs	23,368 2,070 2753 634	kWh KWh Hiturt	(Electric C	Lary en			
Occ	Wookends can upied cooling space ten Cooling outop ten	nperature nperature	No.1	ins/No	Ocea	Wed.coolin Cuole	ekondo un gispace te gispace te	mperature mperature	Na 73 807	Yes /No			onin	y Usosilina AC-Usage	140) 120 2%	KVN of Electrony	el.				
Fan	Mode during unoccupie Ipied heating space ten Heating seharts ten	d coolling:	0# 70* 657		Fan n Occus	idde dunnig wed freidin Haution	g unoccupi g space te nethar2 te	ed cooling: mperature:	04 70* 907	On Off	Cycle										
ten	Cocupied Percent ()	d beating: Inside Air	10%		Pan m	ode dunns Occupies	Unoccupi Percent (ed beating: Iutside Air:	10%	On, Off	Cycle										
_	Chocapite Farcan C	anime res.		Orginia	Costor	mossipars	er answir s	A STATE OF THE		_			_	Tenenint	d Consilied		_	_	_	-	
Bin Average	Cooing Howa	Load P Existing D	Processed	Canal	/ol sfm Proposed	Cand's Existing	Al Fan Proposed	Cooling Existing	Energy Proposed	Cocing	Hours.	Lood	Profile	Const Evisting	Proposed	Const V Exitting	In Fan Proposed	Cooling Eirsting	Energy Proposed	Fan	Cooling
1075 1025 975 925 925 925 925 925 925 925 925 925 92	0.0 0.0 0.0 0.0 40 40 176 1 175 8 863 6 177 9 1112 3 1047 6 795 2 720 4 105 6	100% 100% 100% 83% 85% 46% 28%	100% 100% 100% 89% 85% 46% 26% 26%	100% 100% 100% 100%	100% 100% 100% 100% 100%	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00 92 77 50 43 26	00 00 59 705 10727 12168	01 01 61 221. 1132. 1291.1 200	0 100% 0 96% 0 79% 8 62% 1 45% 4 29% 8 12%	100% 91% 74% 57% 40% 23% 5% 0%	100% 100% 100% 100%	100% 100% 100% 100%		00 00 00 00 00 00	00 00 00 547 241 00	00 00 57 57 100	0 0 15 81 94	11 67 75
62.5 57.5 52.5 47.5 42.5	177 1 100 R 63.6 55.0 28.7 23.4 11.4 8.8 3.2 2.1 0.8 0.4 0.1 0.0	0% 0% 0% 0%	19% 0% 0% 0%	100% 100% 100% 100% 100%	100% 100% 100% 100% 100%	13 13 13 13 13	13 13 13 13	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	267 8 136 4 81.3 40.6 16.8 6.2	7790 145.0 86.0 43.3 17.9 6.0	0 0% 6 0% 3 0% 9 0% 6 0%	11% 0% 0% 0% 0%	100% 100% 100% 100% 100%	100% 100% 100% 100% 100%	0.0 0.0 0.0 0.0 0.0	00 00 00 00	0.0	0.0	11 11 7 3 1	
32.5 27.5 22.5 17.5 12.5 7.5		0% 0% 0% 0% 0%	0% 0% 0% 0%	100.0		00 00 00 00	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	000000000000000000000000000000000000000	0.1	0 0% 0 0% 0 0% 0 0% 0 0%	0% 0% 0% 0% 0%	100 %	100,0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 00 00 00	0.0 0.0 0.0 0.0 0.0	0.0	000000000000000000000000000000000000000	
2.5 -2.5 -7.5 -12.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0% 0% 0%	0% 0% 0%			0.0	0.0	0.0	0.0	0.0	0.0	0 0% 0 0% 0 0% 0 0%	0% 0% 0%			0.0	0.0	0.0	0.0	000	
	3,562 3,336								-	3,710	3,93	/								285	1,59
Bin Average	Heating Hours	Load P	Occi tofile	Const Existing	ting /ol.cfm Proposed	Const Existing	/ol Fan Proposed	Heating	Energy Proposed	Heating	Hours	Load	Profile	Unoccupi Const Existing	od Heating Vol cfm Retroft	ConstV Existing	61 Fan Retrofit	Heating	Energy Proposed	Sa Fan	vings Heating
(*F) 107.5 102.5	Existing Proposed 0.0 0.0 0.0 0.0	Existing 0%	Proposed 0% 0%	_		(KW) 0.0	(KW) 0.0 0.0	(therm/hr) 0.0 0.0	(therm/hr) 0.0 0.0	(hrs) 0.0 0.0	(hrs) 0.0 0.1	Existing 0 0% 0 0%	Retroft 0%			(cff) 0.0 0.0	(off) 0.0 0.0	(therm/hr) 0.0 0.0	(therm/hr) 0.0 0.0	(KWh) 0 0	(therm)
97.5 92.5 87.5	0.0 0.0 0.0 0.0 4.0 4.0	0% 0% 0%	0% 0% 0%	100%	100%	0.0	0.0	0.0	0.0	0.0	0.0	0 0%	0% 0% 0%	1		0.0	0.0	0.0	0.0	000	
62.5 77.5 72.5 57.5	230.2 223.6 190.8 175.5 96.3 87.6	0% 0% 0%	0% 0% 0%	100% 100% 100%	100%	13	13	0.0	0.0	110.8 251.3 139.7	117.3 266.9	4 0% 3 0% 5 0%	0%	100%	100%	0.0	0.0	0.0	0.0	8 19 11	
62.5 57.5 52.5	63.2 58.1 37.9 33.5 21.7 18.5	10% 30% 50%	10% 30% 50%	100% 100% 100%	100% 100% 100%	1.3 1.3 1.3	1.3 1.3 1.3	0.0 0.1 0.2	0.0 0.1 0.2	82.8 71.1 50.3	87.9 75.8 53	9 0% 5 13% 5 31%	0% 0% 16%	100% 100% 100%	100% 100% 100%	0.0	0.0	0.0	0.0	664	
47.5 42.5 37.5 32.5	8.6 6.6 2.4 1.8 0.3 0.0 0.1 0.0	70% 90% 100%	70% 90% 100%	100% 100% 100%	100%	13 13 13	1.3	0.3 0.4 0.4 0.4	0.3 0.4 0.4	30.4 10.6 3.8 1.9	32.4 11.3 4.1 21	4 49% 3 67% 0 85% 0 100%	35% 53% 71% 89%	100% 100% 100%	100% 100% 100%	0.0	0.0	0.2 0.3 0.4 0.4	0.2 0.2 0.3 0.4	2100	
27.5 22.5 17.5	0.0 0.0 0.0 0.0 0.0 0.0	100% 100% 100%	100% 100% 100%	100.75		0.0	0.0	0.4 0.4 0.4	0.4 0.4 0.4	0.0	0.0 0.0	0 100% 0 100% 0 100%	100% 100% 100%	1000 10		0.0	0.0	0.4 0.4 0.4	0.4	0000	
12.5 7.5 2.5 -2.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	0.4 0.4 0.4	0.4 0.4 0.4 0.4	0.0	0.0 0.0 0.0	0 100% 0 100% 0 100% 0 100%	100% 100% 100%			0.0	0.0	0.4 0.4 0.4	0.4 0.4 0.4	0000	
-7.5		100% 100%	100% 100%			0.0	0.0	0.4 0.4	0.4 0.4	0.0	0.0	0 100%	100% 100%]		0.0	0.0	0.4 0.4	0.4	0	

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Broward (County																			Openanti Piezed 10	0-07-020 1-0220-14
AHU-4: O Assumption	: Regional Libra ptimize HVAC S s:	ry chedules :	ind Set P	oints																	
1) 2) 3) 4)	201% his minimum w Setup load ameliate Setback load simuli Only recognizes "of	idh VFDs id by reductio xled by reduc If fan savings	n of CA ten lion of CA t for CV fan	np equal t temp equa t	a setup diffe i to selbaca	differentia	Hup load = A Sylback	MIN(CAT	- Lag TSan Nij Housing	ip T - Spac oad sino T	CAT -1	ing piró k Làg"(Spac	ad () () / (at Setta	Cooling ful d(T)) (I) / (lows T - Co Hooling zero	oling zern Froad T - t	load 1) foilting fut	foad Tj			
Basis:	Fanop	eration type: AV min afm:	VFD 30%		Constant V	olumu CV	VFD VFD	i, inlat Van	e: IV, Diret	uile Davit	or OD										
	Totel fo Molor Existing averag	in motor hp: r load factor permotor eff Orive eff VFD eff	30.0) 75% (9.0% 96% 97%	Ψ																	
1 and profile	characteristics (en Full 6 Heating Heating	tor under Eg oud heating g efficiency r fut lood ut zero lood at Celto.	anjo Summa 331 * 100% 40* 55*	ary page) YERWith	r.	~	Fullion Causing Cooling 1 Cooling 24	d cooling efficiency al load at n load at Collo.	157 144 87* 70* 27*	ans Witen ((inclusio p	umps & tr	olina tawa	faces in KV	Won it apple	cable)					
Schodule	First month of cold	ing puson	27	-		Was	thornata	Forlande	male Temp	aratura Filo		Anna Anna (Ne	al Cooling al Heating Electric D	Savings: Savings: (mind Sa	62,726 7,615 ings Claime	kWh kWh c)					
Load Adjust	ments: Setpont adjustment	t maderator	-0.8	and the second sec	Dampers &	T changes	in sepant	s (II<1.10	eluces loac	(change.)		Saseline Baseline	Cooling En	ergy ergy	234,845 14,214	kiwin kiwin	(Electric C	Lower Low			
	Uneccupied as Uneccupied ant Wookendo G	abadi anda back begins eescupied?	II 24 Ma	(ni / Mu	Flandsed	Unocci	raipied selb Ipito setba	ack ands ck begins; coupled?	8 19 No	Vos /Mo				EFLHs	2580.036	Hiturit					
0.ca	ipled cooling space (Cooling setup)	emperature empirature	73* 78*		Coor	ned coolin Cuolo	g space ten g usiop ten	nperature Iperature	73* 80*				13100	y Uspinina AC Usage	140) 120 18%	of Elamon	el l				
- Ucov	pred heating space t Heating space t	emperature	70* 65*		E an n	ode during red freating Heating	g space ten setback ten	d cooling: iperature; iperature	70* 60*	On Off.	Cycle										
T-mit	Occupied Percent	Ukniede Air	04		f en in	ode during Occupied	Unoccupie Parcent U	d beating: Utside Aut	10%	On, DH,	Cycle										
_	onocupies encon	Contrato Mar.		Occupie	d Cooling	no company	r sy control	ande ver	0.0	_	_		_	Unoccupi	ed Contiltut			_	_	Sa	inds.
Bin Average (*F)	Cooling Hours Existing Propose	d Enting	Profile Proyosed	Listing	din Proposed	Existing (AW)	Fan Proposed (NW)	Cooling Existing (KW)	Energy Proposed (AVV)	Cooling Electricg	Hours Proposed	Eeding	Profile Proposed	Evisting	dm Proposed	VFD Estating (cff)	Fan Proposed (off)	Cooling Einsting (HW)	Proposed (KM)	Fan (KWhi	Cosing
102,5* 97 £* 92,5*	00 U 40 4 1820 175	0 100% 0 100% 8 83%	100% 100% 83%	100%	100%	00 194 11.4	0.0	0,0 96.5 72.1	00 965 721	00	0.0	96% 79% 62%	91% 74% 57%	1	57%	0.0	0.0	00 00 00	0,0 0,0 49.2	0 0 72	15
82.5° 77.5° 72.5°	2164.0 1047 2012.0 720 1010.0 309	5 46%	46%	46% 30% 10%	46% 30% 30%	022	22	40.0	40.0	10	1137.4 1291.6 700.5	29% 12%	23% 5% 0%	30%	30% 30% 30%	0,0	0.0	24.7	201 55 0.0	2,513 952 616	22,66 23,88 5,60
62.5* 57.5°	300.0 55 111.0 23	ñ ñ% 0 0% 4 0%	17% 0% 0%	30% 30%	30% 30%	π P 0.7 0.7	0.7	0.0	пп 0.0 0.0	2n 0.0 -1.0	77/9 / 145.0 86.6	0%	19% 0% 0%	30%	30% 30%	0.0	0.0	0.0	0.0	304 107 65	
52.5° 47.5° 42.5°	52.0 8. 20.0 2. 7.0 0.	8 0% 1 0% 4 0%	0%	30% 30% 30%	30% 30% 30%	0.7	0.7	0.0	00	0.0	43.3	0%	0%		30% 30% 30%	0.0	0.0	0.0	0.0	32 13 5	
32.5° 27.5° 22.5°	0.0 0	0 0%	0% 0%	30%		0.0	0.0	0.0	0.0	0.0	0.0	0 0%	0% 0% 0%		30.10	0.0	0.0	0.0	0.0	0	
17.5° 12.5° 7.5°	0.0 0.0	0 0%	0% 0%			0.0	0.0	0.0	0.0	0.0	0.0	0%	0% 0% 0%			0.0	0.0	0.0	0.0	000	
2.5* -2.5* -7.5*	0.0 0. 0.0 0. 0.0 0.	0 0% 0 0% 0 0%	0% D% 0%			0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0%0%	0% 0% 0%			0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0 0.0 0.0	000	
-12.5*	7,269 3,33	0 0% 8	0%			0.0	0.0	0.0	0.0	3	3,937	0%	.0%	-		0.0	0.0	0.0	0.0	5,708	57,81
Bin Average	Heating Hours	Load F	Occi Yofile	upied Hea VFD Existing	ting cfm Proposed	VFD Existing	Fan Proposed	Heating Existing	Energy Proposed	Heating	Hours	Load	Profile	Unoccupi VFC Existing	ed Heating cfm Retroft	VFD Existing	Fan Retroft	Heating	Energy Proposed	San Ean	rings Heating
(*F) 107.5* 102.5*	Existing Propose 0.0 0.1 0.0 0.1	d Existing 0 0% 0 0%	Proposed D% D%			(kW) 0.0	(KW) 0.0 0.0	(therm/hr) 0.0 0.0	(therm/hr) 0.0 0.0	(hrs) 0.0 0.0	(hrs) 0.0 0.0	Existing 0%	Retroft 0%			(eff) 0.0 0.0	(off) 0.0 0.0	(therm/hr) (0.0 0.0	therm/hr) 0.0 0.0	(kWh) 0	(therm)
97.5* 92.5* 87.5*	0.0 0. 0.0 0. 4.0 4.	0 0% 0 0% 0 0%	0% 0% 0%	30%	30%	0.0 0.0 0.7	0.0 0.0 0.7	0.0	0.0	0.0	0.0	0 0%	0% 0% 0%		~~~~	0.0 0.0 0.0	0.0	0.0	0.0	000	
82.5* 77.5* 72.5*	78.0 72 341.0 223 442.0 175	6 0% 8 0% 5 0%	0% 0% 0%	30% 30% 30%	30% 30% 30%	0.7 0.7 0.7	0.7 0.7 0.7	0.0	0.0	1.0 0.0 0.0	6.4 117.3 266.6	0%	0% 0% 0%	30%	30% 30% 30%	0.0	0.0	0.0 0.0 0.0	0.0	4 86 196	
67.5° 62.5° 57.5°	236.0 87. 146.0 58. 109.0 33.	6 0% 1 10% 5 30%	0% 10% 30%	30% 30% 30%	30% 30% 30%	0.7 0.7 0.7	0.7 0.7 0.7	0.0 0.3 1.0	0.0 0.3 1.0	-1.0 0.0 0.0	147.4 87.9 75.5	0%	0% 0% 0%	30%	30% 30% 30%	0.0 0.0 0.0	0.0	0.0	0.0	109 65 56	7
52.5° 47.5° 42.5°	72.0 18 39.0 6/ 13.0 1/	5 50% 6 70% 8 90%	50% 70% 90%	50% 70% 90%	50% 70% 90%	27 6.9 14.3	2.7 6.9 14.3	17 2.3 3.0	17 23 30	0.0	53 F 32 4 11.3	31% 49% 67%	16% 35% 53%		30% 35% 53%	0.0	0.0	1.0 1.6 2.2	0.5 1.1 1.7	146 225 161	3
37.5° 32.5° 27.5°	40 0 20 0 0.0 0	0 100%	100%	100%		19.4 19.4 0.0	0.0	3.3 3.3 3.3	3333	0.0	4.0	0 100% 100%	71% 89% 100%		71%	0.0	0.0	2.8 3.3 3.3	23 29 33	78 39 0	
17.5° 12.5°		0 100%	100%			00	0.0	3.3	33	0.0	0.0	100%	100%			0.0	0.0	3.3	3333	0000	
2.5° -2.5°		0 100%	100%			0.0	0.0	3.3	33	0.0	0.0	100%	100%			0.0	0.0	3.3 3.3 3.3	33	000	
-7.5*	0.0 0.	0 100%	100%			0.0	0.0	3.3	3.3	0.0	0.0	100%	100%			0.0	0.0	3.3	33 33	0	

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

An CNOIC CONDUNY

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Browa North AHU-4	west Regi BAS Sy	y onal Library stem Check-4	Dut																		Ormanit Filmed 1/6	040 A Q2 1420 18
Assum	ptions: 1) 201% H 2) Setup 3) Setbac 4) Only to	a minimum with 1 oad ameilated by k toad simulated coogecet "off" fa	f Dis reduction by reduction savings	of OA ten on of OA t for CV fent	op equal t lemp equa t	a setup diff if lo selbaci	er entral - Se e differentia	niup toadi = A Selback	MN(CAT load T MI	- Lag'TSU NijHouting	up T Spa load sine	ce T)-Eno T - CAT -	ung ziro k Lag"(Spac	ad T) <i>ill (</i> aT Setta	Cooling full cl. T)),Q) / (load T - Co Houling Zen	oling zwo i mad T -ł	load 11 toining fut	food T)			
Basis:		Fanopenti	on type	MFD SUPE		Constant V	Joluma CN	VED VE	D, inlat Van	n: IV, Diard	hurge Dien	per OD										
	- Es	Totel fan m Motor Ioa alsting average m C	otor hp: d factor otor eff two eff	30.0) 75% (9.0% 96%	ω	an den																
L and p	rofile chance	Ctorktiks (onter i Full load Heating of Heating ful Heating zero	wder Equi healing load at load at Celto	ip Summa 331 A 100% 40° 15°	ary page). VEDUTY	2	~	Fulling Cooling 1 Cooling 24	efficiency all load at en load at Delta	157 14 87* 70* 27*	toms WWten	(include p	umps & tr	ulina luwi	fansi in Kë	Mun if apple	cable)					
Schadu	ale: Fird (Loci)	month of cooling month of cooling	Junison Season	25	February		Wo	thar data:	Fon Laude	rasio Tarry	saratura Bi	05-	Anna Anna (%)	al Cooling al Heating Brochie D	Savings: Savings: emind Sav	9,206 II Inga Cláime	kWh swa: d)					
Lond A	djustments. Setpoi <u>Evern</u>	nt adjustment no 2	derator	0.8		Dampers I Ptoposed	T changes	in section	10 (11 <1.11	eluces log	d change.)		Saseline Baseline	Cooling En Heating En	ergy ergy FRIMe	172,119 6,500	kiwn kiwn	(Electric C	unyee and)			
	Un Occupied co	occupied artback Weekendo Gesc oling space temp	begins upied? er alore	(9 Nor) 73	Vos7Nu	Coo	Under We pied.coolin	ipital setta elicindo cas gispace ter	ick begins: moupled? mperature	19 Na 74	Yos /No			crim	y Uspillun AC-Usage	140) 120	KVWn of Elements					
	Cu Fan mode di Occupied he	abling unside temp aning unside upled whing ispace temp	cocling:	90" 0"		Fán r	Cualin Addé duning pied freidin	g suisp te i unoccupa g space ter	mperature ed cooling: nperature;	90" 0#	On Off	Cycle										
	Haid Fien mode du Qosuj	ting selback temp ling unoccupied pied Percent Out	erature beating: ude Air:	60°		f an h	Heating node during Occupied	setback no Unoccupii Parcent L	mperature XI beating: Iutside Air:	00* 0#	On, Off	Cycle										
_	Undocu	pied Percent Out	ade Air	0.0	_		Juoccupied	Percent C	Ideide Air	0.8				_	_			_	_	_	-	_
Bin Avera	igé Cor	ng Proposed E	Load Pr	ofile Proyosed	VFD Existing	din Proposed	Existing (AW)	Fan Proposed (KW)	Cooling Existing (KIV)	En argy Proposed (NVV)	Cociling	Hours. Proposed	Load	Profile Proposed	Evisting	rdm Proposed	VFD Estating (cft)	Fan Proposed (off)	Cooling Earsting (IW)	Energy Proposed (KW)	Fan	Cooling (NVM)
10	17.5° 12,5° 97.6° 92.5° 17	0.0 0.0 0.0 0.0 4.0 4.0 5.8 175.8	100% 100% 100% 83%	100% 100% 99% 80%	100%	99% 80%	00	00	0.0 0,0 96.5 72.1	0.0 0.0 85.5 69.5	00 00 00 63	0.0	0 100% 0 91% 0 74%	100% 91% 74% 57%	57%	57%	0.0	0.0	00 00 00 49.2	0.0 0.0 49.2	199	0 0 2 450
	87.5* 87 82.5* 104 77.5* 72 72.5* 30	7.9 877.9 7.6 1047.6 0.4 720.4 9.5 109.5	65% 46% 28% 9%	62% 43% 25% 5%	85% 46% 30% 10%	62% 43% 30%	88 22 07 17	49 19 97 02	56.0 40.0 24.0 0.0	535 375 215 54	221 1 1197 4 1291 6 700 5	221.1 1137.4 1291.6 700.5	40% 23% 5 6%	40% 23% 6% 0%	419) 30% 30%	40% 30% 30% 30%	0.0	0.0	34E 20.1 55 0.0	346 201 55	8214 373 .0	2,240 2,68A 1,346 .793
	62.5° 11 62.5° 5 57.5° 2 52.5°	5.0 55.0 3.4 23.4 8.8 8.8	0% 0% 0%	0% 0% 0%	30% 30% 30%	30% 30%	0.7 0.7 0.7	0.7 0.7 0.7	0.0	0.0 0.0 0.0	279.3 145.0 86.6 43.3	779 1 145.0 86.8 43.3	0 0%	19% 0% 0%	91% 30% 30%	30% 30% 30%	0.0	0.0	0.0	0.0	0000	0 0 0
	47.5° 42.5° 37.5°	21 21 04 04 00 00	0%	0% 0%	30% 30%	30% 30%	0.7	0.7	0.0	0.0	179 66 10	17.9	0%	0% 0%	30% 30% 30%	30% 30% 30%	0.0	0.0	0.0	0.0	000	0
	27.5° 22.5° 17.5°	0.0 0.0 0.0 0.0 0.0 0.0	0% 0% 0%	0%			0.0	0.0	0.0	0.0	0.0	0.0	0 0%	0% 0% 0%			0.0	0.0	0.0	0.0	0000	0
	12.5° 7.5° 2.5°	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0% 0% 0%	0% 0% 0%			0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0	0.0	0 0%	0% 0% 0%			0.0	0.0	0.0	0.0	0	0
E	-7.5° 12.5° 3,	0.0 0.0 0.0 0.0 336 3,336	0% 0%	0% 0%			0.0	0.0 0.0	0.0	0.0	0.0 0.0 3,937	0.0 0.0 3,937	0 0%	0% 0%			0.0	0.0	0.0	0.0	0 0 1,179	0 0 8,027
Bin	Hei	ating Hours I	Load P	Occu	upied Hea VFD Existing	ting cfm I Pronosed	VFD	Fan Pronosed	Heating	Energy	Heating	Hours	1 Load	Profile	Unoccupii MFD Existent	ed Heating Cfm Retroft	VFD	Fan Datroft	Heating	Energy	San	ings Heation
(*F 10 10) Existi 07.5* 02.5*	ng Proposed E 0.0 0.0 0.0 0.0	visting F 0% 0%	hoposed D% D%	Loving	Toposes	(kW) 0.0 0.0	(KW) 0.0 0.0	(therm/hr) 0.0 0.0	(therm/hr) 0.0 0.0	(hrs) 0.0 0.0	(hrs) 0.0 0.0	Existing 0 0%	Retroft B% D%	Linered	THUR DIS	(off) 0.0 0.0	(eff) 0.0 0.0	(therm/hr) 0.0 0.0	(therm/hr) 0.0 0.0	(kivh) 0	(therm) 0 0
	97.5° 92.5° 87.5° 82.5° 7	0.0 0.0 0.0 0.0 4.0 4.0 2.6 72.6	0% 0% 0%	0% 0% 0%	30% 30%	30% 30%	0.0	0.0 0.0 0.7	0.0	0.0	0.0	0.0	0 0%	0% 0% 0%	30%	30%	0.0	0.0	0.0	0.0	0000	0
	77.5° 22 72.5° 17 57.5° 8	3.8 223.8 5.5 175.5 7.6 87.6	0% 0% 0%	0% 0% 0%	30% 30% 30%	30% 30% 30%	0.7 0.7 0.7	0.7	0.0	0.0	117.3 266.5 147.4 67.9	117.3 266.5 147.4	0% 5 0% 4 0%	0% 0% 0%	30% 30% 30%	30% 30% 30%	0.0	0.0	0.0	0.0	0000	0
	57.5° 3 52.5° 1 47.5°	3.5 3.5 8.5 8.6 8.6 8.6	30% 50% 70%	30% 50% 70%	30% 50% 70%	30% 50% 70%	0.7 2.7 6.9	0.7 2.7 6.9	1.0 1.7 2.3	1.0 1.7 2.3	75.5 53.5 32.4	75.6 53 / 32 /	0% 16% 35%	0% 16% 35%	30% 30% 35%	30% 30% 35%	0.0	0.0	0.0	0.0	0000	000
	42.5* 37.5* 32.5* 27.5*	0.0 0.0 0.0 0.0 0.0 0.0	90% 100% 100%	100% 100% 100%	90%	90%	14.3 0.0 0.0	14,3 0.0 0.0	3.0 3.3 3.3 3.3	30 33 33 33	40 20 0.0	4.0	0 53% 0 71% 0 89% 0 100%	53% 71% 89% 100%	53% 71% 89%	53% 71% 89%	0.0	0.0	17 23 29 3.3	17 23 29 33	0000	0
	22.5° 17.5° 12.5° 7.5°	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	100% 100% 100%	100% 100% 100%			00	0.0	3.3 3.3 3.3	33 33 33	0.0	0.0	0 100% 0 100% 0 100% 0 100%	100% 100% 100%			0.0	0.0	33	2000 2000 2000	0000	0
	2.5° -2.5° -7.5°	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	100% 100% 100%	100% 100% 100%			00 00 00	0.0	333333	33 33 33	0.0	0.0	0 100% 0 100% 0 100%	100% 100% 100%			0.0	0.0	33 33 33 33	333	0	0

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Split System - Savings Summary

Facility	NW Regional Library
Unit Location	Roof

Existing Conditions

Mfg	Trane	Peak kW	420
Model #	TTP030D100A0	kWh	1,401,120
Date Mfg	2000	_	

Baseline Data

Proposed Conditions

Mfg Model #

Energy Usage

Existing Conditions	00-08 Hrs	2.8	kW	587	kVVh	0	Therms
	09-16 Hrs	2.8	kW	558	kVVh	0	Therms
	17-00 Hrs	2.8	kW	394	kWh	0	Therms
	Total	2.8	kW	1,539	kWh	0	Therms
		0.7%		0.1%			
Proposed Conditions	00-08 Hrs	2.7	kW	262	kWh	0	Therms
	09-16 Hrs	2.7	kW	499	kVVh	0	Therms
	17-00 Hrs	2.7	kW	352	kWh	0	Therms
	Total	2.7	kW	1,113	kWh	0	Therms
		0.6%		0.1%			
Unadjusted Annual	Savings	0.1	kW		Adjusted	for BAS]
		426	kWh	1	0.1	kW	1
		0	Therms		426	kWh	1

					s	Split and Package 09 Hour - 16 F	I DX System - E lour: Existing Co	nergy Usage	6				
Facility Unit Location Mfg	NW Regiona Rout Trane	I Library											
→Ref Text Is/IM Estimated OF Si Max Cooling Lo: Max Hearing Lo Max Cooling Lo: Max Cooling Lo: Max Cooling CA Cool Aperox 4 of Peo Average Interna Inside Heating E Ktot - Cooling Tbail - Cooling Tbail - Cooling Tbail - Heating Tbail Heating	ur sved by Unit id id ing Temp ing Temp je ir Area heat gan seign Temp keign Temp	153 4.6 8.1 97 40 87 88 88 160.0 68.0 210.6 88.0 210.6	SF Hauth Hauth Hauth deg F Hauth deg F hruth-deg F hruth-deg F deg F Huth-deg F deg F	400SF/Ten SC MBH/1000SF v D I	d Salehy Factor								
City Cooling Sys	em	25 30 107 1.121 17 3.05	tons kburr New EER/SEER KWTan Age of Unit (yrs) Fall Laad KW (da	1PLV graded 0.6% per year									
Heat Pump Sys	erri	10.01 9090009999 117 00.00	Hituitor COF Age of Unit ((rs) kbtuite input										
Electric Healing	Capacity	u	KVV										
Average Electric Average Natura	Cos: Gas Cost	0.806 0.005	\$/354ti \$/Thems										
COOLING ENE	RGY CONSUMPT	TION											
Temp (F 10 97 82 87 87 72	Bin Temp diff. (F) 2 34 0 29 0 24 0 19 0 14 0 9 0 4 0	Weather Bin Data (Hrs) 6 174 787 816 809 278 2,889	 Heat Loss Rate (kou/trr) 5.4 4.8 3.0 2.2 1.4 0.8 	DX Capacity (koturhr) 29.3 30.5 31.8 32.8 34.0 35.1	Cycling Capacity Acl, Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Adjusted DX Capacity (kbtulin) 28.1 29.3 30.5 31.8 32.8 34.0 35.1	Rated Electric Input (IVV) 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05	Cycling Time Fraction 0.18 0.16 0.12 0.10 0.07 0.04 0.02	DX Supplied Cooling (MMBtu) 0.00 0.02 0.66 2.37 1.81 0.87 0.18 5.90	DX Electric Counsumption (IAMh) 2 86 228 168 78 15 568			
HEATING ENER	RGY CONSUMPT	ION											
Temp 	Bin Temp dff. (F) 11.0 16.0 21.0 26.0 31.0 36.0 41.0 46.0 61.0 56.0 VDemand	vieather Bin Data (HP) 70 70 34 17 5 2 1 0 0 0 0 0 129 2.8	a Heat Loss Rate (kotu-thr) -13 -24 -24 -35 -48 -57 -69 -79 -90 -10.1 -11.1 -12.2 kW	Putmace Capacity (cicuuhr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Ael, Factor 1000 1000 1000 1000 1000 1000 1000 10	Au, Furnace Capacity (btruke) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (EBu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -111 80 -216 21 -332 74 -483 64 -611.72 -790 61 -975 04 -1,201.26 -1,467.76 -1,201.26 -1,467.76 -1,788.40 -2,174.07	Heat Pump Suppled Heating (WMBtu) - 0.02 - 0.08 - 0.05 - 0.01 - 0.01 - 0.01 0.00 0.00 0.00 0.00 0.00	Furnace Counsumption (Therms) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Heat (what Aussian) - 1.32 - 2.42 - 3.51 - 4.80 - 5.69 - 7.88 - 8.79 - 7.08 - 9.97 - 10.06 - 11.16 - 12.25	Prequired Auoliany Heat (Avo) -0.39 -0.71 -1.03 -1.87 -1.87 -2.31 -2.83 -2.83 -2.85 -3.27 -3.59	Aux Electric Heat Consumption (kVM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling ky Total Heating ky Total Heating Th Annual Energy	Wh Consumption Wh Consumption Ierm Consumption Cost	558 0 50	kWh kWh Therms										

					5	plit and Packaged 17 Hour - 00 H	d DX System - E lour: Existing Co	nergy Usage					
Facility Unit Location Mfg Model #	NW Regiona Rout Trane TIP080D10	al Library' UAU											
■HED TEXT IS/HE Estimated GF Se Max Cooling Los Max Heating Lob Design CA Cooli Design CA Cooli Design CA Cooli Design CA Cooling Average internal Inside Heating That - Cooling That - Cooling That - Cooling That - Looling That - Heating	ur nyad by Unit d d ng Temp ng Temp ng Temp heat gan sago Temp esign Temp	153 4.8 9.1 97 90 00 88 160 0 160 0 00 00 00 00 00 00 00 00 00 00 00 00	SF Mauhr Hauhr deg F deg F Hauhr deg F deg F Muh-deg deg F Muh-deg deg F	4005F/Ten 50 MB#/10005F y 01	3 Safety Factor								
Cis Cooling Syst	em	2 5 30 10 7 1 121 17 3 05	tons kbiuhr New EER/SEER KWTan Age of Unit (yrs) Full Laad KW (de	nPLV graded 0.6% per year									
Heat Fund Syst	HT4	10 0 2020202022 17 00 0	Hotuður COF Age af Unit (yrs) kbluðy inpút										
Electric Healing	Capacity	u	KVV										
Average Electric Average Natural	Cos: Gas Cost	0.806 8.005	\$7654h \$7Them										
Temp	Bin Temp diff.	Weather Bin Dat	Heat Loss Rate	DK Capacity	Cycling Capacity	Adjusted DX Capacity	Rated Electric Input	Cycling Time	DX Supplied	EX Electric			
(F) 102 97 82 87 82 87 77 72	(F) 34.0 29.0 24.0 19.0 14.0 9.0 4.0	(Hrs) 0 1 11 275 821 862 539 2,509	(koturhr) 5.4 4.8 3.0 2.2 1.4 0.8	(kotu/hr) 28.1 29.3 30.5 31.6 32.8 34.0 35.1	Adj, Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	(kbtulkr) 28 1 29 3 30 5 31 8 32 8 34 D 35 1	(IVM) 3 05 3 05 3 05 3 05 3 05 3 05 3 05 3 05	Fraction 0.19 0.16 0.12 0.10 0.07 0.04 0.02	Cooling (MMBtu) 0.00 0.04 0.83 1.82 1.23 0.34 4.28	Counsumption (KMh) 0 4 80 169 110 30 394	-		
HEATING ENER	GY CONSUMPT	TION	_							-			
Temp (F) 52 57 52 47 42 32 27 22 17 12 12 12	ein Temp diff. 60 11.0 26.0 31.0 36.0 41.0 36.0 41.0 56.0 56.0	vteather Bin Data (Hrs) 108 60 31 10 3 1 0 0 0 0 0 0 0 0 0 0 211	i Heat Loss Rate (kötz/hr) -13 -24 -35 -48 -57 -69 -78 -90 -10,1 -11,1 -12,2	(capacity) (capacity) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ael, Factor 1 000	Ang, Furnace Capacity (bturker) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (Btu) 0 00	Cycling Time Fraction -11180 -21821 -33274 -48364 -61172 -78061 -97504 -1,201.28 -1,467.78 -1,78840 -2,174.07	Heat Pump Suppled Heating (MMBtu) -0.14 -0.14 -0.05 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00	Furnace Counsumption (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	required Ausiliary Heat (Muthr) -132 -242 -351 -569 -569 -788 -788 -879 -788 -897 -10.06 -11.16 -12.26	Petropaired Auoliany Heat (AV) -0.39 -0.71 -1.03 -1.05 -1.67 -1.99 -2.31 -2.83 -2.95 -3.27 -3.59	Aux Electric Heat <u>Consumption (kV/h)</u> 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kM Total Cooling kM Total Heating kM Total Heating Th Annual Energy	Lemand h Consumption h Consumption erm Consumptio Cost	2.8 394 0 50	kWh kWh Therms										

					3	Split and Package 09 Hour - 16 He	d DX System - E our: Proposed C	nergy Usage onditions					
Facility Unit Location Mfg Model #	NW Regional Rout	Library'											
TEXT IS/IE/OT Estimated SF Served Max Cooling Load Design DA Cooling T Design DA Cooling T Design CA Cooling T Average reternal bea Inside Average reternal bea Inside Average reternal bea Inside Average Design Kitor - Cooling Tools, Cooling	i by Unit iemp emp e Area gain o Temp n Temp	163 4.6 8.1 87 40 0 0 68 68 68 68 68 68 0 68 0 68 0 68	SF kbulhr kbulhr deg-F deg-F deg F deg F deg F deg F	400SF/Ten 50 MBH/1000SF v D1	8 Salety Factor								
Ktot - Heating Tosi Heating		210.6 68.0	btum-degF deg F										
CX: Cooling System		2 6 30 11 1 891 0 2 73	tons kbiui?r/ New EER/SEER kWiTan Age of Unit ((rs) Full Load kW (dr	MPLV L Logical of 0.5% pc: year									
Heat Pump System		10 01 99999999999 0 00 0	Hotohr COF Age of Unit (yrs) kbtuire input										
Electric Healing Capa	acity	ŭ	KVV										
Average Electric Cos Average Natural Gas	s Cóst	0.896 0.000	\$/KVMt \$/Them										
COOLING ENERGY	CONSUMPTI	ION											
Temp Bin (F)	Temp diff. (F)	Weather Bin Data (Hrs)	Heat Loss Rate (köturhr)	DK Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adjusted DX Capacity (kbtu/hr)	Rated Electric Input (KVV)	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	EX Electric Counsumption (kWh)			
102 97 82 87 62 77 72	34.0 29.0 24.0 19.0 14.0 9.0 4.0	0 5 174 787 816 809 278 2,869	5.4 4.8 3.0 2.2 1.4 0.8	28.1 29.3 30.5 31.6 32.8 34.0 35.1	1.000 1.000 1.000 1.000 1.000 1.000 1.000	28 1 29 3 30 5 31 8 32 8 34 0 35 1	2 73 2 73 2 73 2 73 2 73 2 73 2 73 2 73	0.18 0.16 0.12 0.10 0.07 0.04 0.02	0.00 0.02 0.66 2.37 1.81 0.87 0.19 5.90	0 2 59 204 150 70 14 499	-		
HEATING ENERGY	CONSUMPTI	ON											
Temp Bin (F) 57 52 47 42 37 32 27 22 17 12	Temp diff. (F) 8.0 11.0 16.0 21.0 21.0 26.0 31.0 36.0 41.0 46.0 61.0 56.0	Weather Bin Data (Hirs) 70 34 17 6 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i Heat Loss Rate (kbu/hr) - 13 - 24 - 35 - 48 - 57 - 6.9 - 7.9 - 9.0 - 10.1 - 11.1 - 12.2	Furnace Capacity (ktcu/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cycling Capacity Ad), Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj, Furnace Capacity (1610/r/) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (HBtu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -11180 -21621 -333274 -48284 -61172 -78061 -87504 -120128 -146776 -1,18840 -2,17407	Heat Pump Suppled Heating (MMBtu) - 0.08 - 0.08 - 0.00 - 0.00 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.00 - 0.00 - 0.00 - 0.00	Heat Purge Electric Counsurgion (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary Heat (datum) -1.32 -2.42 -3.51 -4.80 -5.69 -8.79 -7.08 -8.97 -10.06 -11.15 -12.25	Required Auxiliary Heat (04/0) -0.39 -0.71 -1.03 -1.35 -1.90 -2.31 -2.83 -2.83 -2.95 -3.27 -3.59	Aux Electric Heat Consumption (kWh) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kW Der Total Cooling kWh Ci Total Heating kWh Ci Total Heating Therm Annual Energy Cost	mand onsumption onsumption Consumption t	2.7 499 0 0 \$0	kW kWh kWh Therms										

					3	Split and Package 17 Hour - 00 He	d DX System - E our: Proposed C	nergy Usage onditions	14				
Facility Unit Location Mfg Model #	NW Regional Root	Library'											
THED TEXT IS/IENT Estimated 6F Served Max Cooling Load Design CA Cooling Ti Design CA Cooling Ti Approx # of People in Average internal head inside Cooling Design Inside Heading Design Total - Leating Total - Heating	ay Unit emp emp r Area gain a Tenna r Temp	165 4.6 8.1 87 40 7 0 0 68 68 68 68 68 68 68 68 0 210.6 68 0 210.6 68 0 210.6 68 0 210.6	SF Matuhn Matuhn deg-F deg-F htuh-degF deg F htuh-degF deg F htuh-degF deg F	4005F/Ten 5° MB#/10005F ¥ 01	ð Safety Factor								
CX: Cooling System		2 5 30 11 1 091 0 2 73	tons Kburn New EER/SEER KWT an Age of Unit (yrs) Full Laad KW (do	nPLV graded 0.5% per year									
Heat Fump System		10,01 20200000000 0 00,00	Hotuður COF Age af Unit (yrs) kötuðu input										
Electric Healing Capa	acity	u	KVV										
Average Electric Cos Average Natural Gas	Cöst.	0.000 0.000	\$//3Vh \$/Them										
COOLING ENERGY	Temp diff.	Weather Bin Data	Heat Loss Rate	DK Capacity	Cycling Capacity	Adjusted DX Capacity	Rated Electric Input	Cycling Time	DX Supplied	DK Electric			
(F) 102 97 82 87 82 77 72	(F) 34.0 29.0 24.0 19.0 14.0 9.0 4.0	(Hrs) 0 1 11 275 821 882 539 2,509	(kolurhr) 5.4 4.8 3.8 3.0 2.2 1.4 0.8	(ktputher) 28.1 29.3 30.5 31.6 32.8 34.0 35.1	Adj. Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	(kbtuhr) 28 1 29 3 30 5 31 8 32 8 34 0 35 1	(KM) 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73	Fraction 0.19 0.16 0.12 0.10 0.07 0.07 0.04 0.02	Cooling (MMBtu) 0.00 0.00 0.04 0.83 1.82 1.23 0.34 4.26	Counsumption (4/4h) 0 4 71 151 98 28 352	-		
HEATING ENERGY	CONSUMPTI	ON											
Temp Bin (F) 52 52 47 42 37 32 27 22 27 22 17 12	Temp diff. (F) B 0 11.0 16.0 21.0 21.0 31.0 36.0 41.0 48.0 61.0 56.0	Weather Bin Data (Hrs.) 106 80 31 10 3 1 0 0 0 0 0 0 0 0 211	i Heat Loss Rate (kbtu/hr) - 1.3 - 2.4 - 3.5 - 4.8 - 5.7 - 6.9 - 7.9 - 9.0 - 10.1 - 41.1 - 12.2	Furnace Capacity ((cou/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cycling Capacity Acl, Factor 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	Adj Furnace Capacity (ktruliv) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (HBtu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -1118 BD -218 21 -3332 74 -483 64 -611 72 -780 61 -875 04 -1,201 28 -1,467.78 -1,201 28 -1,467.78 -1,788 40 -2,174.07	Heat Pump Suppled Heating (IMBtu) -0.14 -0.14 -0.05 -0.02 -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00	Fumace Counsumption (Themp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary e) Heat (bhu/hr) -1.32 -2.42 -3.51 -4.80 -5.69 -6.78 -7.08 -8.97 -10.06 -11.15 -12.25	Required Ausliary Heat (0/V) -0.39 -0.71 -1.03 -1.35 -1.90 -2.31 -2.83 -2.95 -3.27 -3.59	Aux Electric Heat Consumption (KWh) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kW Den Total Cooling kWh Co Total Heating kWh Co Total Heating Therm Annual Energy Cost	mand onsumption onsumption Consumption	2.7 352 0 0 \$ 0	kW kWh kWh Thems										

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Split System - Savings Summary

Facility	NW Regional Library
Unit Location	Roof

Existing Conditions

Mfg	Trane	Peak kW	420
Model #	TTP024C100A3	kWh	1,401,120
Date Mfg	2000	_	

Baseline Data

Proposed Conditions

Mfg Model #

Energy Usage

Existing Conditions	00-08 Hrs	2.8	kW	488	kVVh	0	Therms
	09-16 Hrs	2.8	kW	463	kWh	0	Therms
	17-00 Hrs	2.8	kW	327	kWh	0	Therms
	Total	2.8	kW	1,278	kWh	0	Therms
		0.7%		0.1%			
Proposed Conditions	00-08 Hrs	2.7	kW	218	kWh	0	Therms
	09-16 Hrs	2.7	kW	414	kWh	0	Therms
	17-00 Hrs	2.7	kW	292	kWh	0	Therms
	Total	2.7	kW	924	kWh	0	Therms
		0.6%		0.1%			
Unadjusted Annual	Savings	0.1	kW	1	Adjuste	d for BAS]
		354	kWh	1	0.1	kW	1
		0	Therms	1	354	kWh	1

					5	Split and Package 09 Hour - 16 F	1 DX System - E lour: Existing Co	nergy Usage					
Facility Unit Location Mfg Model #	NW Pegion Rout Trane TTP024C10	al Library' IGA3											
■ACD TEXT IS/A Estimated GF S Max Cooling Lo Max Hearing Lo Design CA Coo Design CA Coo Design CA Coo Design CA Coo Design CA Cool Average reterns Inside Hearing T Mail - Cooling Hot - Cooling Hot - Heating Tool Heating	evr srved by Unit ed ad Ing Temp Ing Temp Ing Temp Ing Temp Ing Temp Ing Temp Ing Temp	137 38 5-1 40 0 0 58 68 68 68 1314 495 1314 495 1314 495 1314	SF Maultr Harvine deg F deg F Havine deg F biuh-deg F biuh-deg F bluh-deg F	400SF/Ten 50 MBH/1000SF v D I	3 Salety Factor								
Cis Cooling Sys	tem	2 5 30 10 7 1 121 17 3 15	tons kbuikr New EER/SEER kW/Tan Age of Unit (yrs) Full Load kW/do	11PLV graded 0.6% pcr year									
Heat Pump Sys	en.	10 0 909900022 17 00 0	Hourier COF Age of Unit (grs) kbourg input										
Electric Healing	Capacity	u	RVV										
Average Electro Average Natura	: Cos: I Gas Cost	0.866 8 008	\$/RV4h \$/Tiherm										
Temp	Bin Temp diff	Weather Bin Dat	a Heat Loss Rate	DK Capacity	Oycling Capacity	Adjusted DX Capacity	Rated Electric Input	Cycling Time	DX Supplied	DX Electric Countermention (Abb)			
97 97 98 97 97 77 77	2 34.0 29.0 24.0 19.0 14.0 9.0 4.0	0 5 174 787 816 809 279 2,669	45 3.8 3.2 2.5 1.8 1.2 0.5	28,1 29,3 30,5 31,6 32,6 34,0 35,1	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	28.1 29.3 30.5 31.8 32.8 34.0 35.1	3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.05	0.16 0.13 0.10 0.08 0.06 0.03 0.01	0.00 0.02 0.55 1.98 1.50 0.72 0.15 4.90	0 2 55 190 140 85 13 463			
HEATING ENE	RGY CONSUMP	TION											
Temp 65 55 44 42 33 22 22 11 15 15	Bin Temp diff (F) (F) B 0 100 100 210 210 210 200 310 360 410 560 560 100 100 100 100 100 100 100 1	Weather Bin Dat (Hrs) 70 34 17 5 2 1 0 0 0 0 0 0 0 129 2 8	 Heat Loss Rate (ktputhr) 1.1 2.0 2.9 3.8 4.7 5.8 6.5 7.4 6.3 9.3 -10.2 bar 	Furnace Capacity (lictourner) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Oycling Capacity Adj. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Adj, Furnace Capacity (ktruliv) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (KBu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction 422 80 -179 47 -276 20 -304 465 -507 77 -847 98 -008 35 -097 13 -1210 35 -1,462 83 -1,804 62	Heat Pump Suppled Heating (MMBb) -0.16 -0.07 -0.02 -0.02 -0.01 -0.02 -0.01 -0.01 -0.02 -0.02 -0.01 -0.02 -0.02 -0.02 -0.02 -0.01 -0.02 -0.02 -0.02 -0.02 -0.02 -0.01 -0.02 -0.02 -0.02 -0.01 -0.02 -0.02 -0.02 -0.01 -0.02 -0.02 -0.02 -0.02 -0.01 -0.02 -0.02 -0.01 -0.02 -0.02 -0.02 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.01 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02 -0.	Fumace Counsumption (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Ausliary Heat (Abtuhr) -10 -2.01 -2.91 -3.92 -4.73 -6.54 -7.45 -8.35 -8.28 -9.28 -10.17	Required Auxiliary Heat (0AV) -0.32 -0.59 -0.85 -1.12 -1.30 -1.85 -1.92 -2.18 -2.45 -2.45 -2.71 -2.98	Aux Electric Heat Consumption (KWh) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling K Total Cooling K Total Heating K Total Heating T Annual Energy	V Demand Wh Consumption Wh Consumption term Consumption Cost	2.8 483 0 m 0 \$0	kvv kvvh kvvh Therms										

					5	Split and Package 17 Hour - 00 H	d DX System - E lour: Existing Co	nergy Usage nditions	5 m				
Facility Unit Location Mfg Model #	NW Regional Rout Trane TIP024C100	Library' A3											
■RED TEXT IS/IRF0 Estimated GF Ser Max Cooling Load Design DX Coolin Design DX Coolin Design DX Coolin Design DX Coolin Design DX Cooling Tasil - Cooling Tasil - Cooling Tasil - Cooling Tasil - Cooling Tasil - Cooling Tasil - Cooling Tasil - Cooling Tasil - Cooling Tasil - Cooling Tasil - Cooling Tasil - Cooling	r ved by Unit g Temp e in Area eat gain ign Temp sign Temp	127 3.8 6.1 40 0.0 68 68 1314 69 0 1614 69 0	SF ktautm ktautm deg F deg f ktautm deg F deg F deg F biuth-deg deg F biuth-deg deg F	400SF/Ton 50 MBH/1000SF y 01	a Safety Factor								
Cis Cooling Syste	'n	25 30 107 1.121 17 3.05	tons Kbruhr New EER/SEER KWTan Age of Unit (yrs Fall Laad KW (d	arety) conded 0.5% per year									
Heat Pump System	Ti	10 0 99999999999 17 00 0	Howhi COF Age of Ucit (yrs kbtu/ke input	0									
Electric Healing C	apacity	u.	KVV										
Average Electric C Average Natural C	ias Cóst	0.000 0.000	\$//XVh \$/Them										
.Temp E	in Temp diff.	Weather Bin Dat	a Heat Loss Rate	DK Capacity	Cycling Capacity	Adjusted DX Capacity	Rated Electric Input	Cycling Time	DX Supplied	DK Electric			
(F) 102 97 92 87 82 87 82 77 72	(+) 34 D 29 D 24 D 19 D 14 D 9 C 4.0	(HTS) 0 1 11 275 821 862 539 2,509	45 3.8 3.2 2.5 1.8 1.2 0.5	(800/8) 29.3 30.5 31.6 32.6 34.0 35.1	1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	(40,0477) 29,3 30,5 31,6 32,8 34,0 35,1	8 05 3 05 3 05 3 05 3 05 3 05 3 05 3 05 3	0.13 0.10 0.08 0.08 0.08 0.03 0.01	000 000 003 0.69 1.51 1.02 0.20 3.54	Counser-liptich (kivin) 0 3 88 140 82 25 327			
	Y CONSUMPTI	ON Wanter Rin Dat	- Hant Lags Date	Europee Caepacity	Outling Conscilu	Ad Europe Connelly	Hast Dump Incut	Owline Time	Hant Dump Quantied	Fumore	Permined Audion	Providend Auroliana	Are Electric Lent
(F) 62 67 62 47 42 37 32 27 22 17 12	(F) 60 11.0 16.0 21.0 26.0 31.0 36.0 41.0 46.0 61.0 56.0	(HFR) (HFR) 100 60 31 10 3 1 0 0 0 0 0 211	(kbu)hr) -1.1 -2.0 -3.8 -3.8 -5.8 -6.5 -7.4 -6.3 -9.3 -9.3 -10.2	(ideu/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Aci, Factor 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	(btulie) (btulie) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(14) (14) (14)	Fraction Fraction -82.80 -179.47 -278.20 -304.65 -507.77 -847.98 -803.65 -997.13 -1,218.35 -1,402.83 -1,804.62	reat: −art(2 SUpple) Heating (MMBb) −0.12 −0.08 −0.04 −0.01 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00	rumate Counsungtion (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Heat (blub) Heat (blub) -2.01 -2.91 -3.92 -4.73 -5.83 -6.54 -7.45 -8.35 -9.28 -10.17	Heat (0/4) Heat (0/4) -0.32 -0.59 -0.85 -1.12 -1.30 -1.85 -1.82 -2.18 -2.45 -2.71 -2.98	Consumption (k/vh) 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kW Total Cooling kW Total Heating kW Total Heating The Annual Energy C	Demand Consumption Consumption Consumption ost	2.8 327 0 50	kW kWh kWh Therms	_									

						•	Split and Packaged 09 Hour - 16 Ho	I DX System - E bur: Proposed C	nergy Usage onditions					
Facility Unit Location Mfg Model #	Rout	egional L	(Grany)											
→ AEU YEXT (K) Estimated GF Max Cooling L Max Heating L Design CA Co Design CA Co Design CA Co Design CA Co Approxi# of Pri Average intern Inside Cooling Inside Cooling Inside Heating Ktot - Cooling Ktot - Heating Tbail - Leading Tbail - Leading Tbail - Heating Tbail - Heating	teur Served by Ur oad oling Temp oling Temp ongte is Area al beat gam Design Tem Design Tem	n p	137 3.8 5.1 40 0 80 68 131.4 191.4 191.4 191.4	SF ktruhn deg-F deg-F ktruhn deg-F deg-F huh-segF deg-F huh-segF deg-F huh-segF deg-F	4005F/Tcn 50 MB4/10005F v D i	3 Satety Factor								
Cis Cooling S ₇	stem		2 5 30 11 1 031 0 2 73	tons kbuirr New EER/SEER/ KWT an Age of Unit (yrs) Fail Laad KW (de	19LV graded 8.6% per year									
Heat Fump Sy	sterre		10.0 99999999999 0 90.0	Hotuny COF Age of Unit (yrs) kbtuine input										
Electric Health	g Capacity		ũ	EVV										
Average Electr Average Natur	e Cos: al Gas Cóst		0.806 8.000	\$//Wh \$/Them										
Terr	np Bin. Ten Fi	np diff. 'F1	Weather Bin Data	Heat Loss Rate	DX Capacity (ktp./br)	Cycling Capacity Adl. Factor	Adjusted DX Capacity (khtube)	Rated Electric Input	Cycling Time Fraction	DX Supplied Cooline (MMBtu)	DX Electric Counsymption (IAMb)			
	02 3 37 5 32 2 37 1 32 1 77 7 72 .	4 0 9.0 4.0 9.0 4.0 3.0 4.0	2,669	4.5 3.8 3.2 2.5 1.8 1.2 0.5	28.1 29.3 30.5 31.8 32.8 34.0 35.1	1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	28 1 29 3 30 5 31 8 32 8 34 0 36 1	2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73	0.16 0.13 0.10 0.08 0.08 0.03 0.03 0.03	0 00 0 02 0 55 1 96 1 50 0 72 0 15 4 90	0 2 49 169 125 58 11 414			
HEATING ENI	ERGY CONS	UMPTIO	N											
	pp Bin Ten F) 32 57 1 52 1 47 2 37 3 32 3 37 3 32 3 32 4 32 4 17 6 12 6	pdiff. F) 50 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0	Weather Bin Bata (Hrs) 70 34 17 5 2 1 0 0 0 0 0 0 0 0 129	Heat Loss Rate (ktbu/hr) -1.1 -2.0 -2.9 -3.8 -4.7 -5.8 -6.5 -7.4 -0.0 -0.3 -0.3 -10.2	Furnace Capacity (ktou/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cycling Capadity Adi, Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj. Furnace Capacity (ktruly) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (KBtu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -92.80 -179.47 -278.20 -304.95 -507.77 -847.98 -099.35 -997.13 -1,218.35 -1,492.83 -1,804.82	Heat Pump Suppled Heating (MBbt) -0.08 -0.07 -0.07 -0.02 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0	Heat Pump Electric Counsumption (Therms) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pequired Ausliany Hest (kbtwhr) -1.10 -2.01 -2.01 -2.81 -3.92 -4.73 -5.83 -6.54 -7.45 -9.28 -9.28 -10.17	Required Auxiliary Heat (W) -0.32 -0.59 -0.85 -1.12 -1.38 -1.85 -1.92 -2.18 -2.45 -2.71 -2.98	Aux Electric Heat Consumption (kVM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling F Total Cooling F Total Heating F Total Heating Annual Energ	Willemand Wih Consum Wih Consum Therm Consum y Cost	pton option imption	2.7 414 0 0 0	kW kWh KWh Thems										

				5	Split and Package 17 Hour - 00 He	d DX System - E our: Proposed C	nergy Usage onditions					
Facility NW Region Unit Location Rool Mfg Model #	al Library'											
"Held Text Skillevit Estimator (EF Served by Unit Max Coaving Load) Text on the Load Max Hearing Load Text on the Load Approver of People In Aveas Average retemation best gain Indiae Heating Design Temp Ktot - Coaling Tubil - Coaling Ktot - Heating Tobal Heating	127 3.8 5.1 47 40 0 0 68 68 68 131 4 69 0 4 69 7 4 69 7 4 69 7 4 69 7 4 69 7	SF klauhn klauhn deg F deg F deg F deg F huh deg F deg F bluh deg F deg F	- 400SF/Ten 50 MBH/1000SF v 01	l Safety Factor								
Os Cooling System	25 30 11 1 091 0 278	tons kburkr New EER/SEER kW/Tan Age of Unit (vrs) Full Load kW/(do	19LV graded 0.6% per year									
Heat Pump System	10.0 9999009999 0 00.0	Hotolog COF Age of Unit (yrs) kbouing input										
Electric Heating Capacity	ŭ	KVV										
Average Electric Cos: Average Natural Gas Cóst.	0.806 8.005	\$/894h \$/Them										
COOLING ENERGY CONSUMP	TION Weather Bin Dat	a Heat Loss Rate	DK Capacity	Cycling Capacity	Adjusted DX Capacity	Rated Electric Input	Cycling Time	DX Supplied	DK Electric			
(F) (F) 102 344 97 29.0 82 24.0 87 19.0 87 19.0 77 9.0 72 4.0	(Hrs) 0 1 11 275 821 862 539 2,509	(koturhr) 4.5 3.8 3.2 2.5 1.8 1.2 0.5	(kbtu/hr) 28.1 29.3 30.5 31.6 32.8 34.0 35.1	Adj, Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	(ktruhr) 28 1 29 3 30 5 31 8 32 8 34 0 35 1	(IVM) 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73	Fraction 0.16 0.13 0.10 0.08 0.08 0.08 0.03 0.01	Cooling (MMBtu) 0.00 0.00 0.03 0.69 1.61 1.02 0.20 3.54	Counsumption (KMh) 0 3 59 126 82 22 292			
HEATING ENERGY CONSUMP	TION											
Temp Bin Temp diff (F) (F) 57 11.0 57 11.0 42 16.0 42 26.0 37 31.0 32 36.0 22 41.0 22 41.0 17 61.0 12 56.0	Weather Bin Dat (Hrs) 108 60 31 10 3 1 0 0 0 0 0 0 0 211	a Heat Loss Rate ((kbu/h) -1.1 -2.0 -2.8 -3.8 -4.7 -6.8 -6.5 -7.4 -6.3 -9.3 -9.3 -10.2	Furnace Capacity (I)(ctu/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cycling Capacity Adi, Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj Furnace Capacity (tetruler) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input: (Part) 0 00	Cycling Time Fraction -92.80 -179.47 -276.20 -394.65 -507.77 -847.98 -899.13 -1,218.35 -1,218.35 -1,804.82	Heat Pump Supplied Heating (MBbu) -0.12 -0.02 -0.04 -0.04 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0	Furnace Counsumption (Thems 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Ausliany Heat (AtuAhr) -1.10 -2.01 -2.91 -3.92 -4.73 -6.53 -6.54 -7.45 -6.54 -7.45 -0.35 -9.28 -10.17	Required Auxiliary Heat (0/V) -0.32 -0.59 -0.85 -1.12 -1.38 -1.85 -1.92 -2.18 -2.45 -2.71 -2.98	Aux Electric Heat Consumption (kV/h) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling KW Demand Total Cooling KWh Consumption Total Heating KWh Consumption Total Heating Therm Consumption Annual Energy Cost	2.7 292 0 0 \$0	kW kWh kWh Thems										

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Coil Cleaning Savings

NW Regional Library

Fan Energy Savings

Static Pressure Reduction:

in WC

	Existin	g Usage	Propose	ed Usage	Sav	vings	
Equipment	kW	kWh	kW	kWh	kW	kWh	
AHU-1	12.0	52,712	11.6	50,954	0.4	1,757	
AHU-2	0.7	3,118	0.7	2,910	0.0	208	
AHU-3	1.6	7,174	1.5	6,696	0.1	478	
AHU-4	15.0	65,539	14.5	63,355	0.5	2,185	
AHU-5	1.3	5,601	1.2	5,228	0.1	373	
Total	30.6	134,144	29.5	129,143	1.1	5,001	

0.1

Fan Energy Savings

Coil Heat Transfer Efficiency Gain 5%

	Existin	g Usage	Propose	ed Usage	Sav	ings
Equipment	kW	kWh	kW	kWh	kW	kWh
AHU-1	36.2	174,863	34.3	165,660	1.9	9,203
AHU-2	4.7	22,563	4.4	21,375	0.2	1,188
AHU-3	12.8	62,048	12.2	58,783	0.7	3,266
AHU-4	43.2	208,708	40.9	197,723	2.3	10,985
AHU-5	8.2	39,485	7.7	37,407	0.4	2,078
Total	105.0	507,667	99.5	480,948	5.5	26,719

* ASHRAE Study published in ASHRAE Jounal Vol. 48 in November 2006 documented thermal efficiency savings of 25% and overall building HVAC consumption reduction of 10%. This calculation is conservative in modeling a 5% gain in heat transfer ability and a 0.1 in reduction in static pressure loses across the coil.

Exhibit 1 Page 299 of 490

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

<section-header><text>

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Northwest Regional Library NW Regional Library AHU-2

Total Hrs On Design Airflow Design Static Pressure Existing Fan Efficiency Existing Fan BHP Proposed Fan Efficiency Proposed Static Pressure Proposed Static Pressure Proposed Static Pressure Design CHAV 20 Actual Debat 7 System EER 10 Existing Col Eft 90% Proposed Coll E 95%

				<u> </u>	EXIST	NG		PROPUSED	-	
% Load	CFM	Hrs @ Load	Hr % of Total	Existing Fan BHP	Input KW	Existing Fan Energy (kWh)	Fan BHP	Input KW	Energy	Annual kWh Savings
100%	2,700	364.9	8.3%	1	0.71	260	0.79	0.66	243	17
95%	2,585	0.0	0.0%	1	0.71	0	0.79	0.66	0	0
90%	2,430	729.8	16.7%	1	0.71	520	0.79	0.66	485	35
85%	2,295	0.0	0.0%	1	0.71	0	0.79	0.66	0	0
80%	2,160	729.8	16.7%	1	0.71	520	0.79	0.66	485	35
75%	2,025	364.9	8.3%	1	0.71	260	0.79	0.66	243	17
70%	1,890	729.8	16.7%	1	0.71	520	0.79	0.66	485	35
85%	1,755	364.9	8.3%	1	0.71	260	0.79	0.66	243	17
60%	1,620	364.9	8.3%	1	0.71	260	0.79	0.66	243	17
55%	1,485	0.0	0.0%	1	0.71	0	0.79	0.66	0	0
50%	1,350	0.0	0.0%	1	0.71	0	0.79	0.66	0	0
45%	1,215	0.0	0.0%	1	0.71	0	0.79	0.66	0	0
40%	1,080	0.0	0.0%	1	0.71	0	0.79	0.66	0	0
35%	945	0.0	0.0%	1	0.71	0	0.79	0.66	0	0
30%	810	0.0	0.0%	1	0.71	0	0.79	0.66	0	0
25%	675	0.0	0.0%	1	0.71	0	0.79	0.66	0	0
20%	540	0.0	0.0%	1	0.71	0	0.79	0.66	0	0
15%	405	0.0	0.0%	1	0.71	0	0.79	0.66	0	0
10%	270	364.9	8.3%	1	0.71	260	0.79	0.66	243	17
5%	135	364.9	8.3%	1	0.71	260	0.79	0.66	243	17
0%	0	0.0	0.0%	0	0.00	0	0.79	0.66	0	0

GPM F

VFD Fan Savings =

Land	Deefile	
rosa	6-LOUNE	

Monday thru Friday								
Hr of Day	Load %	Hrs						
0	0%	0						
1	0%	0						
2	0%	0						
3	0%	0						
4	0%	0						
5	0%	0						
6	0%	0						
7	0%	0						
8	5%	260.7						
9	10%	260.7						
10	60%	260.7						
11	85%	260.7						
12	70%	260.7						
13	75%	260.7						
14	80%	260.7						
15	90%	260.7						
16	100%	260.7						
17	90%	260.7						

Pir of Day	L030 %	PICS	Prof Day	Load %	PIPS
0	0%	0	0	0%	0
1	0%	0	1	0%	0
2	0%	0	2	0%	0
3	0%	0	3	0%	0
4	0%	0	4	0%	0
5	0%	0	5	0%	0
6	0%	0	8	0%	0
7	0%	0	7	0%	0
8	5%	52.1	8	5%	52.1
9	10%	52.1	9	10%	52.1
10	60%	52.1	10	60%	52.1
11	65%	52.1	11	85%	52.1
12	70%	52.1	12	70%	52.1
13	75%	52.1	13	75%	52.1
14	80%	52.1	14	80%	52.1
15	90%	52.1	15	90%	52.1
16	100%	52.1	16	100%	52.1
				A.A.L.	-

Sunday

Exhibit 1 Page 301 of 490

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Northwest Regional Library NW Regional Library AHU-3

Total Hrs On Design Airflow Design Static Pressure Existing Fan Efficiency Existing Fan BHP Proposed Fan Efficiency Proposed Static Pressure Proposed Static Pressure Proposed Static Pressure Design CHW 55 Actual Detal 7 System EER 10 Existing Col EH 80% Proposed Coil E 85%

				<u> </u>	EXISTI	1G		PROPOSED	1	
% Load CFM Hrs @ Load	Hrs @ Load Hr % of Total East	Existing Fan BHP	Input KW	Existing Fan Energy (KMh)	Fan BHP	Input KW	Energy	Annual kWh Savings		
100%	6,400	364.9	8.3%	2	1.64	598	1.88	1,53	558	40
95%	6,080	0.0	0.0%	2	1.64	0	1.88	1.53	0	0
90%	5,760	729.8	16.7%	2	1.64	1,196	1.88	1.53	1,116	80
85%	5,440	0.0	0.0%	2	1.64	0	1.88	1.53	0	0
80%	5,120	729.8	16.7%	2	1.64	1,196	1.88	1.53	1,116	80
75%	4,800	364.9	8.3%	2	1.64	598	1.88	1.53	558	40
70%	4,480	729.8	16.7%	2	1.64	1,196	1.88	1.53	1,116	80
85%	4,160	364.9	8.3%	2	1.84	598	1.88	1.53	558	40
60%	3,840	364.9	8.3%	2	1.84	598	1.88	1.53	558	40
55%	3,520	0.0	0.0%	2	1.84	0	1.88	1.53	0	0
50%	3,200	0.0	0.0%	2	1.64	0	1.88	1.53	0	0
45%	2,880	0.0	0.0%	2	1.64	0	1.88	1.63	0	0
40%	2,560	0.0	0.0%	2	1.64	0	1.88	1.53	0	0
35%	2,240	0.0	0.0%	2	1.64	0	1.88	1.53	0	0
30%	1,920	0.0	0.0%	2	1.84	0	1.88	1.53	0	0
25%	1,600	0.0	0.0%	2	1.64	0	1.88	1.53	0	0
20%	1,280	0.0	0.0%	2	1.64	0	1.88	1.53	0	0
15%	960	0.0	0.0%	2	1.64	0	1.88	1,53	0	0
10%	640	364.9	8.3%	2	1.64	598	1.88	1.53	558	40
5%	320	364.9	8.3%	2	1.64	598	1.88	1.53	558	40
0%	0	0.0	0.0%	0	0.00	0	1.88	1.53	0	0

GPM F

VFD Fan Savings =

	D	
rosq	Profile	

Monday thru rhday								
Hr of Day	Load %	Hrs						
0	0%	0						
1	0%	0						
2	0%	0						
3	0%	0						
4	0%	0						
5	0%	0						
8	0%	0						
7	0%	0						
8	5%	260.7						
9	10%	260.7						
10	60%	260.7						
11	85%	260.7						
12	70%	260.7						
13	75%	260.7						
14	80%	260.7						
15	90%	260.7						
16	100%	260.7						
17	90%	260.7						

Hr of Day	Load %	Hrs	Hr of Day	Load %	Hrs
0	0%	0	0	0%	0
1	0%	0	1	0%	0
2	0%	0	2	0%	0
3	0%	0	3	0%	0
4	0%	0	4	0%	0
5	0%	0	5	0%	0
6	0%	0	8	0%	0
7	0%	0	7	0%	0
8	5%	52.1	8	5%	52.1
9	10%	52.1	9	10%	52.1
10	60%	52.1	10	60%	52.1
11	65%	52.1	11	65%	52.1
12	70%	52.1	12	70%	52.1
13	75%	52.1	13	75%	52.1
14	80%	52.1	14	80%	52.1
15	90%	52.1	15	90%	52.1
16	100%	52.1	18	100%	52.1
17	90%	52.1	17	90%	52.1

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Northwest Regional Library NW Regional Library AHU-4

Total Hrs On Design Airflow Design Static Pressure Existing F an Efficiency Existing F an EHP Proposed F an Efficiency Proposed F an EHP Existing Mctor Efficiency Design CHW 185 Actual DetaT 7 System EER 10 Deviating Coll EH 90% Proposed Coll E 95%

				<u> </u>	EXIST	NG		PROPOSED	-	
% load CEM His @ load	Hrs @ Load Hr % of Total Ear	Existing Fan BHP	Input KW	Existing Fan Energy (kWh)	Fan BHP	Input KW	Energy	Annual kWh Savings		
100%	30,000	364.9	8.3%	19	14.97	5,482	18.25	14.47	5,280	182
95%	28,500	0.0	0.0%	19	14.97	0	18.25	14.47	0	0
90%	27,000	729.8	16.7%	19	14.97	10,923	18.25	14,47	10,559	364
85%	25,500	0.0	0.0%	19	14.97	0	18.25	14,47	0	0
80%	24,000	729.8	16.7%	19	14.97	10,923	18.25	14.47	10,559	364
75%	22,500	364.9	8.3%	19	14.97	5,462	18.25	14.47	5,280	182
70%	21,000	729.8	16.7%	19	14.97	10,923	18.25	14.47	10,559	364
85%	19,500	364.9	8.3%	19	14.97	5,482	18.25	14.47	5,280	182
60%	18,000	364.9	8.3%	19	14.97	5,482	18.25	14.47	5,280	182
55%	16,500	0.0	0.0%	19	14.97	0	18.25	14.47	0	0
50%	15,000	0.0	0.0%	19	14.97	0	18.25	14.47	0	0
45%	13,500	0.0	0.0%	19	14.97	0	18.25	14.47	0	0
40%	12,000	0.0	0.0%	19	14.97	0	18.25	14.47	0	0
35%	10,500	0.0	0.0%	19	14.97	0	18.25	14.47	0	0
30%	9,000	0.0	0.0%	19	14.97	0	18.25	14.47	0	0
25%	7,500	0.0	0.0%	19	14.97	0	18.25	14.47	0	0
20%	6,000	0.0	0.0%	19	14.97	0	18.25	14.47	0	0
15%	4,500	0.0	0.0%	19	14.97	0	18.25	14.47	0	0
10%	3,000	354.9	8.3%	19	14.97	5,462	18.25	14.47	5,280	182
5%	1,500	364.9	8.3%	19	14.97	5,482	18.25	14.47	5,280	182
0%	0	0.0	0.0%	0	0.00	0	18.25	14.47	0	0

GPM F

VFD Fan Savings =

Load Profile

2,185 kWh

Monday und Priday								
Hr of Day	Load %	Hrs						
0	0%	0						
1	0%	0						
2	0%	0						
3	0%	0						
4	0%	0						
5	0%	0						
6	0%	0						
7	0%	0						
8	5%	260.7						
9	10%	260.7						
10	60%	260.7						
11	85%	260.7						
12	70%	260.7						
13	75%	260.7						
14	80%	260.7						
15	90%	260.7						
16	100%	260.7						
17	90%	260.7						

Hr of Day	Load %	Hrs	Hr of Day	Load %	Hrs		
0	0%	0	0	0%	0		
1	0%	0	1	0%	0		
2	0%	0	2	0%	0		
3	0%	0	3	0%	0		
4	0%	0	4	0%	0		
5	0%	0	5	0%	0		
6	0%	0	6	0%	0		
7	0%	0	7	0%	0		
8	5%	52.1	8	5%	52.1		
9	10%	52.1	9	10%	52.1		
10	60%	52.1	10	60%	52.1		
11	65%	52.1	11	65%	52.1		
12	70%	52.1	12	70%	52.1		
13	75%	52.1	13	75%	52.1		
14	80%	52.1	14	80%	52.1		
15	90%	52.1	15	90%	52.1		
16	100%	52.1	16	100%	52.1		
4.2	6094	60.4	12	006	2.5.4		

Exhibit 1 Page 303 of 490

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Northwest Regional Library NW Regional Library AHU-5

Total Hrs On Design Airflow Design Static Pressure Existing Fan BHP Proposed Fan BHP Proposed Fan Efficiency Proposed Static Pressure Proposed Static Pressure Proposed Fan BHP Existing Motor Efficiency Design CHAV 35 Actual Deta1 7 System EER 10 Existing Col Eh 80% Proposed Coll E 95%

373 kWh

				<u> </u>	EXIST	1G		PROPOSED	-	
% Load	CFM	Hrs @ Load	Hr % of Total	Existing Fan BHP	Input KW	Existing Fan Energy (KMh)	Fan BHP	Input KW	Energy	Annual kWh Savings
100%	4,850	364.9	8.3%	2	1.28	467	1.42	1,19	438	31
95%	4,608	0.0	0.0%	2	1.28	0	1.42	1.19	0	0
90%	4,385	729.8	16.7%	2	1.28	934	1.42	1.19	871	62
85%	4,123	0.0	0.0%	2	1.28	0	1.42	1.19	0	0
80%	3,880	729.8	16.7%	2	1.28	834	1.42	1.19	871	62
75%	3,638	364.9	8.3%	2	1.28	467	1.42	1.19	435	31
70%	3,395	729.8	16.7%	2	1.28	834	1.42	1.19	871	62
85%	3,153	364.9	8.3%	2	1.28	467	1.42	1.19	438	31
60%	2,910	364.9	8.3%	2	1.28	467	1.42	1.19	438	31
55%	2,668	0.0	0.0%	2	1.28	0	1.42	1.19	0	0
50%	2,425	0.0	0.0%	2	1.28	0	1.42	1.19	0	0
45%	2,183	0.0	0.0%	2	1.28	0	1.42	1.19	0	0
40%	1,940	0.0	0.0%	2	1.28	0	1.42	1.19	0	0
35%	1,698	0.0	0.0%	2	1.28	0	1.42	1.19	0	0
30%	1,455	0.0	0.0%	2	1.28	0	1.42	1.19	0	0
25%	1,213	0.0	0.0%	2	1.28	0	1.42	1.19	0	0
20%	970	0.0	0.0%	2	1.28	0	1.42	1.19	0	0
15%	728	0.0	0.0%	2	1.28	0	1.42	1.19	0	0
10%	485	364.9	8.3%	2	1.28	467	1.42	1.19	435	31
5%	243	364.9	8.3%	2	1.28	467	1.42	1.19	438	31
0%	0	0.0	0.0%	0	0.00	0	1.42	1.19	0	0

GPM F

VFD Fan Savings =

Load Profile

Monday thru Friday							
Hr of Day	Load %	Hrs					
0	0%	0					
1	0%	0					
2	0%	0					
3	0%	0					
4	0%	0					
5	0%	0					
6	0%	0					
7	0%	0					
8	5%	260.7					
9	10%	260.7					
10	60%	260.7					
11	85%	260.7					
12	70%	260.7					
13	75%	260.7					
14	80%	260.7					
15	90%	260.7					
16	100%	260.7					
17	90%	260.7					

Hr of Day	Load %	Hrs	Hr of Day	Load %	Hrs
0	0%	0	0	0%	0
1	0%	0	1	0%	0
2	0%	0	2	0%	0
3	0%	0	3	0%	0
4	0%	0	4	0%	0
5	0%	0	5	0%	0
6	0%	0	8	0%	0
7	0%	0	7	0%	0
8	5%	52.1	8	5%	52.1
9	10%	52.1	9	10%	52.1
10	60%	52.1	10	60%	52.1
11	65%	52.1	11	65%	52.1
12	70%	52.1	12	70%	52.1
13	75%	52.1	13	75%	52.1
14	80%	52.1	14	80%	52.1
15	90%	52.1	15	90%	52.1
16	100%	52.1	16	100%	52.1
				A.A.L.	-

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

NW Regional Library - Chiller Replacement MONTHLY ENERGY CONSUMPTION

By Opterra Energy

---- Monthly Energy Consumption -----

Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Tota
Alternative: 1		Nort	hwest Re	gional Lit	brary - Ba	seline								
Electric														
On-Pk Cor	ns. (kWh)	24,965	21,846	39,180	38,786	43,611	52,305	54,734	62,382	53,757	45,229	36,671	29,831	503,294
On-Pk Den	nand (kW)	147	150	176	184	190	234	240	245	239	215	191	172	245
Gas														
On-Pk Cons.	(therms)	21	16	0	0	0	0	0	0	0	0	0	0	36
On-Pk Demand ((therms/hr)	5	1	0	0	0	0	0	0	0	0	0	0	5
Ener	gy Consum	ption			E	nvironme	ntal Impact	Analysis						
Building	14,256	Btu/(ft2-y	ear)		CC	02	632,812 lbm/	year						
Source	42,713	Btu/(ft2-y	ear)		SC	02	1,796 gm/y	ear						
					NC	X	1,015 gm/y	ar						
Floor Area	120,750	ft2												
item etiner 0		Llink	Fileland	New O	hillowa									
atemative: 2		Higi	Encienc	SY New CI	nillers									
Electric														
On-Pk Cor	ns. (kWh)	22,048	18,890	33,076	33,712	38,193	45,302	48,013	54,906	47,071	39,318	31,753	26,056	438,33
On-Pk Den	nand (kvv)	115	118	147	154	159	183	203	214	205	176	158	142	214
Gas														
On-Pk Cons.	(therms)	21	18	0	0	0	0	0	0	0	0	0	0	38
one contains (anennam)	5		5	0	0	0	0	0	5	0	0	0	5
Ener	gy Consum	nption			E	nvironme	ntal Impact	Analysis						
Building	12,420	Btu/(ft2-y	ear)		CC	02	551,140 lbm/	year						
Source	37,204	Btu/(ft2-y	ear)		SC	02	1,564 gm/y	bar						
					NC	X	884 gm/ye	ar						
Floor Area	120,750	ft2			NC	х	884 gm/ye	ar						
Floor Area	120,750	ft2	High Eff	Chillers a	NC)X	884 gm/ye	ar						
Floor Area Alternative: 3	120,750	ft2 New	High Eff	Chillers a	NC and Pump	s	884 gm/ye	ar						
Floor Area Alternative: 3 Electric	120,750	rt2 New	High Eff	Chillers a	NC and Pump	s	884 gm/ye	ar						
Floor Area Alternative: 3 Electric On-Pk Cor	120,750	rt2. New 21,699	18,575	22,693	NC and Pump 33,274 153	37,691	884 gm/ye 44,801 193	ar 47,485 202	54,388	46,597	38,871	31,317	25,671	433.06
Floor Area Alternative: 3 Electric On-Pk Cor On-Pk Den	120,750 ns. (kWh) nand (kW)	rt2 New 21,699 115	18,575 118	Chillers a 32,693 146	NC and Pump 33,274 153	37,691 159	884 gm/ye 44,801 193	ar 47,485 202	54,308 213	48,597 204	38.871 175	31,317 158	25,871 142	433.06 213
Floor Area Alternative: 3 Electric On-Pk Cor On-Pk Den Gas	120,750 ns. (kWh) nand (kW)	ft2 New 21,699 115	18,575 118	Chillers a 32,693 146	NC and Pump 33,274 153	37,691 159	884 gm/ye 44,801 193	ar 47,485 202	54,306 213	48,597 204	38,671 175	31,317 158	25,871 142	433.06 213
Floor Area Alternative: 3 Electric On-Pk Cor On-Pk Cons On-Pk Cons On-Pk Cons	120,750 ns. (kWh) nand (kW) . (therms)	ft2 New 21,699 115 21 5	18,575 118 118 118 16	Chillers a 32,693 146 0 0	NC and Pump 33,274 153 0 0	37,691 159 0	884 gm/ye 44,801 193 0 0	ar 47,485 202 0	54,308 213 0	46,597 204 0 0	38,871 175 0	31,317 158 0	25,671 142 0	433,06 213 36 5
Floor Area Alternative: 3 Electric On-Pk Cor On-Pk Cons. On-Pk Cons. On-Pk Cons.	120,750 ns. (kWh) nand (kW) . (therms) (therms/hr)	ft2 New 21,699 115 21 5	18,575 118 16 16 1	Chillers a 32,693 146 0 0	NC and Pump 33,274 153 0 0	s 37,691 159 0 0	884 gm/ye 44,801 193 0 0	ar 47.405 202 0 0	54,308 213 0 0	46,597 204 0 0	38.871 175 0 0	31,317 158 0 0	25,871 142 0 0	433,06 213 36 5
Floor Area Alternative: 3 Electric On-Pk Cen On-Pk Dem On-Pk Cons. On-Pk Cons. On-Pk Cons. On-Pk Demand (120,750 ns. (kWh) nand (kW) . (therms) (therms/hr) gy Consum	nt2 New 21,699 115 21 5 nption	18,575 118 18 18 18 1	Chillers a 32,693 146 0 0	NC and Pump 33,274 153 0 0 E	37,691 159 0 0	884 gm/ye 44,801 193 0 0	47,485 202 0 0 Analysis	54,308 213 0 0	46,597 204 0 0	38,871 175 0 0	31,317 158 0 0	25,871 142 0 0	433,06 213 36 5
Floor Area Alternative: 3 Electric On-Pk Cor On-Pk Cons On-Pk Cons On-Pk Cons On-Pk Demand (Ener Building	120,750 ns. (KAVh) nand (KAV) (therms) (therms/hr) gy Consum 12,271	ft2 New 21,699 115 21 5 21 5 8 tw(ft2-y)	18,575 118 16 1 1 8 16	Chillers a 32,693 146 0 0	NC and Pump 33,274 153 0 0 Er CC	37,691 159 0 0 0 0 0	884 gm/ye 44,801 193 0 0 ntal Impact 544,505 lbm/	47,485 202 0 0 Analysis year	54,308 213 0 0	46,597 204 0 0	38,871 175 0 0	31,317 158 0 0	25.871 142 0 0	433,06 213 36 5
Floor Area Alternative: 3 Electric On-Pk Con Sas On-Pk Cons On-Pk Cons On-Pk Cons On-Pk Demand (Ener Building Source	120,750 ns. (KVh) nand (KV) (therms) therms/hr) gy Consum 12,271 36,757	ft2 New 21,699 115 21 5 9 10 5 8 tw(ft2-yr Btw(ft2-yr	18,575 118 16 1 16 1 ear)	Chillers a 32,693 146 0 0	NC and Pump 33,274 153 0 0 Er CC SC	37,691 159 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	884 gm/ye 44,801 193 0 0 ntal Impact 544,505 lbm/ 1,545 gm/yi	ar 47,485 202 0 0 Analysis year car	54,308 213 0 0	46,597 204 0 0	38,871 175 0 0	31,317 158 0 0	25.871 142 0 0	433,08 213 38 5
Floor Area Atternative: 3 Electric On-Pk Cons On-Pk Cons On-Pk Cons On-Pk Cons On-Pk Cons Development Ener Building Source	120,750 ns. (KVh) nand (KV) (therms) (therms/tr) gy Consum 12,271 36,757	ft2 New 21,699 115 21 5 21 5 9 ption Btw(ft2-yr Btw(ft2-yr	18,575 118 16 1 16 1 ear)	Chillers a 32,693 146 0 0	NC and Pump 33,274 153 0 0 0 Ei CC SC	37.691 159 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	884 gm/ye 44,801 193 0 0 0 ttal Impact 544,505 lbm/ 1,545 gm/y 874 gm/ye	ar 47,485 202 0 0 Analysis year car	54,308 213 0 0	46,597 204 0 0	38,871 175 0 0	31,317 158 0 0	25,871 142 0 0	433,06 213 36 5

Project Name: Broward County Dataset Name: Northwest Regional Library.tce TRACE® 700 v6.3 calculated at 04:07 PM on 10/17/2017 Alternative - 3 Monthly Energy Consumption report Page 3 of 3

OPTERRA

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Broward (NW Pemp Optimize	County cane Library HVAC Schedules as	nd Set P	oints -1	st Floor	- AHU-1,	AHU-1-4	DIA													Orden f. M Theorem (/)	0-07-112 HIZO HI
Assumption 1) 2) 3) 4)	20% hp minimum with V Setup load simulated by Getback load simulated Only recognizes "off" far	1 Ds reduction by reduction savings f	of CA temp on of CA ler for CV fans	nip equal nip equal	o setup ditte Lto setback	rentiat Set differential	up kad=) Setback k	MN((CAT- oad = MN	Lag'(Seit ((Heating)	np Ti-Spec oad zero T	* T)-Cool DAT -1	ng zero koa ag"(Space	(1))) / (0 Setbad	ooling full) i T)),0) / (H	ond T + Con valing zero	ling zero lo loed T - Hi	ad T) Juding full (iouilit)			
Busis:	Fan operati	on type	VAV	/T0'er 1	Constant Vi	alume CV	VFD VFD	<mark>cheanc de</mark> , inter Vân	. IV, Disch	iaige Diarry	ner DD										
	Total (an m Molor loa Caliting average m D	d factor d factor inter eff leve eff	10.1 ha 75% (8.0% 96%	,																	
1 and profile	characteristics (even Ful jond Heating fal Heating fal Heating zero	wader Equi heating ficiency load at load at Detta	40° 25°	ny page) Biutir	r'	Aug.	Full low Cooling fo Cooling for Cooling for	ficiency fliciency it road at s load at Delta	27-2) T (4) 97* 70* 27*	izma Wilten	(insludě p	umps & coo	ling towar	Turns in MV4	ten if applic	uple)					
Schodnie	First month of cooling Last month of cooling	euroon:	2 Fr 11 N	abinuty Wereber		Weat	ther data. F	Fort Lauder	dalo Temp	erature Ele	15.	Annua Annua (No i	Heating Neating Stoctric De	Savings: Savings: mind Savi	6,716 730 rigs Claime	even d)					
Load Adam	Unents: Sepond adjustment mo	dise ator (0.8		Dampers &	C changes	n setponto	()(<1, m	duces loss	(change)		Saselne C Baselne H	ooling Ens eating Env	ngy ngy	63,213 1,955	kwła kwła (Electric Co	nyer)			
	Unoccupied selba Unoccupied selback Weekends week	ck enitis begins, oupled?	6.76. 19.5 No Yi	ns/No	Plopage	Uno cou	upied selbo pied selbad kondo unes	ack ends s begins coupled?	85 18.6 No	Yos/No	time mus	5		HIHe.	389.964	Hiturit					
Óca Engl	upred cooling space temp Cooling setup temp	eratore aratore	72* 78*		Occup	ted cooling Cooling	space tem	peridure porature	72* 80*	0.00	Cuela		Gast	Elsonina IC Usage	219,300	of Example					
Qua	ipred heating space temp Heating seback temp	recalumi recalumi	70* 65*		Üccup	ied freeding Heating a	space tem	perature.	70* 60*	on, on,	chee										
Fant	Cocupied Percent Out	Side Air	1115		f an Inc	Cosupled	Percent Ou Percent Ou	t beating: daide Aut	10%	On, Off.	Oycle										
-	L.			Occupied	Cooling		- ereeni			_			-	Unoccupie	d Conting	_	_	-	-	Sa	inds
Bin Average (%)	Cooling Hours Existing Proposed E	Load Pr Existing P	cfile E Toposed	arner Existing	rfm Proposed	Evision (Fan Proposed (kW)	Cooling Existing (KW)	Proposed (AVV)	Cooling	Hours Proposed	Load P Existing 1	nofile Proposest	Evisting	dm Proposed	Entring (Fan Proposed (6ff)	Cooling Easting (KW)	Energy Proposed (KM)	Fan (NMH)	Cosing
107.5° 102.5* 97.5°	00 00 00 00 40 40	100% 100% 100%	100%	100%	100%	00	000	00 00 310	00 310	00	0.0	100% 93% 76%	100% 88% 71% EAS	57%	54%	0.0	00	00	00	0000	0
87.5* 82.5* 77.5*	9028 857.8 1196.8 957.7 895.7 622.0	65% 46% 28%	66% 46% 28%	85% 46% 30%	65% 46% 30%	0.1 0.1	0.7	20 1 14 4 86	2011 54.4 8.6	195.2 968.2 1116.3	241.2 1227.3 1390.0	43% 26% 9%	37% 21% 4%	43% 30% 30%	37% 30% 30%	0.0	0.0	13.3 8,0 2,8	116 64 1.1	7 28 21	712 3,568 3,913
72.5° 57.5° 62.5° 57.5°	406.2 257.2 149.0 MD 6 75.7 44.6 36.2 17.3	9% 1% 0%	9% 1% 0%	30% 30% 30%	30% 30% 30%	01 111 01	0.1	2.9 0.0 0.0	29 50 00	603.8 24/1.2 124.3 73.8	762.0 700.4 155.4 92.7	0%	0% 1% 0%	30% 91% 30% 30%	30% 30% 30%	0.0	0.0	0.0	0.0	11 2 1	420 11 0
52.5° 47.5° 42.5*	15.2 5.8 4.8 0.9 1.4 -0.1	0%	0% 0%	30% 30% 30%	30% 30% 30%	0.1	0.1	0.0	0.0 0.0	36.8 15.2 5.6	46.2 19.1 7.1	0% 0% 0%	0% 0% 0%	30% 30% 30%	30% 30% 30%	0.0	0.0	0.0	0.0	1	0
37.5° 32.5° 27.5°	0.2 -0.1 0.0 0.0 0.0 0.0	0% 0% 0%	0% 0% 0%	30%	30%	0.1 0.0 0.0	0.1 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.8 0.0 0.0	1.1 0.0 0.0	0% 0%	0% 0%	30%	30%	0.0	0.0	0.0 0.0 0.0	0.0	0	0
22.5° 17.5° 12.5°	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0% 0% 0%	0% 0% 0%			0.0	0.0	0.0	0.0	0.0	0.0	0% 0% 0%	0% 0% 0%			0.0	0.0	0.0	0.0	000	0
7.5° 2.5° -2.5°		0%	0% 0% 0%			0.0	0.0	0.0	0.0	0.0	0.0	0%	0%			0.0	0.0	0.0	0.0	0	0
-12.5*	3,865 3,033	0%	0%	_		0.0	0.0	0.0	0.0	0.0	4,239	0%	0%			0.0	0.0	0.0	0.0	77	0 8,639
Bin	-	70 - 308	Öccuj	pied Heat error	ting cfm	enor	Pan	Heating	Energy			8245 - MS		Unoccupie error	d Heating cfm	error	Fan	Heating	Energy	Sav	rings
Average (*F) 107.5*	Heating Hours Existing Proposed E	Load Pr sisting P	ofile E toposed	Existing	Proposed	(kW) 0.0	(kW) (Existing therm/hr) (0.0	Proposed therm/hr) 0.0	Heating (hrs)	Hours (hrs) 0.0	Load F Existing 0%	rofile Retroft D%	Existing	Retroft	Existing (off) 0.0	Retrofit (off) (Existing therm/hr) (0.0	Proposed therm/hr) 0.0	Fan (kWh) 0	Heating (therm)
102.5* 97.5* 92.5*		0%	0%	-	2014	0.0	0.0	0.0	0.0	0.0	0.0	0%	0%			0.0	0.0	0.0	0.0	000	0
82.5° 77.5° 72.5°	73.2 72.1 238.1 213.8 210.8 154.6	0%	0% 0%	30% 30% 30%	30% 30% 30%	0.1	0.1	0.0	00	5.8 102.9 231.2	6.9 127.3 287.4	0%	0%	30% 30% 31%	30% 30% 30%	0.0	0.0	0.0	0.0	0 2	0
67.5° 62.5° 57.5°	108.0 76.5 70.1 51.4 44.0 27.9	0%	0% 10% 30%	30% 30% 30%	30% 30% 30%	0.1	0.1	0.0	0.0	127.0 75.9 65.0	158.5 94.6 81.1	0% 0% 13%	0%	30% 30% 30%	30% 30% 30%	0.0	0.0	0.0	0.0	211	0
52 5* 47.5* 42.5*	26.2 14.7 11.4 4.4 3.4 1.0	50% 70% 90%	50% 70% 90%	50% 70% 90%	50% 70% 90%	01 02 02	0.1 0.2 0.2	0.3 0.5 0.6	0.3	45.8 27.6 9.6	57 3 34.6 12.0	31% 49% 67%	16% 35% 53%	31% 49% 67%	30% 35% 53%	0.0	0.0	0.2 0.3 0.5	0102	1	7 5 2
37.5° 32.5° 27.5°	0.6 -0.3 0.3 -0.1 0.0 0.0	100% 100% 100%	100% 100% 100%	100% 100%	100% 100%	0.3 0.3 0.0	0.3 0.3 0.0	0.7 0.7 0.7	0.7 0.7 0.7	3.4 1.7 0.0	4.3 2.1 0.0	85% 100% 100%	71% 89% 100%	85% 100%	71% 89%	0.0 0.0 0.0	0.0	0.6 0.7 0.7	0.5 0.6 0.7	0	1 0 0
22.5° 17.5° 12.5°	0.0 0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	0.7 0.7 0.7	0.7 0.7 0.7	0.0	0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	0.7 0.7 0.7	0.7 0.7 0.7	0	0
7.5° 2.5° -2.5°	0.0 0.0	100% 100% 100%	100% 100% 100%			0.0	0.0 0.0 0.0	0.7 0.7 0.7	0.7 0.7 0.7	0.0	0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	0.7 0.7 0.7	0.7	0	0
-7.5*	0.0 0.0 0.0 0.0 790 620	100%	100% 100%			0.0	0.0	0.7	0.7	0.0	0.0	100% 100%	100%			0.0	0.0	0.7	0.7 0.7	0	0

An ENGIE company

Broward County

MODEL CALIBRATION	Electri	200	Ne	Gas The	mis										
eQUEST Model Error	411	,967)6%		D IDIVIDI	_										
EMODEL		-	-		-										
EMI ELECTRICITY KWH MAX KW DAY/HR	JAN 29,104 85.8 26/19	FEB 26,557 84,9 25/20	MAR 32,022 86.7 30/20	APR 32,497 89.8 15/19	MAY 33,871 87.6 42964	JUN 37,430 95.5 28/17	JUL 40,527 96.2 43022	AUG 41,992 99.8 31/19	SEP 38,945 98.8 42935	OCT 36,550 94.4 42783	NOV 32,382 91.7 23/19	DEC 30,108 86.4 42997	ANN 411,987 99.8 42978		
EM1 NATURAL-GAS THERM MAX THERMIHR DAY/HR	0 0 0 10	FEB 0 0 0/0	MAR 0 0 0/0	APR 0 0/0	MAY 0 0/0	JUN 0 0 0	JUL 0 0/0	AUG 0 0/0	SEP 0 0/0	0 0 0/0	NOV 0 0/0	0 0 0 0/0	ANN 0 0 0/0		
hting Upgrade															
EMI ELECTRICITY KWM MAX KW DAY/HR	JAN 21.759 58.1 26/19	FEB 19,647 57.3 25/20	MAR 24,060 59 30/20	APR 24,521 61,4 22/20	MAY 25,885 56.8 42963	JUN 29,362 63.8 28/17	JUL 32,017 66.3 43022	AUG 33,450 69,8 31/19	SEP 31,071 69,6 42935	OCT 28,554 64.6 42780	NOV 24,902 63.8 23/19	DEC 22,658 58.9 42997	ANN 317,896 69.8 42978		
FM1 NATURAL-GAS THERM MAX THERMHR DAY/HR	JAN 0 0/0	FEB 0 0 0/0	MAR 0 0	APR 0 0/0	MAY 0 0/0	JUN 0 0/0	JUL 0 0/0	AUG 0 0 0/0	SEP 0 0 0/0	D D D D D D	NOV 0 0/0	DEC 0 0/0	ANN 0 0 010		
SAVINGS NWH SAVINGS THERM SAVINGS NW SAVINGS	0 7,345 -0 27.16	FEB 6,910 0 27.60	MAR 1,962 0 27.70	APR 7,976 0 28.40	MAS 7,985 0 30,80	31.70	9,510 0 29.90	AUG 9,582 -0 50.00	SEF 7,874 0 29.20	007 7.996 0 29:80	NOV 7,480 0 27.90	DEC 7.450 0 27.50	M#4 94,091 0 30.00	Savings Pércent of Baseline 72.8% #DIV/01 29.02	Avg.Monthly W/ Savir
-		_	_	_	_	_	_	_				_	_		
EMI ELECTRICITY RVM MAX RVY DAY/HE	38N 19,118 09.8 29/13	FEB 17,843 75.4 43059	MAR 20,328 84 42779	AFF 17,024 53.8 15/19	MAY 17,515 49.3 29/14	,1.1N 10,302 50.5 42869	JCL 20,973 52.7 43022	AUG 22.722 68.6 42874	SEP 20,815 57,9 42935	0CT 19,732 55.8 42874	NOV 21,542 73.3 23/19	DEC 20,298 73.9 23/20	4284 237,300 75.4 42117		
EM1 NATURAL-GAS THERM MAX THERMANR DAY/HR	1441 0 0 10	6 0 0 0/0	MAR 0 0	APR 0 0	MAY 0 0/0	0 0 00	344 0 0/0	AUG 0 0	SEP 0 0/0	0CT 0 0	NOV 0 0	GEC 0 0	A121 0 0. 0/0		
SAVINGS KWH SAVINGS THERM SAVINGS	JAN 2.641 0	FEB 1.804 0	MAR 3,732 0	APR 7,497 0	MAY 8,370 0	1041 10,070 0	30L 11.044 0	AUG 10,738 0	SEP 10,258 0	0CT 8,822 0	NOV 3,360 0	DEC 2,360 0	A101 80,596 0	Savings Percent of Baseline 19.6% #DIV/01	And Design and Parameters

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Stirlin eQUE:	g R ST I	oad Library Modeled Savings - Rati	e Structure												
BLOC	K:	CHARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
Cust	1	Elec TOU S1-OffPk USE: METERED ENERGY: BILLING ENERGY: BILLING DEMAND: BILLING DEMAND: ENERGY CHGS(5): DEMAND CHGS(5): TOTAL CHGS(5):	TIME-OF- 29104 29104 85.9 85.9 1703 865 2588	USE 2655 85 155 87 242	7 32022 7 32022 5 86.9 5 86.9 4 1874 5 895 9 2768	32497 32497 90.1 90.1 1901 928 2830	33830 33830 87.8 87.8 1979 904 2883	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0	43 43 43.4 43.4 3 447 449	36550 36550 94.4 94.4 2139 972 3111	32382 32382 91.8 91.8 1895 945 2840	30108 30108 86.4 1762 890 2652	253094 14809 7742 22550
Cust	3	Elec TOU S2-OnPk USE: METERED ENERGY: BILLING ENERGY: BILLING DEMAND: BILLING DEMAND: BILLING DEMAND: ENERGY CHGS(5): TOTAL CHGS(5):	TIME-OF- 0 0 0 0 0 0 0 0 0 0 0	USE		0 0 0 0 0 0 0	0 0 0 0 0 0 0	4824 4824 95.7 95.7 664 1101 1765	4872 4872 94.1 94.1 670 1082 1752	5395 5395 98.3 98.3 742 1130 1873	4903 4903 96.8 96.8 674 1114 1788	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	19993 2750 4427 7177
Cust	1	Elec TOU S2-OffPk USE: METERED ENERGY: BILLING ENERGY: METERED DEMAND: BILLING DEMAND: ENERGY CHOS(\$):	TIME-OF- 0 0 0 0 0	USE ((000000000000000000000000000000000000000	42 42 42 0 2	32606 32606 91.8 0 1648	35855 35855 96.2 0 1802	36597 36597 100.4 0 1849	33999 33999 99.2 0 1718	000000000000000000000000000000000000000	0 0 0 0	000000000000000000000000000000000000000	138899
		TOTAL ENERGY: TOTAL CHARGES (\$):	29104 2588	2655 242	7 32022 9 2768	32497 2830	33871 2886	37430 3412	40526 3554	41992 3722	38945 3955	36550 3111	32382 2840	30108 2652	411987 36746
BLOC	K.	CHARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
Cust	1	Elice TOU S1-OffPk USE: METERED ENERGY: BILLING ENERGY: METERED DEMAND: BILLING DEMAND: ENERGY CHGS(\$): TOTAL CHGS(\$):	TIME-OF- 21759 21759 58.3 58.3 1273 601 1874	USE 1964 1964 57 57 115 69 174	7 24060 7 24060 5 59.1 5 59.1 0 1408 2 609 2 2016	24521 24521 61.6 61.6 1435 634 2069	25848 25848 57 57 1512 587 2099	000000000000000000000000000000000000000	0 0 0 0 0 0 0	0 0 0 0 0 0	38 30 38.5 38.5 2 39.7 399	28554 28554 64.7 64.7 1671 667 2337	24902 24902 638 638 1457 657 2114	22658 22658 58.9 59.9 1326 607 1933	191967 11233 5350 16583
Cust	in a	Elec TOU S2-OnPk USE: METERED ENERGY: BILLING ENERGY: BILLING DEMAND: BILLING DEMAND: ENERGY CHGS(\$): DEMAND CHGS(\$): TOTAL CHGS(\$):	TIME-OF- 0 0 0 0 0 0 0 0 0 0 0	USE		0 0 0 0 0 0 0	0 0 0 0 0 0 0	3265 3265 63.9 63.9 63.9 735 1184	3309 3309 62.9 62.9 455 723 1178	3730 3730 67.6 67.6 513 777 1290	3427 3427 67.2 67.2 471 773 1244	0 0 0 0 0 0 0	0 0 0 0 0 0 0		13731 1889 3008 4897
Cust	3	Elec TOU S2-OffPk USE: METERED ENERGY: BILLING ENERGY. METERED DEMAND: BILLING DEMAND: ENERGY CHGS(\$):	TIME-OF- 0 0 0 0 0	USE (((000000000000000000000000000000000000000	38 38 37.6 0 2	26097 26097 62.3 0 1319	28708 28708 66.3 0 1451	29730 29730 70.3 0 1502	27606 27606 69.8 0 1395	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0	112179
		TOTAL ENERGY: TOTAL CHARGES (\$):	21759 1874	1964) 174	7 24060 2 2016	24521 2069	25885 2101	29362 2503	32017 2629	33460 2793	31071 3038	28554 2337	24902 2114	22658 1933	317896 27148
BLOC	K-	CHARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
Cust	1	Elec TOU S1-OffPk USE: METERED ENERGY: BILLING ENERGY: BILLING DEMAND: BILLING DEMAND: BILLING DEMAND ENERGY CHGS(\$): TOTAL CHGS(\$):	TIME-OF- 19118 19118 71.8 71.8 1119 739 1858	USE 1784 1784 71 104 80 184	3 20328 3 20328 8 65.6 8 65.6 4 1189 3 676 7 1866	17024 17024 54.5 54.5 996 662 1558	17490 17490 48.3 48.3 1023 498 1521	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0	25 25 25.1 25.1 1 259 260	19732 19732 56.6 55.6 1155 583 1738	21542 21542 74 74 1260 762 2023	20298 20298 75.3 75.3 1188 776 1963	153401 8975 5658 14634
Cust	1	Elec TOU S2-OnPk USE: METERED ENERGY: BILLING ENERGY: BILLING DEMAND: BILLING DEMAND: BILLING DEMAND: ENERGY CHGS(§): DEMAND CHGS(§): TOTAL CHGS(§):	TIME-OF- 0 0 0 0 0 0 0 0 0 0 0 0	USE		0 0 0 0 0 0 0	0 0 0 0 0 0 0	2526 2526 50.6 50.6 347 581 929	2509 2509 49.5 49.5 345 569 914	2897 2897 56.2 56.2 399 646 1045	2620 2620 55.9 360 642 1003	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	10551 1452 2439 3891
Cust	1	Elec TOU S2-OffPk USE METERED ENERGY: BILLING ENERGY: METERED DEMAND: BILLING DEMAND: ENERGY CHGS(\$):	TIME-OF- 0 0 0 0 0	USE		0 0 0 0 0	24 24 24.2 0 1	16866 16866 51.3 0 852	18464 18464 52.8 0 933	19825 19825 59.1 0 1002	18168 18168 58.5 0 918	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0	73348 3706
		TOTAL ENERGY: TOTAL CHARGES (\$):	19118	1784	3 20328 7 1866	17024	17515	19392 1781	20973	22722 2047	20813	19732 1738	21542 2023	20298 1963	237300 22231

OPTERRA

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

W	roward C eston Li ptimize F	brary VAC Sche	dules a	nd Set P	oints -1	st Floor	- AHU-1	AHU-2	AC-1, A	C-3												04000000 2015-0 (0	94201-02 (42)010
As	cs.umpition 1] 2] 3) 4)	s: 2015 kp minir Setup load ir Setback load Only recogni	num with 5 mutated b; simulated ces "off" fa	/FDs / Induction by reduction in say ings f	of CA ten on of CA I for CV fan	np equal to omp oqua	o setup dete Lto setback	rentiat Si differentia	nup kadi= I. Selback	MINI(CAT kad = MIN	Lag*(Sat	up T - Spie Ioad zwo T	oi T) Géo F OAT-1	ling zaro kos Ling (Spinco	d 1) () / ((† Selba	Tooling full) IL Thr.Oy / (H	nad T + Coe fealing zoro	Ning zero la Nove T - H	ad T) roling full (iceanit T)			
Bu	esis:	7	an operat	on type	VFD		Constant V	alume O	VFD VFI); inter Viin	. IV, Dire	harge Dem	per DD										
		Existing	VAV I otel (an m Motor loa average o (roun item rolen hip: d factor hotse elf Jerre ett VETa eff	41.11) 75% 66 Tris 96%	w	NM applies	ble to CV															
10	and prollik	ebaractorist Ha	ics (enter Fulliand Hauting el teating ful neting zere	woder Equi- heating ficiency load at load at Delta	49 Some 160 M 100% 49* 85* 25*	ary page) MBIU/Nr	F	~	Fulling g. Caoling Cooling 7e Cooling 7e	efficiency at load at rolload at Dolta	139.2 1.14 97* 70* 27*	lons Million	(Include ;	aumps & co	aling towar	fans in kW	ton if applic	satile)					
-Sec	hadmle:	First month	of cooling	ewwooni noceas	27	Fobrainy November		West	thordata:	For Laude	dalo Terre	eratura E	no-	Annu	al Hacating Etoctric De	Sadinge: imand Savi	7,109 ngs Claime	e)					
Lo	a d Adjust	ments: Setpoint adju	stment pic	ciorator.	0.8		Dampers &	T changes	in section	10 ()/ <1. m	duces los	d chiange)		Saseline I Baselore	Cooling En leating En	ergy- ergy	358,821 6,298	kitti kitti (Electric Co				
		Unaccus Unaccus	pied selba ed setbaci	ck Antis begins	56 22	ć	Flopdaed	Unocci	cupied self	back enits Ick Begins	8 20					EF1.Hs	2399.034	Hours					
	Ócca	Week pred couling s	ondis more	orgied?	73- 787	(ns/No	Occup	ned coolin	akinnito Gra 1 spuice ter	rocupied?	73 207	Yes / No			Line	/ Deonine AC Usage	1124700 32%	kWA: of Electrone					
	Fanin	ode clump u	mocupied	doofling:	OF TO		Fan n	ode duning	anaccupic gispace ter	nd codling:	OF TO:	On Off	Cycle										
	Panin	Heating se tobe during u	back territ	beating:	65°		Pan In	Heating ode during	unoccupie	nperature d.besting:	60* Of	On, Di	Cycle										
		Meccupied P	ercent Out ercent Out	side Air Side Air	0W			moccubind	Percent O Percent O	utside Air utside Air	UN DW												
Г	Bri	Controll	oma 1	(and Pr	etila	Occupier VPD Existing	din Proposed	WD Existing	Fan	Cooling	Energy Process	Coolur	Hourt	T- Lood	Profile	Unoccupie VFD Fwitten I	d Cooling dm Proceed	VED.	an	Cooling	Energy	Fan	Coming
H	(7) 107.5° 102.5*	Existing P	0.0 0.0	100%	100%			(AVA) 0.0	(NM) 0.0 0.0	(MM) 0.0	(AVA) 0.0	Eesting 00 00	Proposo: 0.0	Exerting 100% 96%	Proposed 100% 91%			(off) 0.0 0.0	(011) 0.0 0.0	(IMI) 00	1KM2 0.0 8.0	0	(kvyn) D
	97 E* 92 5* 97 5*	4.0 179.5 996.0	4.0 177.0 911.5	100% 83% 65%	100% 83% 66%	100% 83% 85%	100% 83% 65%	273 161 78	273 151 78	162-2 126-8 58.6	192.2 126.8 98.6	0.0 25 104.0	0.0 5.0 182.5	0 79% 0 62% 5 46%	74% 57% 40%	62% 相助	57.% 40%	0.0 0.0 0.0	0.0	948 817	0.0 86.6 61.0	0 40 655	0 121 3,998
	77.5	1547.8 1259.3 590.0	1149.5 814.5 355.0	28% 9%	46%	46.9%	30%	10	1.0	423 141	423	83/ 3 7527 4162	1036.5	5 12% 0 0%	6% 0%	30%	30%	0.0	0.0	17.5	35 0 97 00	460	19,230 20,645 0,361
	62.5* 57.5* 52.5*	110.4 55.3 24.1	62.0 26.5 10.0	0% 0% 0%	0% 0%	30% 30% 30%	30% 30% 30%	1.0 1.0 1.0	1.0 1.0	0.0	0.0	89.6 54.8 27.9	138.0 83.6 42.0	0%	0% 0% 0%	30% 30% 30%	30% 30% 30%	0.0	0.0	0.0	0.0	50 30 15	0
	47.5° 42.5* 37.5*	83 26 03	2.5 0.5 0.0	0% 0%	0% 0% 0%	30% 30% 30%	30% 30%	1.0 1.0 1.0	1.0 1.0 0.0	0.0	0.0	11.8 4.4 0.7	17.5 6.5 1.0	5 0% 5 0%	0% 0% 0%	30% 30% 30%	30% 30% 30%	0.0	0.0	0.0	0.0	6 2 0	0
	32.5° 27.5° 22.5°	0.0	0.0	0% 0% 0%	0% 0% 0%			0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0	0.0	0 0%	0% 0% 0%			0.0	0.0	0.0	0.0	0	0
	17.5° 12.5° 7.5°	0.0	0.0	0%	0%			0.0	0.0	0.0	0.0	00	0.0	0 0%	0% 0%			0.0	0.0	0.0	0.0	000	0
	-2.5* -7.5*	0.0	0.0	0%	D% D%			0.0	0.0	0.0	0.0	0.0	0.0	0 0%	0%			0.0	0.0	0.0	0.0	0	0
E	12.0	5,000	3,538					0.0	0.0	0.0	0.0	2,272	3,63					0.0	0.0	0.0	0.0	2,841	47,368
	Bin Average	Heating H	lours	Load Pr	Occi ofile	upied Hea VFD Existing	ting cfm Proposed	VFD Existing	Fan Proposed	Heating Existing	Energy Proposed	Heating	a Hours	Load	Profile	Unoccupie VPD Existing	d Heating cfm Retroft	VFD Existing	^r an Retrofit	Heating Existing	Energy Proposed	Sav Fan	Heating
F	("F) 107.5° 102.5°	Existing Pr 0.0 0.0	0.0 0.0	Existing P 0% 0%	toposed 0% 0%	_		(KW) 0.0 0.0	(KW) 0.0	(therm/hr) 0.0 0.0	(therm/hr) 0.0 0.0	(hrs) 0.0 0.0	(hrs) 0.0 0.0	Existing 0 0% 0 0%	Retroft 0%			(0ff) 0.0 0.0	(off) (0.0 0.0	therm/hr) (0.0 0.0	therm/hr) 0.0 0.0	(KWh) 0 0	(therm) 0 0
	97.5° 92.5° 87.5°	0.0	0.0	0%	0%	30%	30%	0.0	0.0	0.0	0.0	00	0.0	0 0%	0% 0%	3055	30%	0.0	0.0	0.0	0.0	0000	0
	77.5* 72.5* 57.5*	280.9 291.1 148.2	238.0 198.0 97.5	0%	0% 0%	30% 30%	30% 30%	1.0	1.0	0.0	0.0	60.1 160.9 86.8	103.0 244.0 137.4	0 0%	0%	30% 30%	30% 30% 30%	0.0	0.0	0.0	0.0	44 96 52	0
	62.5° 57.5° 52.5°	94.8 63.6 38.8	64.5 38.0 21.0	10% 30% 50%	10% 30% 50%	30% 30% 50%	30% 30% 50%	1.0 1.0 3.8	1.0 1.0 3.8	0.2 0.5 0.8	0.2 0.5 0.8	51.3 45.4 33.2	81.8 71.0 51.0	5 0% 0 13% 0 31%	0% 0% 16%	30% 30% 31%	30% 30% 30%	0.0	0.0	0.0	0.0	31 26 68	5 22 17
	47.5° 42.5° 37.5°	18.0 5.6 1.3	7.5	70% 90% 100%	70% 90% 100%	70% 90% 100%	70% 90%	9.8 20.1 27.3	9.8 20.1 0.0	1.1 1.4 1.6	1.1 1.4 1.6	21.0 7.4 2.8	31.6 11.(4.(5 49% 0 67% 0 85%	35% 53% 71%	49% 67% 85%	35% 53% 71%	0.0	0.0	0.8	0.6	102 73 34	11 4
	32.5° 27.5° 22.5°	0.0	0.0	100%	100%	100%		27.3 0.0 0.0	0.0	1.6 1.6 1.6	1.6 1.6 1.6	0.0	0.0	0 100%	89% 100% 100%	100%	89%	0.0	0.0	1.6	1.6	0	000
	12.5* 7.5* 2.5*	0.0	0.0	100%	100%			0.0	0.0	1.6 1.6 1.6	1.6 1.6	0.0	0.0	0 100%	100%			0.0	0.0	1.6	1.6	000	0
	-2.5* -7.5* -12.5*	0.0	0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	1.6 1.6 1.6	16 16 16	00	0.0	0 100% 0 100% 0 100%	100% 100% 100%			0.0	0.0	1.6 1.6 1.6	1.6 1.6 1.6	000	0
_ II.		1.022	744									464	742	2								547	60

OPTERRA

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Broward Weston L Optimize	County ibrary HVAC Schedules and	d Set Points	-2nd Flo	or - AHU-3	8, AC-2														Orman's Friesd 1/	04074021 144220-14
Assumption	852 2015 iso minimum with M Securioad annuated by Belback load simulated b Only recognizes "off" fan	TDE reduction of OA y reduction of O savings for CV f	temp equal A temp equal (A temp equ	ta setup diff el lo selbaci	erentust. Se Kolfferentus	nip load = 1 Sylback	MIN((CAT	Lag'TSan InHousing	ip T - Spac oud sino T	= T)- Cnn QAT - I	ing piro io	ad T) () / (aT Setba	Donling full \$(T)),Q(7(load T - Co tooling zero	oling zwo Iroad T - I	ioad 1) Nothing for	food T)			
Basis:	Fanoperatio	n type VF	D	Constant	/olumu CV	VED VED	, inlat Van	n: IV, Diard	uige Dierop	ur DD										
	Tatel lan mo Motor load Caisting average mo Dr	An hp: 26 factor: 75 ax en: 18 0 we ett 367	0 7gr No No	nar appro-	ape 10 CV															
L and profile	e clauncteristiks (enter an Full land h Hasting effe Heating tal k Heating zero la	vder Equip Sum exting. 23 tienty 1001 obd at 45 and at 55	mary page) 2 MBound 3	2	~	Fullion Cooling to Cooling to Cooling ter	d coolimp efficiency al load at in load at	71.9 1.14 87* 70*	ams WWten ()nclusip p	umpa & ta	oling towe	fansi in MA	ldun if apple	cable)					
Schadular	First menth of cooling of	Celta: 25	2 February		44.0		Cella	27*	- No		Anna Anna (No	al Cooling al Heating Execute D	Savings: Savinge: Imind Sav	10,414 1,461 ings Claimo	kWh kWh d)					
Load Adjus	Last monin of cooling is timents: Setpoint adjustment mod	eason) Terator (118	1 nuvemba	Dampers i	T changes	in sepant:	e (II<1.16	idalio Tamp	ritiange.)	ac U	Saseline Daseline	Cooling En Heating En	ergy ergy	196,853 8,965	kiwn kiwn	(Electric C	unyersam).			
	Uneccupied selbadi Uneccupied selbadi & Weekends Gesco	lando begins 2 vpled? N	s In Yes/Nu	- Hanney	Unoccu Unoccu Wat	oipied selb pied selbas kondo cise	ack ends ck begins; scupied?	b 22 No	Yos / No				EFLHs.	248.3	Hiturit					
Occ Fan	upied cooling space tempe Cooling outop tempo mode during unaccupied o	ralure 73 rature 76 poling: 0) 17 14	Coco Fan n	pied cooling Cualing Node duning	r space tem g outop ton onoccopie	nperature nperature d codling:	73* 80* 0#	On Off.	Cycle			AC Usage	18%	of Elawore	e.,				
Uco Fen	pred he dairy space tempe Heating selback tempe mode during unoccupied to	rature 65 exting 0	5.	Occu Fan n	Heading a Heading a node during	space ten etback ten unoccupio	iperature; nperature d. beabing;	07 60 70	On, Dff.	Cycle										
	Cocupied Percent Outsi Unoccupied Percent Outsi	de Air. 104 de Air. Di	2		ineccupied	Parcent Or Percent Or	inside Air; daide Air;	10% 0%												
Bin Average (*F)	Cooling Howa Existing Proposed Ex	Load Profile	Decupie VFI Existing	d Cooling I din Proposed	WD Evising (AW)	Fan Proposed (NW)	Cooling Exitting (KIV)	Emargy Proposed (NW)	Cocing	Hours Proposed	Load	Profile	Unoccupie VFD Evisting	d Conting dm Proposed	VFD Estating (cff)	Fan Proposed (off)	Cooling Earsting (IW)	Energy Proposed (MV)	Ean (NWh)	Cosing (NMR)
07.5 (02,5) 97.9 92.5 87.5 82.5 77.5 77.5	0.0 0.0 4.0 4.0 1795 1735 966.3 901.8 1587.3 1508.3 1310.6 1238.0 672.4 404.3	100% 100% 100% 100% 100% 100% 83% 83% 66% 46% 46% 46% 28% 28%	% 100% % 83% % 85% % 46% % 30%	100% 83% 85% 46% 30%	00 689 43 43 66	00 00 155 89 48 19 06	00 00 822 885 533 381 228 75	00 822 885 533 381 228 75	0.0 0.0 2.5 100.8 597.8 701.4 295.5	00 00 25 10/ 3 6/6,8 804,0 446,0	100% 96% 79% 62% 46% 29% 12%	100% 91% 74% 57% 40% 23% 5%	62% 45% 30% 30%	57.% 40% 30% 30%	000000000000000000000000000000000000000	00 00 00 00 00	00 00 5174 2374 2370	00 00 468 329 191 53	0 0 31 151 66	0 0 11 478 4,144 4,909 450
62 5 57 5 52 5 47 5 42 5 37 5	2911 9 3906 ft 117.3 103.5 59.8 50.6 26.4 21.0 9.3 7.3 3.0 2.3 0.4 0.3	0% 0% 0% 0%	N 309 N 309 N 309 N 309 N 309 N 309 N 309	30% 30% 30% 30% 30% 30% 30%	nic 0.6 0.6 0.6 0.6 0.6	0.6 0.6 0.6 0.6 0.6		пп 00 00 00 00 00	1511 828 503 256 108 4.0 0.6	96.6 59.3 30.3 12.0 4.6 0.6	0% 0% 0% 0% 0%	19% 0% 0% 0% 0%	91% 30% 30% 30% 30% 30% 30%	1114 30% 30% 30% 30% 30% 30%	0.0 0.0 0.0 0.0 0.0 0.0	00 00 00 00 00	0.0 0.0 0.0 0.0 0.0	00 00 00 00 00	16 9 6 3 1 0 0	10 00 00 00 00
325 275 225 175 125 75 25		0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	16 16 16 16 16 16 16 16 16 16 16 16 16 1		00 00 00 00 00	8.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0		0.0	0% 0% 0% 0% 0%	0% 0% 0% 0% 0%			0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 00 00 00 00	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000000000000000000000000000000000000000	000000000000000000000000000000000000000
-2.5 -7.5 -12.5	0.0 0.0 0.0 0.0 0.0 0.0 5.151 4.648	0% 0 0% 0 0% 0	% % %		0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 2.121	0.0 0.0 0.0	0% 0% 0%	0% 0% 0%			0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 322	0 0 10.093
Be		0	ccupied He	ting dm	VID	Fan T	Heating	Poeray		2.0			Unoccupie	d Heating	Vith	Fan I	Heating	Freezy	Sa	wings
Average (*F) 107.5	Heating Hours Existing Proposed Ex 0.0 0.0	Load Profile nisting Propose 0% 0	Existing %	Proposed	Existing (KW) 0.0	Proposed (KW) 0.0	Existing (therm/trr)	Proposed (therm/hr) 0.0	Heating (hrs) 0.0	Hours (hrs) 0.0	Load Existing 0%	Profile Retroft 0%	Existing	Retroft	Existing (off) 0.0	Retrofit (off) 0.0	Existing (thermvhr) (Proposed (therm/hr)	Fan (KWh) 0	Heating (therm) 0
102.5 97.5 92.5 87.5 82.5	0.0 0.0 0.0 0.0 0.0 0.0 4.0 4.0 75.6 76.6	0% 0% 0% 0% 0% 0%	% % % 30%	30%	0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	0.0	000000000000000000000000000000000000000	0.0	0%	0% 0% 0%	31%	30%	0.0	0.0	0.0	0.0 0.0 0.0 0.0 0.0	0000	0000
77.5 72.5 67.5 62.5	203.8 278.0 300.8 281.5 154.4 142.0 90.3 91.3	0% 0 0% 0 0% 0 10% 10	N 30% N 30% N 30%	30% 30% 30% 30%	0.6 0.6 0.6	0.6	0.0 0.0 0.0 0.2	0.0 0.0 0.2	57.3 141.3 80.6 47.8	63.0 160.5 93.0 54.6	0% 0% 0%	0% 0% 0%	30% 30% 30% 30%	30% 30% 30% 30%	0.0	0.0	0.0	0.0 0.0 0.0 0.0	4 12 8 4	0000
57.5 52.5 47.5 42.5	66.9 60.3 41.4 36.3 19.8 16.3 6.3 5.0	30% 30° 50% 50° 70% 70° 90% 90°	N 309 N 509 N 709 N 909	30% 50% 70% 90%	0.6 2.4 6.0 12.4	0.6 2.4 6.0 12.4	0.7 1.2 1.6 2.1	0.7 1.2 1.6 2.1	42.1 30.6 19.3 6.8	48.6 35.8 22.8 8.0	13% 31% 49% 67%	0% 16% 35% 53%	30% 31% 49% 67%	30% 30% 35% 53%	0.0	0.0	0.3 0.7 1.1 1.6	0.0 0.4 0.8 1.2	4 12 21 15	17 14 9 3
37.5 32.5 27.5 22.5	1.5 1.0 0.8 0.5 0.0 0.0 0.0 0.0	100% 100 100% 100 100% 100 100% 100	% 100% % 100% %	100%	16.8 16.8 0.0 0.0	16.8 16.8 0.0 0.0	23 23 23 23	23 23 23 23	25 1.3 0.0	3.0 1.5 0.0 0.0	85% 100% 100%	71% 89% 100% 100%	85% 100%	71% 89%	0.0	0.0 0.0 0.0	20 23 23 23	1.6 2.1 2.3 2.3	8400	1000
17.5 125 7.5 25 -25		100% 100% 100% 100% 100% 100% 100% 100% 100% 100%	96 96 96 96		0.0 0.0 0.0 0.0	0.0	23 23 23 23 23 23	23 23 23 23 23 23		0.0	100% 100% 100% 100%	100% 100% 100% 100% 100%			0.0	0.0 0.0 0.0 0.0	23 23 23 23 23 23	23 23 23 23 23 23	0000000	0000000
-12.5	0.0 0.0	100% 100	%		0.0	0.0	2.3	2.3	0.0	0.0	100%	100%	<u>. </u>		0.0	0.0	2.3	23	0	0

An ENGIE company

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Broward West Re	l County gional Library																Daman Daman Distanti (/	19407-02 19420 Hit
BAS Sys	stem Check-Out ons: 1) 2015 ha minimum with VPDs 2) Setup had simulated by redi 3) Setback load simulated by red 4) Ovly recognizet "off" fan sav	iction of QA terr duction of QA terr lings for CV fan	ip equal to setup d imp equal to setba 1	terential Sec ch differential	up koad = MiNii(CA Selback koad = N	Ŭ - Lag"(Sei An(ijHealorg	up T - Spece load zero T	T) Cool DAT - L	ng zero load ag"(Space T	(T) () / (C Setback	aoling full) (T)(2) / (H	oad T - Cor Ieabrg zero	ling zero k load T - H	and T.) outing full	Rowall (T)			
Busis:	Fan operation ty	pe: VFD	Constan	Volume: CV,	VFD VFD, Inter V	ine IV, Disc	harge Dampie	00										
	VAV man d Total lan molon Molor kead fac Cuisting average motor Drive VFD	m 4(1%) pp: 200) pr 75% eff (207%) eff 56%	We appl	table to CV					.,	Assuming	Sindar S	cheditte to	the of We	mi Keyine	and Larrary			
L ord profi	lie characteristics (enter unde Ful load heati Hauting efficien Heating ful load Heating zara load	e Equip Summ ng 556 h ty 100% at 40° at 65°	ory page); AEDute	Jug	Full load cooling Caoling efficience Cooling full load a Cooling zero load a	197 3 T 14 92* 70*	torns wWitten (tr	nsludě p	umps & cool	inų towari	fans in We	ten if applic	atile)					
Schadnia	First minth of cooling source Last month of cooling seas	n 27 m 114	abriury lov ombar	West	hordats. For Lau	ierasio Terro	corature Bins		Annua Annua 1910 E	Cooling Heating Hotric De	Savings: Savings: mind Savi	29,232 B ngs Claime	kWh kWa ⊄					
Loud Adju	sitiments: Setpoint adjustment medierat <u>Existing</u> Unoccupied selback en	ar (18 62 8	Damper Propose	AT changes : Une co	n setponto ()/ <1 ipied selback enit	recluces los	d change)		Saseline Ca Baseline (19	ooling Ene saling Ene t	ngy ngy H1He	559,301 12,659 2837,212	KWE KWE Heure	(Electric Cr	0.0r P(
Ġ.	Weekend's intrace eeu Weekend's intracemie copied cooling solice temperate Copieg satist temperate	47 No ⁻¹ 47 No ⁻¹ 48 73 98 80 ⁻¹	les/No Do	Uno cours Veral upled cooling Cooling	ere perback organ tendo uneccupied space temperature unup temperature	19 No 74 80	Yos /No			Campy .	Bionina 40 Usage	130(5430) -41%	kVMs of Electronic	0				
Far .Qo	n wode during unoccupied book cupied heiding space temperatu Heating setbook temperatu	ng Cff	Far .Up	mode during i upred menting Hanting as	anaccupied coolini space temperatur aback temperatur	00 10 80	On Off. C	Cycle :										
	Cocupied Percent Outside / Unoccupied Percent Outside /	Air 10% Air 0%		Ciccupied I Unoccupied I	Parcent Dutside Al Percent Outside Al	11/% 0%	COR, OR, C	year										
Bri Average	Cooling Hows Lo	ad Profile	VFD din Existing Propose	WD F	an Coolin Yoposed Existing	Proposed	Eading H	tours.	Load P	rofile	Unoccupie VFD Evisting	d Cooling dm Proposed	VRD Extrang	Fan Proposéd	Cooling	Energy Proposed	Sa Fán	Cooling
(*F) 107 : 102 : 97 : 92 : 92 : 92 : 92 : 92 : 92 : 92 : 92	Existing Proposed Exists 5° 0.0 0.0 10 5° 0.0 0.0 10 5° 4.0 4.0 10 5° 1758 1758 10 6° 877 8 8778 8778 8 5° 1047.6 10478 5 5° 720.4 720.4 3 5° 109.6 108.6 1	rg Proyected 0% 100% 1% 100% 1% 100% 1% 99% 1% 76% 1% 53% 4% 30%	100% 100 100% 99 10% 76 57% 53 40% 40	(W) 00 454 454 905 8 955	(W) (W) 0.0 0 0.0 0 45.4 225 43.6 228 30.4 179 7.5 128 3.5 76 3.6 %	(W) 0 00 4 2254 4 2224 9 1711 1 119,9 5 68,7 5 17,4	Exciting P 00 00 6.3 721 1 1197 4 1291 6 700 5	00 00 00 63 271.1 113/.4 1291.6 700.5	Exiting F 100% 100% 90% 70% 49% 29% 8% 0%	100% 100% 100% 90% 70% 49% 29% 8% 0%	70% 40% 40%	70% 40% 40% 40%	(#) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(iff) 0.0 0.0 0.0 0.0 0.0 0.0	(IM) 00 00 1574 1109 843 177 00	100 00 157 4 1109 64 9 17,7	(NMh) 0 313 2,578 1,575 0	(NV/II) 0 540 7,196 8,598 5,905 2,517
62 67 57 52 47 42 37 32	110.0 110.0 1 5° 25.0 55.0 1 5° 23.4 23.4 1 5° 8.8 8.8 1 5° 2.1 2.1 1 5° 0.4 0.4 0.4 5° 0.0 0.0 1	112 1115 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	40% 40% 40% 40% 40% 40% 40% 40% 40% 40%	4 35 35 35 35 35 35 00 00	3.5 0 3.5 0 3.5 0 3.5 0 3.5 0 3.5 0 0.0 0		279 1 145.0 86.6 43.3 17.9 6.6 1.0 0.0	7999 10 145.0 86.6 43.3 17.9 6.6 1.0 0.0	0% 0% 0% 0% 0% 0%	11% 0% 0% 0% 0% 0%	40% 40% 40% 40% 40% 40%	40% 40% 40% 40% 40% 40%	0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 00 00 00 00 00			000000000000000000000000000000000000000	000000000000000000000000000000000000000
27 22 17 12 17 12 17 12 17 12 12 12 12 12 12 12 12 12 12 12 12 12	5° 0.0 0.0 1 5° 0.0 0.0 1 5° 0.0 0.0 1 5° 0.0 0.0 1 5° 0.0 0.0 1 5° 0.0 0.0 1 5° 0.0 0.0 1 5° 0.0 0.0 1	0% 0% 0% 0% 0% 0% 0% 0% 0% 0%		00 00 00 00 00			000000000000000000000000000000000000000	0.0	0% 0% 0% 0% 0%	0% 0% 0% 0% 0%				00 00 00 00 00		000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000
-12.5	5" 0.0 0.0 1 3,336 3,336	0% 0%		0.0	0.0 0.	0.0	0.0 3,937	0.0 0.0 3,937	0%	0%			0.0	0.0	0.0	0.0	0 4,455	0 24,767
Bin	Hestna Hours 1 to	Occu	upied Heating VFD cfm	MD F	an Heatin	ig Energy	Heating H	ława	I Load B	unfilm	Unoccupie MD	d Heating cfm Datroft	VFD	Fan	Heating	Energy	Sa	vings Heating
(*F) 107.3	Existing Proposed Existin 5° 0.0 0.0 1	ng Proposed	Existing Propose	(kW)	(kW) (therm/h) (therm/hr) 0 0.0	(hrs)	(hrs)	Existing 0%	Retroft 0%	Lusing	Herois	(off) 0.0	(off) 0.0	(therm/hr) (thermfir)	(kWh)	(therm)
97 9 92 9 87 9 87 9 87 9 87 9	5° 00 00 1 5° 00 00 1 5° 40 40 1 5° 726 726 1 5° 2738 2238	0% 0% 0% 0% 0% 0% 0% 0%	40% 40 40% 40 40% 40	0.0 0.0 6 3.5 6 3.5 6 3.5	00 0. 00 0. 35 0. 35 0.		0.0 0.0 0.0 6.4 117.3	0.0 0.0 0.0 6.4 117.3	0% 0% 0% 0%	0% 0% 0% 0%	40%	40%	0.0	0.0	0.0	0.0	00000	00000
72 5 67 5 62 5 57 5 57 5	5° 175.5 175.5 1 5° 87.6 87.6 1 5° 58.1 58.1 10 5° 33.5 33.5 30 5° 18.5 18.5 50	0% 0% 0% 0% 0% 10% 0% 30% 0% 50%	40% 40 40% 40 40% 40 40% 40 50% 50	6 3.5 6 3.5 6 3.5 6 3.5 6 3.5	3.5 0. 3.5 0. 3.5 1. 6.3 2	0 0.0 0 0.0 6 0.6 7 1.7 8 2.8	266.5 147.4 87.9 75.5 53.5	266.5 147.4 07.9 75.5 53.5	0% 0% 0% 16%	0% 0% 0% 16%	40% 40% 40% 40%	40% 40% 40% 40%	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0	00000
47 5 42 5 37 5 32 5 27 5	5 6.6 6.6 7 5 1.8 1.8 9 5 0.0 0.0 10 5 0.0 0.0 10 5 0.0 0.0 10 5 0.0 0.0 10	3% 70% 90% 90% 0% 100% 0% 100%	70% 70 90% 90	16.2 33.4 0.0 0.0	16.2 3. 33.4 5. 0.0 5. 0.0 5.	39 50 56 56 56 56	32.4 11.3 4.0 2.0 0.0	32.4 11.3 4.0 2.0 0.0	35% 53% 71% 89% 100%	35% 53% 71% 89% 100%	40% 53% 71% 89%	40% 53% 71% 89%	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.9 2.9 3.9 5.0 5.6	1.9 2.9 3.9 5.0 5.6	0 0 0	00000
221 171 121 71 21	5" 0.0 0.0 10 5° 0.0 0.0 10 5° 0.0 0.0 10 5° 0.0 0.0 10 5° 0.0 0.0 10 5° 0.0 0.0 10	0% 100% 0% 100% 0% 100% 0% 100% 0% 100%		0.0 0.0 0.0 0.0 0.0	0.0 5. 0.0 5. 0.0 5. 0.0 5. 0.0 5. 0.0 5.	5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	100% 100% 100% 100% 100%	100% 100% 100% 100% 100%			0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	5.6 5.6 5.6 5.6 5.6 5.6	5.6 5.6 5.6 5.6 5.6	000000000000000000000000000000000000000	000000000000000000000000000000000000000
-7.5	5* 0.0 0.0 10 5* 0.0 0.0 10 682 682	0% 100% 0% 100%		0.0	0.0 5. 0.0 5.	5 5.6 5 5.6	0.0 0.0 904	0.0	100% 100%	100% 100%			0.0	0.0 0.0	5.6 5.6	5.6 5.6	0	0

An ENGIE company

Broward County

OPTERRA

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Broward	County																				Ordente Filmond ()	15407-132 16420 10
Weston L BAS Syst Assumption	ibrary em Checko w:	ut-1st l	Floor - A	HU-1, A	HU-2, A	C-1, AC-	r															
	Setup load in Setup load in Setback load Only recognic	meim with 5 meillated by simulated zeo Toff" fai	/FDs Freduction by reduction n savings (of OA ten on of OA li for OV fan	in edna; p Mith edna P	s selup dite L lu selback	ieniai Se differential	up kad≓ Setback	MiNi(CAT- kad TMR	Lag*ISen IIIHealing I	p T - Spec oad zero T	DAT -1	ing zard ic Lig"(Space	ad (1) () / () + () : Salba	700king tuli k. T.)(,0) / (*	toad 7 x Cor feating zoro	Hing zero i Joael T H	oad T) Iouling fuil	Rewll T)			
Desis:	7	Tan operati VAV r	on type run thm	VFD		Constant V	alume CV	VFD. VFD	r, inlet Viin	n IV, Diret	aige Dang	uur (DD										
	Existing	Total (an m Motor loa average m L	d factor d factor hotor elf leve elf	41.11 75% 66.7% 96%	w																	
1 and profile	e chometorist	ics (enter Fulliand	under Equ heating	up Summ 160 M	ary page, Altituthe	r	de:	Fullow	d cooling	133.2	ame Million	uminutà r	unnis X er	unlive toward	fans in 105	Non if ample	(alter					
	H	tealing ful esting zero	had at Insel at Delta	43* 56*				Cooking for Cooking 241	it load at to load at Dolta	97- 70* 27*		funzione k	1 mpsace	ion of Lewis		con it appro						
Schadinke	First minth Last month	of cooling of pooling	envioni season:	27	iobnuary liw ember		Weat	thor data.	For Laude	rdálo Terre	erature Bir	12-	Anni Anni [N	ral Cooling ral Harating Effectric D	Savings: Swinge: Imand Sav	17,109 n ngs Claime	kWh kWa: dj					
Loud Adjus	Uments: 'Setpoint adju	stment nin	idorator.	-0.8		Dampers &	T changes	in seipont	• (1/ct.,10	ciucen Iona	change)		Saseline Daseline	Cooling En Heating Er	widh euth	308,612 3,989	KW6: KW6:	(Electric Co	nyer)			
	Un accupi Un accupi Week	pied selba ed setback ends inco	ck kinds begins comied?	No 1	(es/No		Unoccu	sipied selb pita setba kando una	ack enits ok begins, iccupied?	8 20 No	Yos 740				EFIHe	284.013	Hiture					
Öce Fan	upied cooling s Caping i mode cluring u	souce temp satup temp noccupied	endere urature coofing	73* 80* 0#		Decu Fan m	ned cooling Cooling ode dunna	space ten j outop ten unoccupió	nperature nperature d codimit:	74* 80* CP	On Off.	Cycle		Alter	AC Usage	29%	of Electron	61				
Uco Teo	apred heating a Heating se	ipace temp back temp	peratura peratura Peratura	60°		Occus Fan In	Heating a	space ten elback ten	nperature,	10" 60"	Do DE	Ovela										
	Cocupied P Unrecupied P	ercent Out	side Air Side Air	TUPS- D'W			Ciccupied moccacind	Parcent D Percent O	utside Aur utside Aur	TIPS- DW												
Bn	-		0.00		Occupier VPD	Cooling	WD	Fan	Cooling	Energy	Wester		4. ()	Partie 1	Unoccupie	d Cooling	VED	Fan	Cooling	Pergy	Sa	anns.
(%) 107.5 102.5	Existing P	nours noposed E	100%	Toyosed 100%	Execting	Proposed	(AVA) 0.0	(kW) 0.0 0.0	(MV) 0.0	(AVA) (AVA) 0.0	Destroy 00	Proposo: 0.0	Exeting 1 100%	Proposed 100% 91%	Evening	Proposed	(off) 0.0 0.0	(6ff) 0.0 0.0	(IM) 0.0 0.0	IMM2 0.0	(NMh) 0	(avoing
97 5 92 5 97 5 97 5	40 177.0 911.5	4.0 177.0 911.5	100% 83% 66%	99% 80% 62%	100% 83% 85%	99% 90% 62%	273 161 78	20 4 14 5 10	162/2 126/3 58/6	1935 1223 841	0.0 5.0 187-5	80 50 182.4	74% 57% 40%	74% 57% 40%	57% 41%	57% 40%	0.0	0.0	010 86.5 61.0	0.0 86.6 51.0	282 881 572	738
77 S 72 S 57 V	B145 365.0 1.76.0	814.5 155.0 136.0	28% 9% 1%	15% 15%	30%	30% 30%	1.0	1.0	#23 141	37 0 9.6	1197.5 855.0 764.0	1197.5 655 (264)	6% 0%	6% 0%	30% 30% 91%	30%	0.0	0.0	97	97	1000	3,673
62.5 57.5 52.5 47.5	62.0 26.6 10.0 2.5	62.0 26.5 10.0 2.5	0% 0% 0% 0%	0% 0% 0%	30% 30% 30% 30%	30% 30% 30%	1.0 1.0 1.0	1.0	0.0	0.0	138.0 83.5 42.0 17.5	138.0 83.6 42.0 17.5	0%	0% 0% 0%	30% 30% 30% 30%	30% 30% 30% 30%	0.0	0.0	0.0	0.0	0000	
42.5 37.5 32.5	0.5	0.5	0% 0% 0%	0% 0% 0%	30%	30%	1.0 0.0 0.0	1.0 0.0 0.0	0.0	0.0	6.5 1.0 0.0	6.5 1.0 0.0	0%	0% 0% 0%	30% 30%	30% 30%	0.0	0.0	0.0 0.0	0.0	0	
27.5 22.5 17.5 12.5	0.0	0.0	0% 0% 0%	0%			0.0	0.0	0.0	0.0	0.0	0.0	0%00%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0%0	0% 0% 0%			0.0	0.0	0.0	0.0	0000	
7.5 2.5 -2.5	0.0	0.0	0% 0% 0%	0% 0% 0%			0.0	0.0	0.0	0.0	0.0	0.0	0 0%	0% 0% 0%			0.0	0.0	0.0	0.0	0000	000
-12.5	3,638	0.0	0%	0%			0.0	0.0	0.0	0.0	0.0 3,634	0.0 3,634	0%	0%			0.0	0.0	0.0	0.0	1,741	15,388
Bin Average	Heating H	tours	Load Pr	Occu ofile	upied Hea VFD Existing	ting cfm Proposed	VFD Existing	Fan Proposed	Heating Existing	Energy Proposed	Heating	Hours	Load	Profile	Unoccupie VFC Existing	d Heating cfm Retroft	VFD Existing	Fan Retrofit	Heating Existing	Energy Proposed	Sa Fan	wings Heating
("F) 107.5 102.5 97.6	Existing Pr 0.0 0.0	0.0 0.0 0.0	Existing F 0% 0%	toposed 0% 0%			0.0	(KW) 0.0 0.0	(therm/hr) 0.0 0.0	(therm/hr) 0.0 0.0	(hrs) 0.0 0.0	(hrs) 0.0 0.0	Existing 0 0% 0%	Retroft 0% 0%	_		(off) 0.0 0.0	(%) 0.0 0.0	(therm/hr) (0.0 0.0	therm/hr) 0.0 0.0	(KWb) 0 0	(therm)
92.5 87.5 82.5	0.0 4.0 73.5	0.0 4.0 73.5	0% 0% 0%	0% 0% 0%	30% 30%	30% 30%	0.0 1.0 1.0	0.0 1.0 1.0	0.0	0.0	0.0	0.0 0.0 5.6	0%	0% 0% 0%	30%	30%	0.0	0.0	0.0	0.0	000	
77.5 72.5 67.5 62.5	238.0 198.0 97.5 64.5	238.0 198.0 97.5 64.5	0% 0% 0% 10%	0% 0% 10%	30% 30% 30%	30% 30% 30% 30%	1.0 1.0 1.0	1.0 1.0 1.0	0.0	0.0	103.0 244.0 137.5 61.5	103.0 244.0 137.6 81.8	0 0%	0% 0% 0%	30% 30% 30% 30%	30% 30% 30% 30%	0.0	0.0	0.0	0.0	0	000
57.5 52.5 47.5	38.0 21.0 7.5 2.0	38.0 21.0 7.5 2.0	30% 50% 70% 90%	30% 50% 70% 90%	30% 50% 70%	30% 50% 70%	1.0 3.8 9.8 20.1	1.0 3.8 9.8	0.5	0.5 0.8 1.1	71.0 51.0 31.5	21.0 51.0 31.6	0%	0% 16% 35%	30% 30% 35%	30% 30% 35%	0.0	0.0	0.0	0.0	000	000
37.5 32.5 27.5	0.0	0.0	100% 100% 100%	100% 100% 100%		~~~	0.0	0.0	1.6 1.6 1.5	1.6 1.6 1.6	4.0 2.0 0.0	4.0	0 71% 89% 100%	71% 89% 100%	71% 89%	71% 89%	0.0	0.0	1.1 1.4 1.6	1.1 1.4 1.6	0000	000
22.5 17.5 12.5 7.5	0.0	0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	1.6 1.6 1.6	1.6 1.6 1.6	0.0	0.0	100% 100% 100%	100% 100% 100%			0.0	0.0 0.0 0.0	1.6 1.6 1.6	1.6 1.6 1.6	0000	000
2.5 -2.5 -7.5	0.0	0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	1.6 1.6 1.6	1.6 1.6 1.6	0.0	0.0	0 100% 100% 100%	100% 100% 100%			0.0	0.0	1.6 1.6 1.6	1.6 1.6 1.6	0000	000
412.5	744	744	10078	10076			0.0	0.0	1.0	1.6	742	74	100%	100%			0.0	0.0	1.0	1.0	0	

OPTERRA

An CNOIC CONDUNY

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Split System - Savings Summary

Facility	Weston Library
Unit Location	Bldg C

Existing Conditions

Mfg	Rheem	Peak kW	
Model #	13AJA18A01	kWh	1,124,700
Date Mfg	2009		

Baseline Data

Proposed Conditions

Mfg Model #

Energy Usage

Existing Conditions	00-08 Hrs	1.6	kW	1,341	kVVh	0	Therms
	09-16 Hrs	1.6	kW	1,880	kVVh	0	Therms
	17-00 Hrs	1.6	kW	1,606	kWh	0	Therms
	Total	1.6	kW	4,827	kWh	0	Therms
		#DIV/0!		0.4%			
Proposed Conditions	00-08 Hrs	1.6	kW	1,288	kWh	0	Therms
	09-16 Hrs	1.6	kW	1,807	kVVh	0	Therms
	17-00 Hrs	1.6	kW	1,543	kWh	0	Therms
	Total	1.6	kW	4,638	kWh	0	Therms
		#DIV/0!		0.4%			
Unadjusted Annual	Savings	0.0	kW		Adjusted	for BAS]
		189	kWh	1	0.0	kW	1
		0	Therms		189	kWh	1

					9	Split and Package	d DX System - E	inergy Usage					
Facility	Weston Libra	nγ											
Mfg Model #	Rheem 13AJA18A01	0		1.1									
→ACU TEXT IS/IBVO Estimated OF Sem Max Cooling Load Design CA Coolin Approx # of Pengli Average reternal h instee Cooling De, instee Cooling De, instee Cooling De, instee Cooling De instee Cooling Teal Heating De Heating Teal Heating Teal Heating	r ved by Unit g Temp g Temp e in Area eat gain sign Temp sign Temp	160 415 80 97 40 50 87 72 70 70 1000 350 2000 367	SF klauhn kbauhn deg F deg F deg F huh-degT deg F deg F buh-degT deg F deg F	400SF/Ton SC MBH/1000SF v D	8 Saleby Factor								
Cis Cooling System	η	10 10 115 1.042 0 1.63	tons kbuiñi New EER/SEER KWTan Age of Unit (yrs) Fall Laad KW (dr	an PLV) consided 0.6% per year	1								
Heat Pump System	Ti	10 0 202020222 8 90 0	Hotohir COF Age of Unit (grs) kbluite input	0									
Electric Healing C	apa city	u	KVV										
Average Electric C Average Natural S	los: las Côst	0.806 0.800	\$765Mh \$7Therm										
COOLING ENERG	3Y CONSUMPT	ION											
Temp B (F)	in Temp diff. (F)	Weather Bin Dat (Hrs)	a Heat Loss Rate (kbturhr)	DX Capacity (kttu/hr)	Oycling Capacity Adj. Factor	Adjusted DX Capacity (kbtuhr)	Rated Electric Input (KVV)	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	EX Electric Counsumption (kWh)			
102 97 82 87 87 82 77 72	67 0 62 0 57 0 52 0 47 0 42 0 37 0	0 5 174 787 816 809 278 2,869	12 1 11.2 10.3 9.4 8.5 7.8 8.7	16.8 17.8 18.3 19.0 19.7 20.4 21.1	1.000 1.000 1.000 1.000 1.000 1.000 1.000	16 9 17 6 18 3 19 0 19 7 20 4 21.1	1,63 1,63 1,63 1,63 1,63 1,63 1,63	0.72 0.64 0.49 0.43 0.37 0.32	0.00 0.06 1.79 7.37 8.81 4.81 1.85 22.58	0 159 633 572 368 143 1,880	-		
HEATING ENERG	Y CONSUMPT	ION											
Temp B 2 (F) 52 47 42 37 32 27 22 17 12 12	in Temp diff. (F) 263 -203 -153 -103 -53 -0.3 4.7 9.7 14.7 19.7 24.7 200 24.7	Weather Bin Dat (Hrs) 34 17 5 2 1 0 0 0 0 0 0 0 0 129 1.6	a Heat Loss Rate (chturhr) 5.1 4.1 3.1 2.1 1.1 0.1 -0.9 -1.9 -2.9 -3.9 -4.9	 Furnace Capacity (ktbu/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Dycling Capacity Adj, Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Adj, Furnace Capachy (teruler) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (45b) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction 1.00 1.00 1.00 1.00 1.00 1.00 -115.65 -259.18 -428.22 -830.24 -978.28	Heat Pump Supplied Heating (W Bbu) 0 01 0 00 0 00 0 00 0 00 0 00 0 00 0 0	Fumate Counsumption (Therms) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Austiany Heat (kbtu/hr) 0 00 0 00 0 00 0 00 0 00 0 00 - 0 94 - 1,94 - 2,94 - 3,94 - 4,94	Required Appliany Heat (6V) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Aux Electric Heat Consumption (kVAh) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kWh Total Heating kWh Total Heating kWh Total Heating The Annual Energy C	Consumption Consumption m Consumption ost	1,890 0 50	kV/h kV/h Therms	-									

					9	Split and Package 17 Hour - 00 F	d DX System - E Hour: Existing Co	nergy Usage	1. m				
Facility Unit Location Mfg Model 8	Weston Libra Bildg C Rheem	nγ											
Test States Estimated of Ser- Max Cooling Load Max Cooling Load Max Cooling Load Max Cooling Design CA Cooling Average reternal in Inside Heating Existe Freating Des Ktot - Cooling Taal - Cooling Taal - Cooling Taal - Cooling Taal - Cooling Taal - Cooling Taal - Cooling Taal - Cooling	artemp g Temp g Temp g Temp e in Area e at gain sign Temp sign Temp	150 4.6 0.0 47 40 50 8.7 72 70 1000 360 360 367	SF kboutne kboutne deg-F deg-F kboutne deg F kboth-degF deg F bboth-degF deg F deg F	4005F/Ton 50 MBH/10005F v D1	8 Safety Factor								
Ck Cooling Syste	π	5 10 115 1.042 0 1.03	tons kburr/ New EER/SEER KWTan Age of Unit (yrs) Fall Laad KW (da	APLV cgraded 0.6% per year									
Heat Pump System	Ti	10 (0 99999999999 8 8 90 (0	Age of Unit (grs) kboure input										
Electric Healing C	apacity	ũ	KVV										
Average Electric C Average Natural C	ias Cóst	0.800 0.800	\$7854h \$7Them										
COOLING ENER	BY CONSUMPT	ION		54 0		1.1	David Disease law 4	Control Trace	DV Ourselled	EN Elseste			
(F)	(F) 67.0	(Hrs)	(koturhr)	(kotu/hr)	Adj. Factor	(kbtuhr)	(KVV)	Fraction 0.70	Cooling (MMBtu)	Counsumption (KMh)	-		
97 97 97 92 87 82 77 72	62.0 67.0 62.0 47.0 42.0 37.0	1 11 276 821 862 539 2,509	11.2 10.3 9.4 8.5 7.8 8.7	17.6 18.3 19.0 19.7 20.4 21.1	1.000 1.000 1.000 1.000 1.000 1.000 1.000	17.8 18.3 19.0 19.7 20.4 21.1	1.63 1.63 1.63 1.63 1.63 1.63 1.63	0.64 0.66 0.49 0.43 0.37 0.32	0.001 0.11 2.58 8.95 8.52 3.59 19.77	1 10 221 575 521 278 1,806			
HEATING ENERG	Y CONSUMPTI	ION											
Temp E	in Temp diff.	Weather Bin Dat	a Heat Loss Rate	Furnace Capacity	Cycling Capacity	Adj. Furnace Capacity	Heat Pump Input	Cycling Time	Heat Pump Supplied	Fumace	Required Auxiliary	Required Auxiliary	Aux Electric Heat
(F) 62 57 52 42 37 32 27 22 17 12	(F) -26.3 -20.3 -15.3 -10.3 -5.3 -0.3 -4.7 9.7 14.7 19.7 24.7	(Hrs) 108 60 31 10 3 1 0 0 0 0 0 211	(kbtu/hr) 51 4,1 3,1 1,1 0,1 -0,9 -1,9 -2,9 -3,9 -4,9	((ctp./hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Adj. Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	(4bculler) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(486) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Fraction 1.00 1.00 1.00 1.00 1.00 1.00 -115.65 -259.18 -428.22 -830.34 -078.28	Heating (MMStu) 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0	Counsumption (Themas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Heat (khtu/hr) 0 00 0 00 0 00 0 00 0 00 - 0 94 - 1.94 - 2.94 - 3.94 - 4.94	Heat (%/V) D D0 0 D0 0 D0 0 D0 0 D0 0 D0 -0 28 -0.57 -0.86 -1.15 -1.45	Consumption (KVMs) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kW Total Cooling kW Total Heating kW Total Heating the Annual Energy C	Demand Consumption Consumption Consumption ost	1.6 1,608 0 1 0 \$0	kW kWh kWh Thems	-									

					3	Split and Package 09 Hour - 16 He	d DX System - E our: Proposed C	nergy Usage onditions	10				
Facility Unit Location Mfg	Weston Libra Bldg C	iγ											
The TEXT IS/IPUT Estimated GF Serv Max Cooling Load Design CA Cooling Apprové of People Average ritema he Instée Cooling Des Instée Cooling Des Instée Cooling Des Instée Heating Des Instée Heating Thai - Cooling Thai - Cooling Thai - Cooling Thai - Cooling Thai - Heating	ad by Unit Temp Temp In Area at gan an Temp gri Temp	150 4.6 8.0 87 40 8.7 72 70 1000 360 360 307	SF Maufin Maufin deg-F deg-F Muth-deg-F Muth-deg-F deg-F Muth-deg-F deg-F deg-F	400SF/Ten 50 MBH/1000SF v D1	3 Safety Fáctor								
Ck: Cooling System	r.	15 18 115 1842 6 157	tons kbourd New EER/SEER KWTon Age of Unit (yrs) Full Load KW (do	nPLV graded 0.6% per year									
Heat Fund System		10 0 2000000000 0 00 0	kboohr COF Age of Unit (yrs) kboohr input										
Electric Heating Co	pacity	u	KVV										
Average Electric C Average Natural G	as Cost.	0.806 8.000	\$7354h \$7Them										
COOLING ENERG	YCONSUMPT	ION											
Temp Bi (F)	n. Temp diff. (F)	Weather Bin Data (Hrs)	Heat Loss Rate (koturhr)	DK Capacity (kitu/hr)	Cycling Capacity Adj. Factor	Adjusted DX Capacity (kbtu/hr)	Rated Electric Input (KVV)	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	DX Electric Counsumption (kV/h)	_		
97 92 87 82	62.0 57.0 52.0 47.0	5 174 787 816	11.2 10.3 9.4 8.5	17.6 18.3 19.0 19.7	1.000 1.000 1.000 1.000	17 8 18 3 19 D 19.7	1.57 1.57 1.57 1.57	0.64 0.56 0.49 0.43	0.06 1.79 7.37 8.91	6 153 808 549			
77 72	42.0 37.0	609 278 2,869	7.6 8.7	20.4 21.1	1.000 1.000	20.4 21.1	1.57 1.57	0.37 0.32	4 81 1.85 22.58	364 138 1,807	-		
HEATING ENERG	Y CONSUMPTI	ION											
Temp Bi (F)	n Temp diff. (F)	Weather Bin Data (Hrs)	Heat Loss Rate (kbtu/hr)	Furnace Capacity (kttu/hr)	Cycling Capacity Adj. Factor	Adj. Furnace Capacity (kbtu/hr)	Heat Pump Input (kBtu)	Cycling Time Fraction	Heat Pump Supplied Heating (MMBtu)	Heat Pump Electric Counsumption (Therms	Required Auxiliary Heat (kbtu/hr)	Required Auxiliary Heat (IAV)	Aux Electric Heat Consumption (kWh)
62 57	-25.3 -20.3	70 34	5.1 4.1	0.0	1.000	0.0 0.0	0.00	1.00 1.00	0.00	0	0.00	0.00	0
62 47	-15.3 -10.3	17	3.1 2.1	0.0	1.000	0.0 0.0	0.00	1.00	0.00	0	0.00	0.00	0
42 37	-5.3 -0.3	2	1.1	0.0	1.000	0.0	0.00	1.00 1.00	0.00	a u	0.00	0.00	0
32 27	4.7	0	-0.9	0.0	1.000	0.0	0.00	-115.65 -259.18	0.00	0	-0.94 -1.94	-0.28 -0.57	0
17 12	19.7 24.7	0 0	-2.9 -3.9 -4.9	0.0	1.000	0.0 0.0 0.0	0.00	-420.22 -630.34 -876.26	0.00	0 0	-2.94 -3.94 -4.94	-0.00 -1.15 -1.45	0
Total Cooling kWE Total Cooling kWh Total Heating kWh Total Heating Then Annual Energy Co	emand Consumption Consumption n Consumption st	129 1.6 1.807 0 0 \$0	kW kWh kWh Thems							a			0

					3	Split and Package 17 Hour - 00 He	d DX System - E our: Proposed C	nergy Usage onditions					
Facility Unit Location Mfg	Weston Libra Bldg C	Ŷ											
The second secon	d ky Unit Temp Temp In Area It gan In Temp In Temp	150 4.6 8.0 87 40 50 8.7 72 70 1000 360 360 367	SF Maruhn Karuhn deg-F deg-F hruh-degF hruh-degF deg F tuh-degF deg F	400SF/Ton .50 MBH/1000SF v.D.1	3 Salety Factor								
Cix Cooling System		15 18 115 1842 0 157	tons kbuuh/ New EER/SEEF KWTan Age of Unit (yrs Fall Laad kW (d	arety) conded 0.5% per year									
Heat Fumo System		0 0) 9999999999 0 90 0	Howhr COF Age of Ucit (grs Howite input	0									
Electric Heating Cap	sa city	u	EVV										
Average Electric Co Average Natural Gar	s: s Cost	0.896 8.000	\$/kWh \$/Them										
COOLING ENERGY	CONSUMPT	ION											
Temp Bin (F)	(F)	Weather Bin Dati (Hrs)	 Heat Loss Rate (kbturhr) 	EX Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adjusted DX Capacity (kbtu/hr)	Rated Electric Input (KW)	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	DK Electric Counsumption (KVsh)			
102 97 82 87 87 82 77 72	67.0 62.0 57.0 52.0 47.0 42.0 37.0	0 1 11 275 821 862 539 2,509	12 1 11.2 10.3 9.4 8.5 7.8 8.7	18.9 17.8 19.0 19.0 19.7 20.4 21.1	1.000 1.000 1.000 1.000 1.000 1.000 1.000	16 9 17 8 19 3 19 0 19 7 20 4 21 1	1.57 1.57 1.57 1.57 1.57 1.57 1.57	0.72 0.64 0.56 0.49 0.43 0.37 0.32	0 00 0 01 0 11 2 58 8 95 8 52 3 59 19 77	U 10 212 563 501 267 1,543	-		
HEATING ENERGY	CONSUMPTI	ON											
Terna Bin (F) 57 52 47 42 37 32 27 22 17 12 Total Cooling KWDs	Temp diff. (F) -25.3 -20.3 -15.3 -0.3 -5.3 -0.3 -7.5 -7.5	Weather Bin Data (Hrs) 106 60 31 10 3 1 0 0 0 0 0 0 0 211 1.6	 Heat Loss Rate (kbtu/hr) 5.1 4.1 3.1 2.1 1.1 0.1 -0.8 -1.9 -2.9 -3.9 -4.9 	 Furnace Capacity (ktou/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 	Cycling Capacity All, Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj, Fumace Capacity (Mituly) 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Heat Pump Input (489) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Heat Pump Suppled Heating (MMBtu) 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0	Fumace Counsumption (Therms) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary Heat (kbt/kr) 0 000 0 000 0 000 0 000 0 000 0 000 0 000 - 0 94 - 1 94 - 2 94 - 3 94 - 4 94	Required Auxiliary Heat (MV) 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0	Aux Electric Heat Consumption (IAVAr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling KWh C Total Heating KWh C Total Heating Them Annual Energy Cos	Consumption Consumption Consumption at	1,543 0 0 \$0	kWh kWh Themis	-									

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Public Safety Building

Whole Building Energy Simulation

BASELINE

BLOC	K-	CHARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
Cust	9	1 Elec Uniform Blk1 USE:	SEASONAL												
		METERED ENERGY: BILLING ENERGY:	465173 0	424615 0	472304 0	0			0		0) 609) 0	484572 0	477967	2325273
		METERED DEMAND	976.4	905	941.3	0	0) 0	0	0	609	968.1	932.4	
		PRORATE FACTOR:	3/0.4	905	0.9987	0		i b	0	i i	ŭ	0.0013	300.1	852.4	
		DEMAND CHGS(\$)	9344	8660	8996	0	i (с с	0		0	13	9265	8923	45201
Cust	2	Elec Uniform Blk2	CE ACONIAL												
		METERED ENERGY:	SEASUNAL 0		575	473049	498155	548114	569432	575473	553556	521441	0	0	
		BILLING ENERGY:	Ő	Ő	0	0	0	0	0	0	0	0	0	0	3739763
		METERED DEMAND:	0	0	581.6	933.7	969.4	1033.8	1031.7	1025.8	1128.3	988.9	0	0	
		BILLING DEMAND	0	0	941.3	933.7	969.4	1033.8	1031.7	1025.8	1128.3	988.9	0	0	
		DEMAND CHGS(\$):	0	ŏ	12	8936	9277	9894	9873	9817	10798	9451	0	ŏ	68057
Cust	5	Elec TOU S1-OnPk													
		USE:	TIME-OF-	USE	404940								110000	440709	
		BILLING ENERGY:	101992	102069	124312	0		1 3			i i	, ŭ	118632	116763	563768
		METERED DEMAND:	876.3	886.3	900.4	Ċ	0	i č	0	i o	0) Ö	951.8	914.4	
		BILLING DEMAND:	0	0	0	0	0	9	0	0	0	0	0	0	
		ENERGY CHGS(\$):	4963	4967	6049	0	0 0		0	0	0	0	5773	5682	27433
Cust	2	Elec TOU S1-OffPk													
		USE: METERED ENERGY:	TIME-OF- 363193	USE 922546	347002				i i			600	2650.40	361304	
		BILLING ENERGY:	363182	322546	347992	0	0	i i	0	0	0	609	365940	361204	1761473
		METERED DEMAND:	976.4	905	941.3	0	0) (0 0	0	0	609	968.1	932.4	
		BILLING DEMAND	0	12002	14004	0	9	0 9	0 0	0	0	0 0	15050	0	75070
		ENERGY CHOS(\$).	15541	15002	14031	C.			0			20	12028	10400	15515
Cust	2	1 Elec TOU S2-OnPk	TIME OF	LICE											
		METERED ENERGY:	0	0.50	0	158018	147692	176827	172760	183339	174752	153678	0	0	
		BILLING ENERGY:	0	0	0	158018	147692	176827	172760	183339	174752	153678	Ç	0	1167067
		METERED DEMAND	0	0	0	933.7	969.4	1033.8	1031.7	1025.8	1128.3	988.9	0	0	
		ENERGY CHGS(\$):	0	0	0	7689	7187	8604	8407	8921	8503	7478	0	0	56789
Oust		Flec TOLLS2 OffPk													
0.001		USE:	TIME-OF-	USE											
		METERED ENERGY:	0	0	575	315031	350462	371287	396671	392134	378805	367763	0	0	
		BILLING ENERGY:	0	0	575	315031	350462	371287	396671	392134	378805	367763	0	0	2572727
		BILLING DEMAND:	0	0	0.186	910.0	910.4	965.0	0.0896.0	967.3	990.9	901.3		0	
		ENERGY CHGS(\$):	ŏ	ŏ	25	13480	14996	15887	16974	16779	16209	15737	Č	ŏ	110087
DPub	li	c Safety Building								DOE-2.2-	48y 12	/11/2017	9:05	1:30 BD	LRUN 1
REPO	RT	#NAME?	s and Rat	chets fo	r FPL CI	LC-1D					WEATHE	R FILE-	W. Palm	BeachFL	TMY 2
		TOTAL ENERGY:	465173	424615	472879	473049	498155	548114	569432	575473	553556	522050	484572	477967	6065035
		TOTAL CHARGES (\$)	29847	27429	29973	30105	31460	34385	35254	35517	35511	32704	30696	30061	382942

PEG 1 P	ĸ	CHARGES	IAN	CER	MAR	APD	MAY	LIN		AL IG.	SED	OCT	NOV	DEC	VEAD
		CHARGES	5704			Arte	10001			100					
Cust		Elec Uniform Blk1													
		USE:	SEASONAL												
		METERED ENERGY:	444765	405061	444330	0	0	0	0	0	0	608	460164	455000	£
		BILLING ENERGY:	0	() 0	0	0	0	0	0	0	0	0	0	220
		METERED DEMAND	962.6	815	830.7	0	0	0	0	0	0	609.2	857.8	830.3	
		BILLING DEMAND	962.6	815	5 830.7	0	0	0	0	0	0	874.3	857.8	830.3	6
		PRORATE FACTOR	0010		0.9987	0	0	0	0	0	0	0.0013	1	7040	
		DEMAND CHOS(\$)	9212	1198	/940	0	0	0	0		0 0	11	8209	1940	8 8
Cust	1	Elec Uniform Blk2	051000101												
		USE:	SEASONAL			444000	474007	E10240	E40.000	F 4 4 4 3 4	534000	40.400.4			
		METERED ENERGY:	0	5	000	444399	4/139/	518246	540236	544424	524826	494634	0	0	
		METEDED DEMAND	0		600.7	022.0	067.0	010.0	015.5	000 7	1022.0	074.2	0	0	35
		RULING DEMAND	0		930.7	922.8	967.0	016.5	015.5	009.7	1022.8	074.0	0	0	2
		PROPATE FACTOR	0	2	0.0013	922.0	007.0	010.0	1	200.1	1022.0	0.9987	0	0	÷
		DEMAND CHGS(\$)	0	0	11	7875	8210	8771	8762	8696	9789	8356	0	0	Ě I
Oust		Elec TOU S1-OnPk													
20.00		USE:	TIME-OF-	USE											
		METERED ENERGY:	96076	95721	114896	0	0	0	0	0	0	0	109848	109203	8
		BILLING ENERGY:	96076	95721	114896	0	0	0	0	0	0	0	109848	109203	
		METERED DEMAND	802.4	815	805.4	0	0	0	0	9	0	0	857.8	820.5	6. T
		ENERGY CHGS(\$)	4675	4655	5501	0	0	0	0	0	0	0	5345	5314	8.
		CHEROT GIOG(4).	4075	40.00	3381	0		0	0			0	5045	0014	
Cust		Elec TOU S1-OffPk	THE OF	1100											
		USE METERER ENERGY	TIME-OF-	USE 200240	220424	0						000	950946	245707	
		RELENCENERGY.	340008	200240	320424	0	0	0	0			600	300310	345787	
		METERED DEMAND	962.6	807 3	830.7	0	0	0	0	č	ň	609 2	857.2	830.3	20.0
		BILLING DEMAND	0	() ()	0	0	n	0	0	i î	0	0	0	ě –
		ENERGY CHGS(\$):	14920	13237	14096	0	0	0	0	0	0	26	14990	14797	
Cust		Elec TOU S2-OnPk													
		USE:	TIME-OF-	USE											
		METERED ENERGY:	0	() 0	138123	129551	157068	153692	163129	155630	135782	0	0	ij
		BILLING ENERGY:	0	0) 0	138123	129551	157068	153692	163129	155630	135782	0	0	1
		METERED DEMAND:	0) 0	822.9	857.9	916.5	915.5	908.7	1022.9	874.3	0	0	
		BILLING DEMAND	0	5) 0	0	0	0	0		0	0	0	0	8.
		ENERGY CHGS(\$):	0		0	6721	6304	/643	1419	7938	15/3	6607	U	U	8 8
Cust	1	Elec TOU S2-OffPk	TIME OF	1155											
		METERED ENERGY	TIME-UP-	USE	1 600	206.576	241976	261170	206644	201306	260106	130030	0		
		BILLING ENERGY:	0	i i	586	306276	341846	361178	396544	381295	369195	359851	0	0	2
		METERED DEMAND	ő	2	590.7	.807	817.3	886	891.9	390.4	890	853.7	0	0	
		BILLING DEMAND	ő	1) 0	0	0	0	0	0	0	0	0	0	
		ENERGY CHGS(\$)	0	6	25	13106	14628	15455	16540	16316	15798	15355	0	0	1.12
DPub	JI.	c Safety Building								DOE-2.2-	48y 12	/11/2017	9:05	7:33 BD	LR
REPO	RT	#NAME?	s and Rat	chets fo	TEPL CI	LC-1D					WEATHE	R FILE	W. Palm	BeachFL	TM
	÷							histori					(CON	TINUED)-	
		and a stream													
		TOTAL ENERGY TOTAL CHARGES (\$)	444765 28807	405061	444915	444398 27702	471397	518246 31869	540236	544424 32950	524826	495242	460164	455000 28057	5
		Dilucitize Contra	78.4	20	116.0	1100	111.0		1100.0		105 -	1170	1100	1000	
		Billed KW Savings	13.8	90	110.6	110.8	1115	117.3	116.2	117.1	105.4	114.6	110.3	102.1	
		Billed kW Savings On-Peak kWh Savings Off Peak kWh Savings	13.8 5.916 14.493	90 6,348 13,200	9,416	110.8 19,895 8,755	111.5 18.141 8.616	117.3 19.759 10.100	116.2 19.068	117 1 20.210	105.4 19.122	114.6 17.896 8.912	110.3 8,784 15,624	102.1 7,560 15,407	1

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

BLOC	K-	CHARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Y
	-														-
Cust	1	Elec Uniform Blk1													
		USE:	SEASONAL	34636	246076							05	357744	354676	÷
		BILLING ENERGY:	343003	01000	0 0000	0	0	0	0	0	0	90	351114	301010	2
		METERED DEMAND	1009.4	91	7 832.8	0	0	0	0	0	ő	95.9	860.3	829.3	į.
		BILLING DEMAND	1009.4	91	7 832.8	0	0	0	0	0	0	878.2	860.3	829.3	3
		PRORATE FACTOR:	1		1 0.9987	0	0	0	0	0	0	0.0013	1	1	1
		DEMAND CHGS(\$):	9660	877	5 7960	0	0	0	0	0	0	11	8233	7936	3
Cust	1	Elec Uniform Blk2	22/22/01/07												
		USE:	SEASONAL							101700	1057770	224222			
		METERED ENERGY:	0		97	346069	364625	399049	415506	421730	405773	381330	0	9	2
		BILLING ENERGT.			0 076	036.0	0017	022.4	000.0	012.7	1020.2	070 3	0		1
		BILLING DEMAND			1 8328	925.9	961.7	922.4	920.0	913.7	1020.2	878.2	0		1
		PRORATE FACTOR:	0		0 0.0013	020.0	1	322.4	920.0	1 10.1	1020.2	0.9987	0	0	ŝ.,
		DEMAND CHGS(\$):	C		0 11	7904	8246	8827	8812	8745	9840	8393	0	C	0
Cust	1	Elec TOU S1-OnPk													
		USE:	TIME-OF-	USE		1.12		1.12	3 2	102	8 - 2	312			8
		METERED ENERGY	94313	9414	6 111862 114063	0	0	0	0	0	U	0	107529	106864	1
		METERED DEMAND	834.5	834	7 8021	0	0	0	0	0	0	0	853.0	819.2	5
		BILLING DEMAND	0		0 0	ő	ŏ	ŏ	ŏ	Ő	ŏ	ŏ	0	0	ŝ.
		ENERGY CHGS(\$):	4589	458	1 5443	0	0	0	Ō	0	0	Ū Ū	5232	5200	D.
Cust	2	Elec TOU S1-OffPk		NAME OF											
		USE:	TIME-OF-	USE								05	050404	044040	
		RELEASED ENERGY:	250750	22121	0 234214	0	0	0	0	0		95	250184	244813	2
		METERED DEMAND	1009.4	91	7 832.8	ő	ő	0	0	ő	ő	95.9	860.3	829.3	ŝ
		BILLING DEMAND	0	1	0 0	Ő	Ő	Ő	Ő	ő	ŏ	0	0	04.01.0	ĵ.
		ENERGY CHGS(\$):	10730	946	6 10022	0	0	0	0	0	0	4	10705	10476	5
Cust	ា	Elec TOU S2-OnPk	10000	1122											
		USE:	TIME-OF-	USE		120220	100700	467074	151000			100000			
		BILLING ENERGY				136230	129739	157374	154089	163642	155966	136060	0	2	5
		METERED DEMAND			0 0	825.9	861.7	922.4	920.8	913.7	1028.2	878.2	0		5
		BILLING DEMAND	Č		o o	020.0	0	0	020.0	010.7	1020.2	010.2	ő	Č	j.
		ENERGY CHGS(\$):	Ċ		0 0	6727	6313	7658	7498	7963	7589	6621	0	C	D.
Cust	1	Elec TOU S2-OffPk													
		USE	TIME-OF-	USE		-	-		-			a designation of			į,
		DI LING ENERGY			0 97	207832	234880	241675	201417	258088	249806	245270	0	1	1
		METERED DEMAND	i i i		97.6	201032	R15.2	886.8	898.2	200000	897.1	860.4	0		1
		BILLING DEMAND			0 0	6	0	0	0	0	0	0	, o	ć	1
		ENERGY CHGS(\$)	0		0 4	8893	10051	10341	11188	11044	10689	10495	0	0	5
DPub	II.	c Safety Building								DOE-2.2-	48y 12	/11/2017	0.419444	9.37 BD	1
REPO	RT	#NAME?	s and Rat	chets fo	TEPL CI	LC-1D					WEATHE	R FILE	W Palm	BeachFL	1
	~						-		******		******	******	accesca.	(INCED)	į
		TOTAL ENERGY	345063	31535	346173	346069	364625	399049	415506	421730	405773	381425	357713	351676	5
		TOTAL CHARGES (\$)	24979	2282	2 23440	23523	24610	26827	27496	27751	28119	25524	24171	23612	2
		Billed KW Savings	-46 6	10	2 -2.1	110	3.8	-5.9	53	513	-5.3	3.9	.25	0.000	1
		Off-Peak kWh Savings	97.930	88,13	95,709	98,444	106,980	119,603	125,127	123,207	119.389	114.094	100.132	100.984	1
		Total kWh Savings	99,702	89,70	3 98,743	98,331	106,772	119,197	124,730	122,694	119,053	113,816	102,451	103,323	3

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

ECM C-1	New BA	S														
	BLOC	к.	CHARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
		**		******		****							******			
	Cust	1	Elec Uniform Bik1 USE: METERED ENERGY:	SEASONAL 277129	256977	303623	. 0		0				258	306495	201334	
			BILLING ENERGY: METERED DEMAND	0 1148.8	0 1069.2	0 799.2 700.2	0	0	0	0	0	0	258.4	0 908.8	0 964.6	143586
			PRORATE FACTOR: DEMAND CHGS(\$).	10994	1003.2	0.9987 7638	0	0	0	0		0	0.0013	308.8 1 8697	904.0 1 9231	4680
	Cust	1	Elec Uniform BIk2 USE:	SEASONAL												
			METERED ENERGY: BILLING ENERGY: METERED DEMAND	0000	0	266 0 266.7	306135 0 793.3	314850 0 831.9	360873 0 893	374345 0 892.5	386912 0 887.2	366260 Č 997) 331924) 0 7 842	0	0000	244151
			BILLING DEMAND PRORATE FACTOR	0	0	799.2 0.0013	793.3 1 7592	831.9 1 7961	893 1 8546	892.5 1 8541	887.2 1 8490	997 1 9542	0.9987 0.9987	0	0	5872
	Ouet	1	Electrol StopPk			10	1002	1001	0040	0041		0042				0011
	Cupt		USE: METERED ENERGY:	TIME-OF- 68029	USE 69222	90665	0	0	0	0	0	0	0	88117	80770	
			BILLING ENERGY: METERED DEMAND BILLING DEMAND	68029 729.5	69222 756.4	90665 760.5	0	0	0			0		88117 816.3	80770 762	396804
			ENERGY CHGS(\$):	3310	3368	4412	0	0	Ő	0	0	Ő	0	4288	3930	19308
	Cust	1	Elec TOU S1-OffPk USE:	TIME-OF-	USE	040067								040970	010569	
			BILLING ENERGY: METERED DEMAND	209101 209101 1148.8	187755	212957 212957 799.2	0	0	0	0		0	258	218378 908.8	210563 210563 964.6	103901
			BILLING DEMAND ENERGY CHGS(\$):	0 8947	0 8034	0 9112	0	0	0	0	0	0	1 11	0 9344	0 9010	4445
	Cust	1	Elec TOU S2-OnPk USE:	TIME-OF-	USE											
			METERED ENERGY: BILLING ENERGY: METERED DEMAND:	0	0	0	127072 127072 793.3	120464 120464 831.9	149805 149805 893	146930 146930 892.5	156594 156594 887.2	148476 148476 997	126643 126643 842	0	0	97598
			BILLING DEMAND: ENERGY CHGS(\$):	0	0	0	0 6183	0 5862	0 7290	0 7 150	0 0 1 7620	7225	0 6 6162	0	0	4749
	Cust	1	Elec TOU S2-OffPk USE	TIME-OF-	USE											
			METERED ENERGY BILLING ENERGY: METERED DEMAND	0	0	266 266 266.7	179063 179063 773.5	194386 194386 779.1	211068 211068 854.1	227416 227416 862.6	230319 230319 852.8	217784 217784 961.9	205280 205280 824.4	0	0	1465582
	-	1	BILLING DEMAND ENERGY CHGS(\$)	0	0	0	0 7682	0 8318	0 9032	0 9731	9855	9319	0 8784	0	0	6271
	DHUD		c Safety Building				1.0.10				LOE-2.2-	48y 12	/11/2017	0.459028	EUS ED	L RUN 1
	REPO	RT	#NAME?	s and Rat	chets fo	TEPL CI	LC-1D					WEATHE	R FILE	W Paim (CON	BeachFL TINUED)-	TMY 2
			TOTAL ENERGY TOTAL CHARGES (\$)	277129 23252	256977 21635	303889 21184	306135 21437	314850 22141	360873 24867	374346	386913	366260 26085	332181 23015	306495 22329	291334	387738
			Billed KW Savings	186.2	-254.2	31.5	29.6	26	23 5	23	215	25.9	32.3	.51	134.3	.412-
			Off-Peak kWh Savings Total kWh Savings	139,588 167,635	121,585	116,797	127,213 138,264	147,460	150,110	159,128	150,976	151,411	153,921	131,938	135,234 163,667	1,685,361
		112														
-------	----	--	-----------------	-----------------	---	-----------------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	--	------	
BLOC	K.	CHARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR	
Cust	10	Elec Uniform Bik1	CEACONIAL													
		METERED ENERGY	27123	251772	297265		0	0	0		0	251	300244	284945		
		BILLING ENERGY:	0	0) 0	0	Ő	0	0	C	0	0	0	0	140	
		METERED DEMAND	1141.4	1061.8	787.5	0	0	0	0	0	0	252.2	901	956.9	1	
		BILLING DEMAND	1141.4	1061.8	787.5	0	0	0	0	0	0	830.5	901	956.9	£.	
		PRORATE FACTOR:	1	1	0.9987	0	0	0	0	0	0	0.0013	1	1		
		DEMAND CHGS(\$):	10923	10161	7526	. 0	0	0	0	Ç	0	11	8623	9157		
Cust	1	Elec Uniform Blk2	22222-07													
		USE:	SEASONAL													
		METERED ENERGY:	0		261	300100	308556	354442	368318	380826	360182	325958	0	0	1 2	
		METEDED DEMAND			2613	781.6	820.4	881.5	99.1	975.7	0917	830.5	0	0	1 23	
		BILLING DEMAND			787.5	781.6	820.4	881.5	881	875.7	9917	830.5	n n	0	2	
		PRORATE FACTOR	0	i č	0.0013	1	1	1	1	1	1	0.9987	0	0		
		DEMAND CHGS(\$):	C	0	10	7480	7851	8436	8432	8381	9395	7937	0	0)	
Cust	1	Elec TOU S1-OnPk														
		USE:	TIME-OF-	USE										126302		
		METERED ENERGY:	66956	68038	89179	0	0	0	0	0	0	0	86567	79320	ļ	
		BILLING ENERGY:	716 6	744.3	3 891/9		0	0	0			0	00000/	79320		
		BILLING DEMAND	/10.0	144.3	152.3	i ő	ň		0		i i		004.0	(50.5		
		ENERGY CHGS(\$):	3258	3311	4339	i 0	Ő	Ő	Ő	0	0	i 0	4212	3860	í	
Oust		Flec TOU SLOPP														
Cost		USE	TIME-OF-	USE												
		METERED ENERGY:	204283	183735	208086	0	0	0	0	0	0	251	213678	205625	5	
		BILLING ENERGY:	204283	183735	208086	0	0	0	0	0	0	251	213678	205625	i 1	
		METERED DEMAND	1141.4	1061.8	787.5	0	0	0	0	0	0	252.2	901	956.9		
		ENERGY CHGS(\$):	8741	7862	2 8904	0	0	0	0	0	0	11	9143	8799	i .	
Clist		USE:	TIME-OF-	USE												
		METERED ENERGY:	0	0) ()	125029	118317	147216	144702	154269	146223	124548	0	0) .	
		BILLING ENERGY:	C	0) 0	125029	118317	147216	144702	154269	146223	124548	0	0	1	
		METERED DEMAND:	0	0 0	0 0	781.6	820.4	881.5	881	875.7	981.7	830.5	0	0)	
		ENERGY CHOSIN				6094	6767	746.4	7044	7607	7116	6060	0	0		
		ENERGY CHOO(\$).			0	0064	5151	7104	7041	1501	7115	6000	Ū.		12 E	
Cust	1	Elec TOU S2-OffPk	TIME OF	11516												
		METERED ENERGY	TIME-OF-	USE P	261	175071	190240	207226	223616	226557	218058	201410	0	0	ř.,	
		BILLING ENERGY:	č	i i	261	175071	190240	207226	223616	226557	213958	201410	Ű	0	1 1	
		METERED DEMAND	0	i c	261.3	762	767.6	842.8	851.2	841.5	850.4	812.9	0	0	1.1	
		BILLING DEMAND	0	0) 0	0	0	0	0	0	0	0	0	0	1	
nPub		ENERGY CHGS(\$)	0	0 0	11	7491	8140	8867	9569	9694 DOE-2.2	9155	8618	0.460.417	9 15 ED	1.5	
		a build g	1.10	15.10	-	10.00				poer.						
REFC	R	#NAMEY	s and Rat	chets to	TERLO	LC-1D		-			WEATHE	RELES	(CON	TINUED)-	IM	
				*******	Annese	1000004	*******	*******	34-++++		*******	******		*****	-+-	
		TOTAL ENERGY TOTAL CHARGES (\$).	271238 22923	251772 21334	297526	300100 21055	308556 21748	354442 24466	368318 25041	380826 25582	360182 25665	326210 22637	300244 21979	284945 21816	38	
		Filled WV Saving-	7.4	7.4	14.7	11.7	115	115	115	11.0	15.4	11.5	7.0	7.7		
		On-Peak Wh Savings	1.079	1 184	1 486	2043	2 147	2 580	2 228	2 3 2 5	2 253	2 095	1.550	1,050	1	
		Off-Peak kWh Savings	4,818	4,020	4,876	3,992	4,146	3,842	3,800	3,762	3,826	3,877	4,700	4,938		
		and the second sec		10 mm	all all all all all all all all all all	and the second second	2		2022				10 10 March	in the second se		

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

BLOC	K.	CHARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEA
Cust	1	1 Elec Uniform Blk1													
		USE:	SEASONAL			- S2	6 B			1.0	N 2				
		METERED ENERGY:	245600	228144	267031	0	0	0	0	0		213	270949	257450	
		BILLING ENERGY.		40000	732.6	0	0	0	0	0		212.4	000.7	025.4	10
		FILLING DEMAND	1110.0	1033.0	733.0			0	0			213,4	009.7	925.1	
		DECLING DEMAND	1115.5	1053.0	0 0007	0		0	0			0.0013	009.7	825.1	
		DEMAND CHGS(\$).	10654	9891	7011	0	ő	0	0 0	Q	i o	10	8323	8853	
Oust	1.0	Elec Uniform BIk2													
		USE:	SEASONAL												
		METERED ENERGY:	0	6	220	268553	275286	318798	329578	342083	323413	291568	0	0	
		BILLING ENERGY:	č	6	0	0	0	0	0	0	0	0	ó	Ó	2
		METERED DEMAND:	C		220.8	728.7	761.4	813.8	813.3	809.8	924.7	771.6	0	0	
		BILLING DEMAND:	C	6	733.5	728.7	761.4	813.8	813.3	809.8	924.7	771.6	0	0	
		PRORATE FACTOR:	0	6	0.0013	1	1	1	1	1	1	0.9987	0	0	
		DEMAND CHGS(\$):	C		9	6974	7287	7788	7784	7750	8849	7374	0	0	
Cust	1	I Elec TOU S1-OnPk													
		USE:	TIME-OF-	USE										22222	
		METERED ENERGY	61044	62204	80584	0	0	0	0	0	0	0	78421	72049	
		BILLING ENERGY:	61044	62204	80564	0	0	0	0	C	0	0	78421	72049	
		METERED DEMAND	6/32	696.2	/04	0	0	0	0	0	u u	0	141.1	/01.4	
		EXELING DEMAND	2070	2007	0 0000	0		0	0	5		0	2040	0000	
		ENERGY CHGS(\$)	2970	3021	3820	U	U	0	0	0		0	3010	3506	
Cust	st	Elec TOU S1-OffPk	-	· · · · ·											
		USE	TIME-OF-	USE	400.407								100500	105101	
		METERED ENERGY:	184556	165940	186467	0	0	0	0	U	U	213	192528	185401	
		BILLING ENERGY:	184556	165940	186467	0	0	0	0	0	0	213	192528	185401	
		METERED DEMAND	1113.3	1033.0	133.5	0		0	0	0		213.4	869.7	925.1	
		ENERGY CHGS(\$):	7897	7101	7979	0	0	0	0	0	0	i 9	8238	7933	
Oust	5 33	Elec TOULS2.On Pk													
Cuar		LISE-	TIME-OF-	LISE											
		METERED ENERGY:	0	000	0	114356	108727	136241	133793	142861	135470	114804	0	0	
		BILLING ENERGY	0	1	0	114356	108727	136241	133793	142861	135470	114804	0	0	
		METERED DEMAND:	0	0) 0	728.7	761.4	813.8	813.3	809.8	924.7	771.6	0	0	
		BILLING DEMAND:	0	0) 0	0	0	0	0	0	0	0	0	0	
		ENERGY CHGS(\$):	C		0 0	5565	5291	6629	6510	6952	6592	5586	0	0	
Cust	1	I Elec TOU S2-OffPk													
		USE	TIME-OF-	USE		- 1.00	. Annak		1		and the second				
		METERED ENERGY		1	220	154197	166559	182657	195784	199222	187943	176764	0	0	
		BILLING ENERGY:	L		220	154 197	166559	182557	195784	199222	187943	176764	0	0	91
		METERED DEMAND			220.8	717.4	715.5	779.6	187.7	778.4	786.2	/54	0	0	
		BILLING DEMAND	.0) 0	0	0	0	0	area (0	0	0	0	
DFub		c Safety Building	L.		1 9	6598	/12/	(812	83/8	DOE-2.2-	48y 12	/11/2017	0.461806	1 11 ED	LF
DED	DT	WJAME2	e and Dat	chets to	TEP: CI	10.10					WEATHE	PRIE	W Dalm	ReachEl	тм
	-		3 BAIST 1562		The							in the second	(CON	TINUED}-	
			1016000	******	Anonose.	1010364	0000000		3041003			******	100000		-
		TOTAL ENERGY	245600	228144	267251	268553	275286	318798	329578	342083	323413	291781	270949	257450	3
		TO THE STATISTICS (4)	21021	20013	10323	13150	Torton	LILLO	22072	LULLI	20400	20045	20071	20202	
		Billed KW Savings	28.1	28.2	54	52.9	59	67.7	67.7	65.9	57	58.9	313	318	
		On-Peak KWh Savings	5.912	5,834	8,615	10,673	9,590	10.975	10,909	11,408	10,753	9,744	8,146	7,271	1
		Ull-Heak kith Savings	19,727	17,795	21,660	20,874	23,681	24,669	27,832	27,335	26,015	24,684	21,150	20,224	-
		TIMEN MARY SCALID OF	10. 4000	22 10 21	201275	10 M 10 M 10 M 10		100 100 100 100 100	100 0 0 0	the second second second second second second second second second second second second second second second se			the second second second second second second second second second second second second second second second se	the second second second second second second second second second second second second second second second se	

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

BLOC	K-	CHARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
Cust	12	LISE	SEASONIAL												
		METERED ENERGY	244751	227340	265900	0	0	0	0	0	0	211	260707	256314	
		BILLING ENERGY	2447.57) () 0	0	ő	ő	0	0	ŏ	0	0	0	12643
		METERED DEMAND	11127	1033	730.7	0	0	0	0	0	Ő	212.2	869.1	924.5	
		BILLING DEMAND	1112.7	1033	730.7	0	0	0	0	0	0	768.9	869.1	924.5	
		PRORATE FACTOR:	1	6	0.9987	0	0	0	0	0	0	0.0013	1	1	
		DEMAND CHGS(\$):	10649	9886	6984	0	0	0	0	0	0	10	8317	8847	44
Cust	1	1 Elec Uniform Blk2													
		USE:	SEASONAL												
		METERED ENERGY:	5	8 9	219	267292	273985	317337	328044	340528	321932	290209	0	0	
		BILLING ENERGY:			240.4	705.0	770.0	010.0	040.4	0000.0	022.0	7000	0	0	2139
		RELEASED DEMAND			218.4	725.9	750.0	010.9	010.4	906 Q	922.2	769.0	0	0	
		PRORATE FACTOR:	6	1 1	0.0013	123.0	100.0	010.0	010.4	000.5	322.2	0.9987	0	0	
		DEMAND CHGS(\$):	C) (9	6947	7259	7760	7756	7722	8825	7349	0	0	53
Cust	3	Elec TOU S1-OnPk													
		USE:	TIME-OF-	USE										12.11.11.12	
		METERED ENERGY:	60842	61998	80240	0	0	0	0	0	0	0	78065	71767	
		BILLING ENERGY:	60842	2 61998	80240	0	0	0	0	0	0	0	78065	71767	352
		RELERED DEMAND	6/0./	093.5	/01.2	0	0	0	ů.	0		0	144.8	0.060	
		ENERGY CHGS(\$):	2961	3017	3904	0	0	0	0	0	0	0	3799	3492	17
Cust	12	1 Elec TOU S1-OffPk													
		USE	TIME-OF-	USE											
		METERED ENERGY:	183915	5 165351	185661	0	0	0	0	0	0	211	191732	184547	
		BILLING ENERGY:	183915	5 16535	185661	0	0	0	0	0	0	211	191732	184547	911
		METERED DEMAND	1112.7	1033	730.7	0	0	0	0	0	0	212.2	869.1	924.5	
		ENERGY CHGS(\$):	7870	0 7075	5 7944	0	0	0	0	0	0	9	8204	7897	39
Cust		1 Elec TOU S2-OnPk													
		USE:	TIME-OF-	USE											
		METERED ENERGY:	0) () 0	113800	108271	135694	133264	142304	134946	114341	0	0	
		BILLING ENERGY:	0) () 0	113800	108271	135694	133264	142304	134946	114341	0	0	882
		METERED DEMAND:	0) () 0	725.9	758.6	810.9	810.4	806.9	922.2	768.9	0	0	
		ENERGY CHOSIN	1			6537	5268	0 6603	6485	6025	6566	5564	0	0	42
1000		Encror choolay.		e			5200	0000	0400	0.02.0	0000		0	0	76
Cust		LISE TOU S2-OffPK	TIME-OF.	LISE											
		METERED ENERGY	The second) (219	153492	165714	181642	194780	198224	186987	175868	0	0	
		BILLING ENERGY:		1	219	153492	165714	181642	194780	198224	186987	175868	0	0	1256
		METERED DEMAND) (219.4	716.8	712.7	776.7	784.8	775.5	783.3	751.2	0	0	
		BILLING DEMAND) () 0	0	0	0	0	0	0	0	0	0	
DFub	11	ENERGY CHGS(\$); c Safety Building	.(2 (9 9	6568	7091	7772	8335	8482 DOE-2.2-	48y 12	7525	0.5	0.33 ED	LRUN
REPO	RT	MNAME?	s and Rat	chets fo	TEPL CI	LC-ID					WEATHE	RELE	W Paim	BeachFL	TMV2
	-											inter	(CON	TINUED)-	
		area we are													
		TOTAL ENERGY TOTAL CHARGES (\$)	244757 21479	22734	266120 18851	267292 19052	273985 19619	317337 22136	328043 22575	340528 23129	321932 23393	290420 20457	269797 20320	256314 20236	3403 251
		Billed KW Savings	0.6	0.6	2.8	2.8	2.8	2.9	2.9	29	2.5	2.7	0.0	0.6	1
		On-Peak KWh Savings	203	204	324	556	456	547	529	557	524	463	356	282	5.
		Off-Peak kWh Savings	641	581	807	705	845	915	1,004	998	956	398	796	854	10,
		Total MAN Savinos	843	2 70	1 131	1 261	1 201	1,467	1 1022	2 R.K.K.	1/120	1 201	5.35.5	10 30 40	5645.1

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

BLOC	K.	CHARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YF

Cust		1 Elec Uniform Blk1													
		USE:	SEASONAL												
		METERED ENERGY:	239837	221195	256680	0	0	0	0	0	0	204	256134	247117	1
		BILLING ENERGY:	0		0 0	0	0	0	0	0	0	0	0		1
		METERED DEMAND	1042.5	9723	5 710	0	0	0	0	0	0	204.4	866.9	918.9	5
		DOODATE FACTOR	1042.5	812.2	0.0007			0	0		0	/41.5	800.9	910.5	2
		DEMAND CHGS(\$)	9977	9304	6785	; 0	0	0	0	0	0	10	8297	8794	1
Cust		1 Elec Uniform Blk2													
		USE:	SEASONAL												
		METERED ENERGY:	0	() 210	256114	258617	299974	308349	321152	302929	274971	0	0)
		BILLING ENERGY:	0) 0	0	0	0	0	0	0	0	0	0)
		METERED DEMAND	0	9	210.2	716.5	722.9	765.8	765.1	764.7	787.6	741.5	0	- 0)
		BILLING DEMAND	0		710	716.5	722.9	765.8	765.1	764.7	787.6	741.5	0	0	1
		PRURATE FACTOR	0		0.0013	0057	6010	7990	7933	7910	7520	7007	0		2
		DEMAND CHG3(\$)	0		3	6657	0910	1328	1322	1310	/556	1067	0		1
Cust		1 Elec TOU S1-OnPk USE:	TIME-OF-	USE											
		METERED ENERGY:	59948	60310	76965	0	0	0	0	0	0	0	72843	69202	2
		BILLING ENERGY:	59948	60310	76965	0	0	0	0	C	0	0	72843	69202	2
		METERED DEMAND	564.5	669.4	676.3	0	0	0	0	9	0	0	710.4	674,8	5
		ENERGY CHGS(\$):	0 2917	2935	0 0 5 3745		0	0	0	0	0		3545	3367	1
Cust		Elec TOU S1-OffPk													
		USE	TIME-OF-	USE											
		METERED ENERGY:	179889	160885	179715	0	0	0	0	0	0	204	183291	177915	į.
		BILLING ENERGY:	179889	160885	179715	0	0	0	0	0	0	204	183291	177915	ġ.,
		METERED DEMAND	1042.5	972.3	710	0	0	0	0	0	0	204.4	866.9	918.9	1
		ENERGY CHGS(\$):	7697	6884	7690	i 0	0	0	0	0	0	i 0	7843	7613	3
Cust		Elec TOU S2-OnPk													
		USE:	TIME-OF-	USE											
		METERED ENERGY:	0	() 0	107628	100731	128713	125985	135113	127909	108011	0	0	3
		BILLING ENERGY:	0	0) 0	107628	100731	128713	125985	135113	127909	108011	0	0	1
		METERED DEMAND:	0	9) 0	697.1	722.9	765.8	765.1	764.7	787.6	741.5	0	0)
		ENERGY CHGS(\$):	0	6	0 0	5237	4902	6263	6130	6575	6224	5256	0	0	3
Cust		Elec TOU S2-OffPk													
		USE	TIME-OF-	USE											
		METERED ENERGY	0	1	210	148486	157885	171261	182364	186039	175020	166960	0	1	Γ.
		BILLING ENERGY:	0		210	148486	157885	171261	182364	186039	175020	166960	0	9)
		METERED DEMAND	0		210.2	716.5	684.6	735.5	742.8	734.6	741.4	7156	0	6	1
		BILLING DEMAND	0		0 0	6954	0750	2010	7003	7024	7 400	7544	0		4
DPub	Л	c Safety Building	.0		1 3	0004	0750	1020	1003	DOE-22	48y 12	/11/2017	0.500694	0.31 BD	'n,
REPO	R	#NAME?	s and Rat	chets fo	TEPL CI	LC-ID					WEATHE	R FILE-	W Palm	BeachFL	7
	÷						*******				*******	******	(CON	TINUED)	1
		TOTAL ENERGY	239837	221195	256890	256114	258616	299974	308348	321152	302929	275174	256134	247117	7
		TOTAL CHARGES (\$)	20592	19123	18239	18448	18576	20920	21256	21854	21251	19505	19684	19774	1
		Billed kW Savings	70.2	60.7	20.7	9.4	35.7	45.1	45.3	42.3	134.6	27.4	22	5.6	5
		the second second second second second second second second second second second second second second second se	001/1	1 100	- T 1 1 1	PC 3 11	7 20111	PLUCE I	1. 7.1.4	0.1154.1	6.119.6	PC - C - C - C - C - C - C - C - C - C -	Aug. 2.1.1	1.000	47
		Off Produktion Sorrige	4.000	4 400	ECEE	5,000	7 0 00	10 201	12 446	12 105	11.007	9,000	9 544	R.Par	ξ.

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

BLOC	K-	CHARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
Cust	1	Elec Uniform Biki	CEACONIAL												
		METERER ENERGY	3EASUNAL	210110	353073							20.4	240404	344000	
		DILLING ENERGY	200020	213110	200012	ő	0	0	0	0	ő	201	243401	244300	12052
		METERED DEMAND	1070	07/15	710 7	0	0	0	0	0	i i	201.0	965.2	018.3	12004
		BILLING DEMAND	1029	074 5	7107	0	0	0	0	0	ň	720.1	985.3	018.3	
		PROPATE FACTOR	1020	oral	0.9987	0	ň	0	ő	ő	ň	0.0013	1	1	
		DEMAND CHGS(\$).	9848	9329	6792	ő	õ	õ	0	Q	Ő	9	8281	8788	430
Cust	1	Elec Uniform Blk2													
		USE:	SEASONAL												
		METERED ENERGY:	0	(207	252287	252920	292118	300937	313565	294887	269371	0	0	
		BILLING ENERGY:	0	0) 0	0	0	0	0	0	0	0	0	0	19762
		METERED DEMAND:	0	0	207	718.5	710	748.9	748 2	750.2	766.3	729.1	0	0	
		BILLING DEMAND:	C	6	710.7	718.5	710	748.9	748.2	750.2	766.3	729.1	0	0	
		PRORATE FACTOR:	C	6	0.0013	1	1	1	1	1	1	0.9987	0	0	
		DEMAND CHGS(\$)	C		9 9	6876	6794	7167	7160	7179	7333	6968	0	0	494
Cust	1	Elec TOU S1-OnPk	THE OF	11000											
		USE.	TIME-UF-	USE	70440								70000	00504	
		METERED ENERGY	09/08	59924 60004	70140	0	0	0	0	0	0	0	70622	60501	22.40
		BILLING ENERGY:	09/09	59924	F70.9	0	0	0	0	0		0	F07.0	68501	3348
		PILLING DEMAND	001.2	5/0.	5/8.0	0		0	0	0			097.9	5/0.2	
		ENERGY CHGS(\$):	2908	2916	3705	0	0	0	0	0	0	0	3436	3333	162
Oust	1	Flec TOU SLOPP													
- a se		USE	TIME-OF-	USE											
		METERED ENERGY:	178754	159195	176924	0	0	0	0	0	0	201	178779	176459	
		BILLING ENERGY:	178754	159195	176924	0	0	0	0	0	0	201	178779	176459	8703
		METERED DEMAND	1029	974.8	710.7	0	0	0	0	0	0	201.9	865.3	918.3	
		BILLING DEMAND:	0) 0	0	0	0	0	0	0	0	0	0	
		ENERGY CHGS(\$):	7649	6812	7571	0	0	0	0	0	0	9	7650	7551	372
Cust	1	Elec TOU S2-OnPk	100000	1122											
		USE:	TIME-OF-	USE		405000	07040	105170	122016	400044	121100	100000			
		METERED ENERGY:	0		0	105932	97949	125179	122815	132341	124196	105366	0	0	
		BILLING ENERGY.				100932	9/949	120179	122815	132341	124 190	700.4	0	0	0137
		RILLING DEMAND				000 2	/10	740.8	/40.2	150.2	100.3	128.1	0	0	
		ENERGY CHGS(\$):	Ċ	i d	o o	5155	4766	6091	5976	6440	6043	5127	0	ő	395
Cust	1	Elec TOU S2-OffPk													
		USE	TIME-OF-	USE											
		METERED ENERGY	0	1	207	146355	154972	166939	178122	181224	170691	164005	0	0	
		BILLING ENERGY:		1	207	146355	154972	166939	178122	181224	170691	164005	0	0	11625
		METERED DEMAND	.0		207	718.5	677.4	720.7	727.6	719.8	726	702.8	0	0	
		BILLING DEMAND	0) 0	0	0	0	0	0	0	0	0	0	
DPub	1	C Safety Building	.0) 9	6263	6631	7143	7622	7755 DOE-2.2-	48y 12	7018	0.500694	9.46 ED	L RUN
REPO	RT	WNAME?	s and Rat	chets fo	TEPL CI	IC-ID					WEATHE	RELE	W Paim	BeachEl	TMV2
	-												(CON	TINUED)-	

		TOTAL ENERGY TOTAL CHARGES (\$)	238523 20405	219118 19057	253279	252287	252920 18192	292118 20401	300937 20758	313565 21373	294887 20680	269572 19131	249401 19368	244960 19672	31815 2354
		Billed KW Savings	13.5	25	.0.7	2	12.9	16.9	16.9	14.5	21.3	12.4	16	0.6	10
		On-Peak KWh Savings	179	386	817	1,696	2.782	3,534	3,170	2,772	3,713	2,645	2,221	701	24.6
		Off Doub MAD Souther	1.125	+ 000	0.704	12 40 4	0.040	4 000	4.040	4 045	# 220	2000	1.540	1 400	
		CHI-LOOK KANI COANDS	1,100	1,090	2,194	2,131	2,913	9,322	0,202	4,010	4,329	2,900	4,912	1,400	31,2

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

BLOC	K.	CHARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
Cust	12	Elec Uniform Bik1	CEACONIAL												
		METERER ENERGY	3EASUNAL	21140	346746				0				244620	226240	
		PILLING ENERGY	220303	21143	240715	0	0	0	0	0		201	241030	250219	11051
		METERED DEMAND	002.0	023	696.0	0	0	0	0	0	8	201.0	907	020 6	11001
		RILLING DEMAND	002.4	031	696.0		0	0	0	0		725	907	000 0	
		PROPATE FACTOR	.002.4	004	0.9987	0	0	0	0	0		0.0013	1	000.0	
		DEMAND CHGS(\$).	9497	8929	6565	0	ő	Ő	0	0	Ő	9	7723	8025	407
Cust		1 Elec Uniform Blk2													
		USE:	SEASONAL												
		METERED ENERGY:	0	i (197	246547	246658	286684	295385	308016	289562	262485	0	0	
		BILLING ENERGY:	0	0 0) 0	0	0	0	0	0	0) 0	0	0	19355
		METERED DEMAND	0) (197.7	687.3	710.8	749.5	748.8	750.6	767	725	0	0	
		BILLING DEMAND:	0	6 1	686.9	687.3	710.8	749.5	748.8	750.6	767	725	0	0	
		PRORATE FACTOR:	C	F (0.0013	1	1	1	1	1	1	0.9987	0	0	6
		DEMAND CHGS(\$):	C) 9	6578	6802	7173	7166	7183	7340	6929	0	0	491
Cust	3	Elec TOU S1-OnPk	TIME OF	1100											
		METEDED ENEDOW	LIME-OF-	LOSE FORE	70001		0	0		0			70404	00007	
		RELEASED ENERGY:	50573	5075	76021	0	ő	0	0	0	i i	0	70494	69267	33.11
		METERED DEMAND	561.0	576.1	580.8	ő	ő	0	0	ő	ň	0	607 B	578.4	3041
		FILLING DEMAND	001.8	0/0.	000.0	ő	ő		ő	ő	i i		0,160	0/0/4	
		ENERGY CHGS(\$):	2899	2908	3699	0	0	0	Ő	0	Ő	i o	3430	3322	162
Cust	19	Elec TOU S1-OffPk													
		USE	TIME-OF-	USE											
		METERED ENERGY:	169331	151734	170694	0	0	0	0	0	0	201	171136	167952	
		BILLING ENERGY:	169331	151734	170694	0	0	0	0	0	0	201	171136	167952	8310
		METERED DEMAND	992.4	933	686.9	0	0	0	0	0	0	201.9	807	838.5	
		BILLING DEMAND: ENERGY CHGS(\$):	0 7246	6493) 0 7304	0	0	0	0	0	0) 0) 9	7323	0 7187	355
Ourt		Electrol (C) Or Di													
Cust		LICE-	TIME OF	LICE											
		METERED ENERGY	TIME-OF-	UUL I	0	106103	98171	125367	122840	132376	124240	105255	0	0	
		BILLING ENERGY	0	1	i i	106103	98171	125367	122840	132376	124240	105255	Ő	ő	8143
		METERED DEMAND:	0		0	687.3	710.8	749.5	748.8	750.6	767	725	0	0	6
		BILLING DEMAND.	0	i () 0	0	0	0	0	0	0	0 0	0	0	
		ENERGY CHGS(\$):	C) (0 0	5163	4777	6100	5977	6441	6046	5122	0	0	396
Cust	1	I Elec TOU S2-OffPk													
		USE	TIME-OF-	USE					121212						
		METERED ENERGY	0		197	140443	148487	161318	172545	175640	165322	157,231	0	0	
		BILLING ENERGY:		5	1 197	140443	148487	161318	1/2045	1/5640	165322	15/231	0	0	11211
		METERED DEMAND			191.1	6/6	0/8.5	121.9	728.8	720.8	121	703.9	0	0	
		BILLING DEMAND				0000	U DOLL	0000	1000	7540	707.0		U	0	170
DFub	11	c Safety Building				6010	0304	0903	1203	DOE-22-	48y 12	/11/2017	0.502083	1:32 ED	LRUN
REPO	RT	#NAME?	s and Rat	chets fo	TEPL CI	LC-1D					WEATHE	RELE	W Palm	BeachFL	TMV2
	*							Charles I.					(CON	TINUED)-	
		and others													
		TOTAL CHARGES (\$)	228903	1832	246913	246547	17933	286684 20176	295385 20527	308016 21140	289561 20460	262687	241630	236219 18533	31006
		Billed KW Savings	36.6	41	23.8	31.2	-0.8	-0.6	0.6	.0.4	.0.7	41	58.3	79.8	273
		On-Peak KWh Savings	196	167	127	-171	-222	-188	-25	-35	-44	111	128	234	2
		Off-Peak kWh Savings	9,423	7,06	6,240	5,912	6,485	5,621	5,577	5,584	5,369	6,774	7,643	8,507	80,5
		Tetal Math Southor	9.610	7.62	6 267	5744	6 362	15.1533	6 667	6 640	-6.236	10 OOK	7.774	13.744	00.0

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

BLOC	K-	CHARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
Cust	1	Elec Uniform Blk1	074000141												
		USE:	SEASONAL									20.4		222244	
		PULLING ENERGY	22014)	21155	0 0	0	0	0	0	0	0	201	241442	230044	110.13
		METERED DEMAND	002	02	2 000 2	0	0	0	0	0		201.0	906.0	0 000 E	1104,
		PILLING DEMAND	992.4	95	3 000.3	0	0	0	0	0		201.0	000.9	030 D	
		DODDATE EACTOD	382.4	80	1 0.000.3	0	0	0	0	0	0	0.0013	000.9	030.3	
		DEMAND CHGS(\$)	9497	892	9 6559	0	0	0	0	0	Ő	9	7722	8025	401
Ourt	4	Elec Liniform PIL2													
Cuat		LISE	SEASONAL												
		METERED ENERGY	or house	8 8	0 197	246331	246438	286436	295128	307750	289323	262269	0	0	
		BILLING ENERGY	2	Q	0 0	0	210100	200400	200120	0	1000020	0	ŏ	ň	1933
		METERED DEMAND	0		0 197.5	686.7	710.1	748.8	748.1	749.9	766.4	724.3	Ő	0	
		RILLING DEMAND			0 685.3	686.7	710.1	748.8	748.1	740.0	766.4	724.3	ň	ů.	
		PRORATE FACTOR	Č.	£ 3	0 0.0013	1	1	1	1	1	1	0.9987	0	0	
		DEMAND CHGS(\$):	C	É I	0 9	6572	6796	7166	7159	7177	7334	6922	0	0	49
Cust	1	Elec TOU S1-OnPk													
		USE:	TIME-OF-	USE											
		METERED ENERGY:	59528	5971	0 75957	0	0	0	0	0	0	0	70438	68215	
		BILLING ENERGY:	59528	5971	0 75957	0	0	0	0	0	0	0	70438	68215	333
		METERED DEMAND	561.4	575.	8 580.2	0	0	0	0	0	0	0	697.1	577.8	
		BILLING DEMAND:	0		0 0	0	0	0	0	0	0	0	0	0	
		ENERGY CHGS(\$):	2897	290	6 3696	0	0	0	0	0	0	0	3428	3319	16
Cust	1	Elec TOU S1-OffPk		192222210											
		USE	TIME-OF-	USE											
		METERED ENERGY:	169219	15162	0 170547	0	0	0	0	0	0	201	171004	167829	
		BILLING ENERGY:	169219	15162	0 170547	0	0	0	0	0	0	201	171004	167829	8304
		METERED DEMAND	992.4	93	3 686.3	0	0	0	0	0	0	201.8	806.9	838.5	
		EILLING DEMAND: ENERGY CHGS(\$):	7241	648	0 0 8 7298	0	0	0	0	0	0	0	7317	7181	35
			0.000									1 22	10000		- 10
Cust	1	Elec TOU SZ-OnPk USE	TIME-OF-	USE											
		METERED ENERGY:	(0 0	106000	98078	125254	122732	132261	124135	105161	0	0	
		BILLING ENERGY	0		0 0	106000	98078	125254	122732	132261	124135	105161	0	0	813
		METERED DEMAND	0		0 0	686.7	710.1	748.8	748.1	749.9	766.4	724.3	0	0	
		BILLING DEMAND	0	i i	0 0	0	0	0	0	0	0	0	0	0	
		ENERGY CHGS(\$):	0	1	0 0	5158	4772	6095	5972	6436	6040	5117	0	0	39
Cust	1	Elec TOU S2-OffPk													
		USE	TIME-OF-	USE											
		METERED ENERGY	1		0 197	140330	148360	161182	172396	175489	165188	157108	0	0	
		BILLING ENERGY:		£	0 197	140330	148360	161182	172396	175489	165188	157108	0	0	1120
		METERED DEMAND	(0 197.5	675.5	677.9	721.3	728.2	720.2	726.4	703.3	0	0	
		BILLING DEMAND	0	1	0 0	0	0	0	0	0	0	0	0	0	1.00
DPub	i.	ENERGY CHGS(\$). c Safety Building	.(0 8	6005	6348	6897	7377	7509 DOE-2.2-	7068 48v 12	6723	0.502083	9/23 BD	47 L RUN
nenn.	-			1.1.1.		Le in						neve.		Berchen	-
KEPU	81	MISMUL I	A RUCKS	criets to	LER CI	10-10		-			WEAT HE	R FILES	(CON	TINUED)-	11413.5
				******	3444444		*******		******		******	******		*****	
		TOTAL ENERGY TOTAL CHARGES (\$)	228747	21133	1 246701 2 17570	246331 17734	246438 17917	286436 20158	295128 20508	307750 21122	289323 20443	262470 18780	241442 18467	236044 18526	3098 229
		Rilled IAV Savinde	Y		0.08	0.6	07	07	0.7	07	0.6	07	11	ń	
											23.83				
		On Peak Wh Savings	21	4	7 64	103	99.	119	108	145	(05	0.4	55	52	
		On-Peak kWh Savings	41	4	7 64	103	93 137	113 136	108	115	105	94	56 132	52	1

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Split System - Savings Summary

Facility	Public Safety Complex
Unit Location	PSB

Existing Conditions

Mfg	Various	Peak kW	22
Model #		kWh	114,840
Date Mfg			

Baseline Data

Proposed Conditions

Vlfg	TBD
Model #	

Energy Usage

1

Existing Conditions	00-08 Hrs	36.5	kW	12,701	kWh	0	Therms
	09-16 Hrs	36.5	kW	37,918	kWh	0	Therms
	17-00 Hrs	36.5	kW	20,950	kWh	0	Therms
	Total	36.5	kW	71,569	kWh	0	Therms
		166.0%		62.3%			
Proposed Conditions	00-08 Hrs	29.5	kW	10,245	kWh	0	Therms
	09-16 Hrs	29.5	kW	30,587	kWh	0	Therms
	17-00 Hrs	29.5	kW	16,900	kWh	0	Therms
	Total	29.5	kW	57,731	kWh	0	Therms
		133.9%		50.3%			
Unadjusted Annual S	Savings	7.1	kW		Adjusted	for BAS	
		13,837	kWh		7.1	kW	
		0	Therms		12298	kWh	

					Split and I 00 He	Packaged DX Syst our - 08 Hour: Exis	tem - Energy Us ting Conditions	age				
Facility Unit Location Mfg Model #	Public Safety PSB Various N	Conplex	_	2								
"Must rexine word Estimated SP Served Max Cooling Load Max Heating Load Design QA Couling T Design QA Heating T Approx # of People in Akreage intermal heat Inside Heating Design Ktor Cooling That - Cooling, That - Cooling, That - Heating That - Heating	by Unit errp errp Area gan Temp Temp	10000 9000 1250 42 40 10 1.3 74 70 16,566 7 73.9 4166,7 897	SF kbluftir dag-F dag-F kbluftir dag-F kurh dag-F dag-F dag-F dag-F dag-F dag-F	400.SF/Ton 12.5 MBH/1008SF	TAG	LOCATION Rual Root Stark Root	MFG Dame Traine Traine Slamban	MODEL 1:21150:14(0:94 5:05404180400 13:02:40:4480400 13:074-905v501	MFG YR 2004 2004 2004 2004 2004	EER 9.4 10 10 10	COP	
EN Goding System		27 324 9.975 1.215 36.51	tons libtu/tin New EER/SEEF Io//Ton Age of Unit (yrs Full Load KVV(d	WPLV) legraced 1% per year)	"Repace Units in	Red						
Heating System		0 9999565999 00 11 000	ldstuffin COP Age of Unit (yrs klatuffin Input	9								
Electric Heating Capa	anty -	3,00	WW									
Average Electric Cos Average Natural Gas	Cost	0.000	\$36/6h \$7Therm									
COOLING ENERGY Temp Bin (F) 102 97 92 87 82 87 82 77 72	CONSUMPTI Temp diff. (F) 28.1 23.1 18.1 13.1 8.1 3.1 -1.9	Vesther Bin Data (Hrs) 0 0 54 643 865 624 2,190	Heat Loss Rate (kbtu/hr) 468.0 304.7 301.3 218.0 134.7 51.3 -32.0	e DX Capacity (ktru/hr) 308 316.4 328 0 341.7 354.3 358.3 358.9 379.8	Cyding Capacity Adj. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Adjusted DX Capacity (k0tu/hr) 2038 318,4 328,0 341,7 354,3 368,9 379,6	Rated Bectric Input (NM) 36.51 36.51 36.51 36.51 36.51 36.51 36.51	Cycling Time Fraction 1.00 0.82 0.84 0.38 0.14 -0.09	DX Electric Counsumption (HVM) 0 1,268 8,874 4,438 -1,921 12,701	-		
HEATING ENERGY	CONSUMPTI Temp diff.	ON Weather Bin Data	Heat Loss Rate	e Fumace Capacity	Cycling Capacity	Adj. Furnace Capacity	Heat Pump Input	Cycling Time	Furnace	Required Audilary	Required Auxiliary	Aux Electric Hear
(F) 62 57 52 47 42 37 32 27 22 17 12	(F) 7.7 12.7 22.7 22.7 32.7 37.7 42.7 42.7 42.7 52.7 57.7	(Hm) 165 123 80 43 15 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(kbtu/hr) -32 0 -52 8 -73 7 -94 5 -115 3 -138 2 -157 0 -177 8 -198 7 -218 5 -240 3	(kteu/hr) 00 00 00 00 00 00 00 00 00 00 00 00 00	Adj Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	(bbluhr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(48%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Fraction -2,720.05 -4,761.20 -7,003.20 -9,545.45 -12,414.78 -15,887.40 -19,454.77 -23,938.26 -29,002.43 -35,176.28 -42,887.98	Counsumption (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) Heat (kburler) -32.01 -52.84 -73.88 -94.51 -115.34 -128.18 -157.01 -177.84 -198.87 -219.51 -240.34	Heat (14W) -9.38 -15.48 -21.59 -27.69 -33.80 -39.90 -46.00 -52.11 -58.21 -64.32 -70.42	Consumption (KM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling KW Der Total Cooling KWh Co Total Heating KWh Co Total Heating Therm Annual Energy Cost	nand onsumption onsumption Consumption	36.5 12,701 0 50	IAN IANh IANh Therms	_								

					3	Split and Package 09 Hour - 16 F	d DX System - E lour: Existing Co	nergy Usage nditions					
Facility Unit Location	Public Safety PSB	(Complex	_	5 C									
Model #	D			2. s									
HeD TEXT IS/IM Estimated 6F Se Max Cooling Los Max Hearing Loa Design CA Coolin Design CA Coolin Design CA Cooling Average internal inside Hearing D Kitot - Cooling Tbai- Cooling Tbai- Cooling Tbai- Cooling Tbai- Hearing Tbai- Hearing	n ved by Unit d d ng Temp ng Temp le in Area beat gâm stag Temp stag Temp	100m0 300,0 400 0 40 10 13 74 70 16,566 7 73 8 -1,530 3 6,9 9	SF ktouhn deg-F deg-F deg-F htuhn deg F biuh-degF deg F biuh-degF deg F	400SF(Ton SC MBH/1000SF v 01	a Salen/ Factor								
Cix Cooling Syste	m	27 324 9 875 1 218 10.75 38.81	tons HowPr New EER/SEER KWTon Age of Unit ((rs) Full Load KW (dr	n PLV ograaled 7% per year)									
Heat Pump Syste	m	10.0 000000000 11 00.00	Hbohr COF Age of Unit (yrs) Hborre input										
Electric Heating (apacity	u	KVV										
Average Electric Average Natural	Dos: Sas Cóst	6.806 6.806	\$//3/vh \$/Them										
COOLING ENER	GY CONSUMPT	NON		51 Que 10		A.D. 194 504 Generality	Daniel Financial and	0	DYCountral	EN Elseste			
(F)	(F)	(Hrs)	(kbturhr)	(kotu/hr)	Adj. Factor	(kbtuhr)	(kVV)	Fraction	Cooling (MMBtu)	Counsumption (KMh)	-		
97 92 87 87 77 72	20.1 23.1 18.1 13.1 8.1 3.1 -1.9	6 174 787 816 809 270 2,869	488.7 384.7 301.3 218.0 134.7 51.3 -32.0	316 4 329 0 341 7 354 3 386 9 379 6	1.000 1.000 1.000 1.000 1.000 1.000 1.000	316.4 329.0 341.7 354.3 366.9 379.6	30.51 30.51 30.51 30.51 30.51 30.51 30.51 30.51	1.00 0.82 0.64 0.36 0.14 -0.08	1.58 52.43 171.57 109.89 31.26 -9.90 357.83	183 5,819 18,338 11,325 3,111 -856 37,018	-		
HEATING ENER	GY CONSUMPT	ION											
Temp (F)	Bin Temp diff. (F)	Weather Bin Data (Hrs)	 Heat Loss Rate (kbtu/hr) 	Furnace Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adj. Furnace Capacity (kbtu/hr)	Heat Pump Input (kBtu)	Cycling Time Fraction	Heat Pump Supplied Heating (MMBtu)	Fumace Counsumption (Therms	Required Auxiliary Heat (ktitu/hr)	Required Auxiliary Heat (IAV)	Aux Electric Heat Consumption (kWh)
62 57	7.9 12.9	70 34	-105.3 -172.0	0.0	1.000	0.0	0.00	-8,979.82 -15,467.63	-73.73 -5.85	0	-105.35 -172.01	-30.87 -50.40	0
62 47	17.9	17	-238.7 -305.3	0.0	1.000	0.0 0.0	0.00	-22,708.53 -30,841.75	-4 06 -1.53	0	-238.68 -305.34	-69.93 -89.47	0
42	27.9 32.9	2	-372.0 -430.7	0.0	1.000	0.0	0.00	-40,043.06 -60,537.63	-0.74 -0.44	0	-372.01 -439.69	-109.00 -129.53	0
27	42.9	0	-572.0	0.0	1:000	0.0	0.00	-62,616.75 -76,676.60	0.00	0	-505.34 -672.01	-167.80	0
17	62.9 57.9	0	-706.3 -772.0	00	1.000	0.0 0.0	0.00	-113.034.19 -137,122.56	0.00	0	-705.34 -772.01	-206.66 -226.20	0
Total Cooling KM Total Cooling KM Total Heating KM Total Heating Th Annual Energy (Demand h Consumption h Consumption arm Consumption Cost	129 36.5 37,918 0 1 0 \$0	kW kWh KWh Therms							U			u

					3	Split and Package 17 Hour - 00 F	d DX System - E lour: Existing Co	nergy Usage Inditions					
Facility Unit Location	Public Sat	ety Complex											
Mfg Model #	Vanicus: D												
THE TRY IS/IP Estimated GF Se Max Cooling Los Max Heating Lob Design CA Coolin Design CA Coolin Design CA Coolin Design CA Cooling Average internal Inside Heating Note - Heating Toal - Cooling Hot - Heating Toal - Heating	ur ved by Unit d d ng Temp ng Temp le is Area heat gain saga Temp esign Temp	10600 800.0 82 40 10 13 74 78 16,666 7 73 8 -130303 6,99	SF ktouire ktouire deg= deg= htouire deg= bruire deg= bruire deg= btuire deg=	4005F/Ten SC MB4/1000SF v D)	8 Safety Factor								
CX Cooling Syste	m	27 324 8 875 1 218 10.75 38.61	tons kburr/ New EER/SEER kWrtan Age of Unit (yrs) Full Load KW (de	nPLV graded (% peryear)									
Heat Fumo Syste	an	10,0 999999999 11 00,0 0	Howhr COF Age of Unit (gro) Kbluife (oput										
Electric Healing (apacity	u	KVV										
Average Electric Average Natural	Cos: Gas Cóst	C. 806 0.000	\$60Vh \$/Them										
COOLING ENER	GY CONSUM	PTION											
.Temp I (F)	Bin Temp di (F)	ff. Weather Bin Dar (Hrs)	a Heat Loss Rate (kbturhr)	DK Capacity (kotu/hr)	Cycling Capacity Adj. Factor	Adjusted DX Capacity (kbtu/hr)	Rated Electric Input (KW)	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	DK Electric Counsumption (KMh)			
102 97 92 87 87 82 77 72	28.1 23.1 18.1 13.1 8.1 3.1 -1.9	0 1 11 275 821 862 539 2,509	468.0 384.7 301.3 218.0 134.7 51.3 -32.0	303 6 316 4 329 0 341.7 354 3 388 9 379.6	1.000 1.000 1.000 1.000 1.000 1.000 1.000	3036 316,4 329,0 341,7 354,3 366,9 379,6	38.51 38.51 38.51 38.51 38.51 38.51 38.51 38.51	1.00 1.00 0.82 0.64 0.38 0.14 -0.00	0.00 0.32 3.31 50.95 110.56 44.25 -17.25 201.14	0 37 368 6,407 11,385 4,403 -1,859 20,850	-		
HEATING ENER	GY CONSUM	PTION											
Temp ((F)) 62 57 52 47 42 27 22 27 22 27 12 Total Caoling KW Total Caoling W	Bin Temp d (F) 7.8 12.9 17.9 22.9 37.9 32.9 37.9 32.9 37.9 32.9 37.9 32.9 37	ff. Weather Bin Dat (Hrs) 106 80 31 10 3 1 0 0 0 0 0 0 211 38.5 205	a Heat Loss Rate (bdb.uhr) -106.3 -172.0 -238.7 -306.3 -372.0 -434.7 -506.3 -572.0 -830.7 -706.3 -772.0 -WW	Funace Capacity ((cbu/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cycing Capacity Adj, Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj Furnace Capacity (ktrulw) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (RB0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cycling Time Fraction -8,97382 -15,487.63 -22,706,53 -30,841.75 -40,043.06 -60,537.83 -62,610.75 -76,876.60 -93,236.01 -113,034.19 -137,122.58	Heat Pump Suppled Heating (HMSbu) -11.17 -7.40 -7.740 -7.740 -3.05 -1.12 -0.44 0.00 0.00 0.00 0.00 0.00 0.00	Fumace Counsumption (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary 105.357 -105.357 -172.01 -228.68 -305.34 -305.34 -372.01 -438.68 -655.34 -675.34 -772.01	Required Auxiliary +Het (6V/) -30.87 -50.40 -69.93 -99.47 -109.60 -129.53 -140.07 -167.50 -167.13 -206.68 -226.20	Aux Electric Heat Consumption (kVM) 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Heating KM Total Heating The Annual Energy	h Consumptio erm Consumpt Cost	n 0 ion 0 \$0	kWh Therms										

						Split and Package 00 Hour - 08 H	d DX System - E our: Proposed C	nergy Usag onditions	e				
Facility Unit Location	Public Sale PSB	ry Complex		-									
Mfg Model #	-			3									
"Web TEXT GOV Entrated SF Str. Max Cooling Loss Max Heating Loss Design OA Coolin Design OA Coolin Design OA Coolin Design OA Cooling Inside Cooling Total - Cooling Total - Cooling Total - Cooling Total - Heating Total - Heating	ur ved by Unit 3 1 ig Temp ig Temp ig Temp is range is again is ga Temp is ga Temp	10000 200,0 52,40,40, 10, 13,10,66,7 73,9 -(16,17,7,9 73,9 -(16,17,18,7,7,9) -(16,17,18,17,18,17,18,17,18,17,18,18,18,18,18,18,18,18,18,18,18,18,18,	SF kbuller deg-F deg-F deg-F deg-F buller deg-F buller deg-F buller deg-F deg-F deg-F deg-F	4089F/Ton 12.5 MB4/10005F	TAG	LOCATION	MF G	MODEL	MEG YR 2017	EER 11	COP		
DK Coping Syste	m	20 224 11 1 691 1 29 45	tons khtuhr New EERtsEE rWrTon Age of Unit (vrs Far Egad IW(a	R/PLV () Jegraced 116 per year)									
Heat Pump Syste	m	0 199999999999 2 00.00	klauhr COP Age of Unit (yrs kbauhr mput	9									
Electric Heating C	abacity	а	1997										
Average Electric (Average Natoral)	Sost Sos Cost	0.000	\$AlAh \$/Thenn										
COOLING ENER	GY CONSUMP	TION											
Temp (Bin Temp diff	Weather Bin Dat	a Heat Loss Rat (kbtubr)	e DX Capacity (kitruthr)	Cycling Capacity Adi Eactor	Adjusted DX Capacity (ktitubr)	Rated Electric Input	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	DK Electric Counsumption (KWh)			
102 97 92 87 87 82 77 72	28 1 23 1 18 1 13 1 8 1 3 1 -1.9	0 0 54 643 858 624 2,190	468.0 064.7 301.3 218.0 134.7 51.3 -32.0	3038 3164 3290 341.7 3543 3069 3798	1.000 1.000 1.000 1.000 1.000 1.000 1.000	303 8 316 4 329 0 341.7 354 3 380 9 379 6	28.45 28.45 28.45 28.45 29.45 29.45 29.45 29.45	1.00 1.00 0.92 0.84 0.38 0.14 -0.08	0.00 0.00 11.77 86.59 44.81 -19.97 123.00	0 0 1,015 7,199 3,681 -1,550 10,245	-		
HEATING ENER	GY CONSUMP	TION											
Temp (Bin Temp diff	Weather Bin Dat	a Heat Loss Rat	e Fumace Capacity	Cycling Capacity Adi Eactor	Adj. Furnace Capacity (Idetuibr)	Heat Pump In put	Oyding Time Eraction	Heat Pump Supplied Heating (IdMEtu)	Furnace Counsumption (Therma	Required Auxiliary	Required Auxiliary Heat (kW)	Aux Electric Heat
82 57 52 47 42 37 22 27 22 17 12	1,1 12,7 17,7 22,7 32,7 32,7 32,7 32,7 42,7 47,7 47,7 52,7 57,7	185 123 80 43 15 5 2 0 0 0 0 0 433	-32.0 -52.8 -73.7 -94.5 -116.3 -136.2 -157.0 -177.8 -196.7 -219.5 -240.3	000 00 00 00 00 00 00 00 00 00 00 00	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-2,728.05 -4,751.20 -7,009.20 -9,545.45 -12,414.78 -16,697.40 -19,454.77 -23,838.26 -29,002.43 -35,176.28 -42,697.98				-0.38 -15.48 -21.58 -27.89 -33.80 -39.90 -46.00 -52.11 -56.21 -66.32 -70.42	
Total Cooling KW Total Cooling KW Total Heating KW Total Heating The Annual Energy (Demand h Consumption h Consumption em Consumptio Cost	29.5 10,245 0 0 \$0	KW KMh KWh Therms	_									

					5	Split and Packaged 09 Hour - 16 Ho	d DX System - E our: Proposed C	nergy Usage onditions	10				
Facility Unit Location Mfg Model #	Public Salety PSB	Complex											
→ec: rexr is/ideur Estimated SF Serve Max Cooling Load Max Heating Load Design CA Cooling Approx # of People Average network for People Inside Heating Desi Inside Heating Desi Itatic Cooling Tbail - Cooling Tbail - Cooling Tbail - Heating	nd by Unit Temp Temp Is Anga at gam at Temp gri Temp	100m0 500.0 400.0 10 10 13 74 70 16,556 7 73.8 -13203.3 69.8	SF http://m http://m deg.F deg.F deg.F deg.F deg.F deg.F deg.F http://deg.F deg.F deg.F	400SE(Top SC MBH/1000SE x 0)	3 Satesy Factor								
Cis Cooling System		27 924 11 1 091 0 28.45	tons klouh/ New EER/SEER kV#Tan Age of Unit (vrs) Fail Laad KVV (de	nPLV rgraded 7% per year)									
Heat Pump System		10.0 99999999999 0 90.0	Hotoly COF Age of Unit (yrs) kboui/g input										
Electric Heating Cap	sacty	ũ	KVV										
Average ⊟lectric Co Average Natural Ga	s: s Cost	0.866 8.008	\$7854h \$7Thems										
.Temp Bin	Temp diff.	Weather Bin Data	Heat Loss Rate	DX Capacity	Cycling Capacity	Adjusted DX Capacity	Rated Electric Input	Cycling Time	DX Supplied	DK Electric			
102 97 92 87 82 77 72	28.1 23.1 18.1 13.1 8.1 3.1 -1.9	(HPS) 0 5 174 816 809 278 2,669	460 384 7 301 3 218 0 134.7 51.3 -32.0	(20078) 316.4 329.0 341.7 354.3 366.9 379.6	1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	(40,0447) 303,6 316,4 328,0 341,7 354,3 388,9 379,6	28.45 29.45 29.45 29.45 29.46 29.46 29.46 29.46 29.46	1.00 1.00 0.82 0.84 0.38 0.14 -0.08	Cobing (MMB(d) 000 1.69 52.43 171.57 109.09 31.26 -0.90 357.83	Counserplier (wwn) 147 4,894 14,791 9,136 2,509 -890 30,587			
HEATING ENERGY	CONSUMPTI	ON											
Terng Bin (F) 52 47 42 37 32 27 22 17 12	Temp diff. (F) 78 12.9 17.9 22.9 27.9 32.9 37.9 32.9 37.9 42.9 47.9 62.9 57.9	Weather Bin Data (Hrs) 34 17 5 2 1 0 0 0 0 0 0 0 0 0 0 0 129	Heat Loss Rate (bbu/hr) -105.3 -172.0 -236.7 -305.3 -372.0 -430.7 -505.3 -572.0 -636.7 -705.3 -772.0	Furnace Capacity ((ktpu/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cycling Capacity Adj, Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj. Fumace Capachy (thruler) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (R8tu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -8,97982 -15,467,63 -22,706,53 -30,841,75 -40,043,06 -60,597,83 -62,610,75 -76,875,80 -63,610,75 -113,034,19 -113,034,19 -113,122,56	Heat Pump Suppled Heating (MMBtu) -7 37 -5 85 -1 53 -1 53 -1 74 -0 74 -0 74 -0 00 0 00 0 00 0 00 0 00 0 00 0 00	Heat Pump Electric <u>Counsumption (Therms</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pequired Ausilary Hest (ktu/hr) -105.35 -172.01 -230.88 -305.34 -372.01 -430.69 -672.01 -672.01 -630.67 -772.01	Required Auxiliary +84 (kV) -50.87 -50.40 -59.83 -99.47 -108.00 -128.53 -148.07 -167.80 -167.780 -167.780 -226.20	Aux Electric Heat Consumption (kVM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kW De Total Cooling kWh C Total Heating kWh C Total Heating herm Annual Energy Cor	emand Consumption Consumption n Consumption st	29.5 30,587 0 0 \$0	kW kWh kWh Thems										

						Split and Package 17 Hour - 00 H	d DX System - E our: Proposed C	nergy Usage onditions					
Facility Unit Location	Public Safet	y Complex											
Mødel #				5. I.									
⇒ACJ TEXT IS/IPPO Estimated BF Serv. Max Cooling Load Design DA Cooling Approxil of People Average retenal to inside Average retenal to inside Heating Des Not - Cooling Tbail - Cooling Tbail - Cooling Tbail - Heating Tbail - Heating	ed by Unit Temp Temp In Area Int Area Int Area Int Area Int Area Int Area Int Area Int Area	100000 30000 40010 40 10 *3 74 75 16,556 7 78 8 *1303-3 89 8	SF Atsuhm Hauhm deg-F deg-F deg-F deg-F deg-F deg-F biuh-degF deg-F deg-F deg-F	400SF/Ton SC MBH/1000SF v 01	a Saleby Factor								
Cis Cooling System	a	27 324 11 1 031 0 28,45	tons kbourn New EER/SEER KV/Tan Age of Unit (yrs) Full Load KV/ (de	nPLV rgraded 7% per year)									
Heat Pump System	*	10.0 900000002 0 90.0	Hotofin COF Age of Unit (grs) Hotofie (oput										
Electric Healing Ca	apa c'hy	u	RVV										
Average Electric C Average Natural G	os: as Cost	0.896 0.000	\$/kV/h \$/Them										
COOLING ENERG	NY CONSUMP	Neather Bin Dat	a Heatioss⊟ate	FIX Canacity	Oveling Capacity	Adjusted DX Capacity	Rated Electric Input	Ordino Time	DX Supplied	FX Electric			
(F)	(F) 28.1	(Hrs)	(koturhr) 468.0	(kotu/hr) 303 8	Adj. Factor	(kbtuhr) 303.6	(KW) 29.45	Fraction	Cooling (MMBtu) 0.00	Counsumption (kVsh)	-		
97 92 87 82 77 72	23.1 18.1 13.1 8.1 3.1 -1.9	1 11 276 821 882 539 2,509	384,7 301,3 218,0 134,7 51,3 -32,0	318.4 329.0 341.7 354.3 386.9 379.8	1.000 1.000 1.000 1.000 1.000 1.000	316.4 329.0 341.7 354.3 366.9 379.6	29.46 29.46 29.46 29.46 29.46 29.46 29.46	1.00 0.92 0.64 0.36 0.14 -0.08	0.32 3.31 69.95 110.58 44.25 -17.25 201.14	29 287 6,188 9,192 3,552 -1,338 18,000	_		
	Y CONFLIMP	ION											
Temp Bi	n Temp diff.	Weather Bin Dat	a Heat Loss Rate	Furnace Capacity	Cycling Capacity	Adj. Furnace Capacity	Heat Pump Input	Cycling Time	Heat Pump Supplied	Furnace	Required Auxiliary	Required Auxiliary	Aux Electric Heat
(F) 82 57 52 47 42 37 32 27 22 27 22 17 12	(F) 7.9 17.9 22.9 37.9 32.9 37.9 42.9 47.9 62.9 57.9	(Hrs) 108 60 31 10 3 1 0 0 0 0 0 0 211	(kbtu/hr) -106.3 -172.0 -238.7 -306.3 -372.0 -438.7 -506.3 -572.0 -638.7 -706.3 -772.0	(kccu/kr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acij, Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	(Httuhr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	(1894) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Fraction -8,973.82 -15,487,63 -22,708,53 -00,841,75 -40,043,06 -60,537,63 -62,618,75 -76,876,80 -93,236,01 -113,034,19 -137,122,56	Heating (MMShu) -11.32 -7.40 -3.05 -1.12 -0.44 0.00 0.00 0.00 0.00 0.00 0.00	Counsumption (Thems 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) Heat (ddtu/hr) - 105,35 - 172,01 - 238,68 - 305,34 - 372,01 - 439,80 - 605,34 - 672,01 - 639,87 - 705,34 - 772,01	Heat (IAV) -30.87 -50.40 -69.93 -89.47 -109.00 -128.53 -146.07 -187.80 -167.13 -206.88 -226.20	Consumption (kWh) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kWD Total Cooling kWh Total Heating kWh Total Heating ther Annual Energy Co	Demand Consumption Consumption m Consumption ost	29.5 16,900 0 n 0 \$0	kW kWh kWh Thems										

OPTERRA

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

E F	Broward C Public Saf Optimize F	ounty ety Compl IVAC Sch	ex - Log edules a	istics W nd Set F	arehous oints - A	e AHU-1																040000 74564 (/	9407-02 (420-10
	Accounted on 1) 2) 3) 4)	5: 2015 kp mini Setup load m Setback load Only recogni	mum with 1 millated b I simulated zet "off" fa	vPDs v reduction by reduction n savings	of CAten En of CAten for CV fait	nip equal t emip equa	o setup diffi Il tu setback	erentiat S dilterentia	oup kad≓ I Setback	MiNi(CAT- kad = MiN	Lag*LSat Il/Healing	up T - Spe load zwo 1	ci T) Cóo F DAT -1	ing zaro ica Ligʻ(Spince	a 7) ()) / (() T Selbad	ooling tuli i Thiôy / (H	iond 7 - Con Scaling zoro	lling żero k loaid T - H	oad T) Iouling full I	kaulit)			
ž	Bersies:	7	an operad	ton type	CV		Constant	alume (A	VED VE), inter Vian	IV, Dire	harge Der	pur DD										
		Existing	fotel (an n Motor loa average o	noin dan noin hp: d factor noise eff Drive eff VFD eff	507 75% 62 5% 96% 97%	Ιw	NM applies	iole in Us															
1	ard prolike	characterist H	ics (enter Fullioed Heating e tealing ful asting zer	under Eq. heating ficiency lose at lose at ball at Delta	aip Samm 56 / 100% 40* 66* 25*	MBrut ir	r	~	Full for Cooling f Cooling fe	id cooling efficiency ut food ut ro load at Dolta	14 7 1 09 92* 70* 22*	tors Wilton	(includè p	umps& cue	ling tawar	fans in WV	iten if applic	sabile)					
	Schadnia:	First month	of cooling	EM WOOT	29	February								Annua Annua (No	d Reating Heating Effectic De	Savings: Savinge: mind Sav	10,741 2,607 ngs Claime	kWh kWh d)					
1	ou d'Adiest	Last month	of cooling	1005001	119	Niwember		Wo	athor data:	For Lauder	dalo Terro	perature B	65-	Baseline (ooling Ene	and a	65,069	kw6i					
		Setpoint adju Existing Uniccia	istment or	stituter stituter	10.8 TI		Dampers / Flapdaed	T changes	in setten	back ends	iluces las B	d cheepe)		Baselow	leating En	ngy EFIHs	6,335	KWhi Hiturit	(Electric Cr	(myer			
		l/inicipitol Winele	ed sotbac ondisions	k begins, comied?	2A Yes	Yes/No		Unocci	ipięd sotbo skondo ins	ick begins. socupied?	20 Ves	Yes 7No			Um	Baseine	114.040	ki Mir					
	Occo Fan o	Caping Caping and curing u	space ferm setup ferm	aendere strature coolina	74 74 00		Citru Fan n	Died coolin Coolin Diede damie	g space ter g outup ter a unoccupe	nperature nperature el codient	74 30* 00	On Off	Cycle		Interio	/ Lighting	27,157	KAMH MAHI	23.6%				
	Qcov	pred freeding of He along as	ipace terri tback terri	peratura	70*		Occu	avd nextm Hkating	g space ter setback ter	nperaturs.	70*			- 54	Max	quipment HVAD	8,892 71,405 110,038	kvve kvve	7.7%			0.5	WSE
	Panh	Cocupied P	noccupied	beating: Iside Air	10%		f an n	Occupied	Percent C	d besting: Uiside Air	10%	On, Dfl	Cycle		Tat	Savinita	21,347	koAni -	18 6%				
		Jneccupied P	ercent Ou	tside Ain	0W			тоскасана	Percent C	utside.Air	0%					- 1							
ſ	Bin Jworágé	Cooing	iowa 1	Load P	rolita	Const Existing	d Cooling Vel.stm Proposed	Cond	(n) Fan Proposed	Cooling 8	hargy	Cooling	Hours	1 Load F	Profile	Const Evisting	Al Conting Al den Proposed	Conthy	bilFan Proposéd	Cooling Einsting	Energy Proposed	Fan	Cooling
ł	(7) 107.5* 102.5*	Existing P 0.0 0.0	0.0	100% 100%	100%			(AW) 0.0	(NM) 0.0	1MM) 0.0	(AVA) 0.0 0.0	Eesting 0.0	Proposes 0.0	Example 100%	Proposed 100% 100%			(0f) 0.0 0.0	(09) 0.0 0.0	(IM) 0.0	1KM9 0.0 8.0	(kWh) 0 0	(AVM) D
	97 5* 92 5* 97 5*	2.9 130.0 764.3	2.9 135.4 860.4	100% 100% 80%	100% 100% 80%	100% 100%	100% 100% 100%	32 32	32	16.0 16.0 12.8	16.0 15.0	7.1 52.0 314.7	1 1 55.8 438.6	100% 93% 72%	94% 73% 52%	100%	100%	0.0 0.0 0.0	0.0	16.D 14.9 11.6	150 11.7 8.4	0 11 396	1 181 1,530
	82.5° 77.5° 77.5°	1660.0 1432.1 721.4	933.2 728.4	57% 34%	57% 34%	100%	100% 100%	32	200	9.1	91 55	625 0 574.9 200.6	1251,6	52% 31%	32% 11% 0%	100%	100%	0.0	0.0	83 50	51 18	2,003 2,265 1,225	4,501 4,435 1,177
	62.5* 67.6*	777 1 142 9 79 3	136 9 63.9 31.8	11% 0%	17% 0%	100%	100%	32	32	0.0	0.0	112 H 57 1 30 7	764 1 136 1 78 2	0%	1% 0%	100%	100%	0.0	0.0	0.0	0.0	252 152	0
	52.5° 47.5°	37.1 14.3	13.8	0%	0%	100%	100%	32	32	0.0	0.0	14.9	38.3	0%	0%	100%	100%	0.0	0.0	0.0	0.0	75	0
	42.5° 37.5° 32.5°	0.7 0.0	0.2	0%	0% 0%	100%	100%	32 32 00	3.2 3.2 0.0	0.0	0.0	0.3	0.0 0.0	0%	0%	100%	100%	0.0	0.0	0.0	0.0	2	0
	27.5° 22.5° 17.5°	0.0	0.0	0%	0% 0%			0.0	0.0	0.0	0.0	0.0	0.0	0%	0% 0%			0.0	0.0	0.0	0.0	0	0
	12.5° 7.5°	0.0	0.0	0%	0%			00	0.0	0.0	00	00	0.0	0 0%	0% 0%			0.0	0.0	0.0	0.0	000	0
	-2.5* -7.5*	0.0	0.0	0%	D%			00	0.0	0.0	0.0	0.0	0.0	0%	0%			0.0	0.0	0.0	0.0	0	0
Ł	-12.5"	5,192	3,031	0%	UW	-		0.0	0.0	0.0	0.0	2,080	4,24	0%	0%		_	0.0	0.0	0.0	0.0	6,907	11,833
Γ	Bin				Occ	upied Hea Const	ting Vol.cfm	Const	/ol Fan	Heating	Snergy		14 H V			Unoccupie	d Heating /ol.cfm	Consty	ol Fan	Heating	Energy	Sa	vings
ł	Average (*F) 107.5*	Existing P 0.0	tours roposed 1 0.0	Existing F 0%	Proposed D%	Existing	Proposed	(kW) 0.0	(kW) 0.0	Existing ((therm/hr) (0.0	herm/hr)	(hrs) 0.0	a Hours (hrs) 0.0	Existing	Retroft 0%	Existing	Hetroft	(off) 0.0	(off) (thermvhr) (0.0	thermon) (thermon) 0.0	Fan (kWh) 0	(therm)
	102.5* 97.5* 92.5*	0.0	0.0	0%	0% 0%			0.0	0.0	0.0	0.0	0.0	0.0	0 0%	0% 0% 0%			0.0	0.0	0.0	0.0	0	0
	87.5° 82.5° 77.5°	4.0	4.0 72.8	0%	0%	100%	100%	32	32	0.0	0.0	00 30	0.0 6.1	0%	0%	100%	100%	0.0	0.0	0.0	0.0	0 10 240	0
	72.5* 67.5*	390.6 213.4	210.8	0%	0% 0%	100%	100%	3.2	3.2 3.2	0.0	0.0	51.4 21.6	231.2	0%	0%	100%	100%	0.0	0.0	0.0	0.0	575 327	0
	62.5° 57.5° 52.5°	131.4 98.7 66.3	71.2 46.1 28.4	10% 30% 50%	10% 30% 50%	100% 100% 100%	100% 100% 100%	32 32 32	3.2 3.2 3.2	0.1	0.1	14.6 10.3 5.7	74.0 62.9 43.6	9% 27% 45%	0% 0% 16%	100%	100%	0.0	0.0	0.0	0.0	192 168 121	4 10 8
	47.5° 42.5° 37.5°	37.0 12.4 4.0	13.5 4.2 1.0	70% 90%	70% 90%	100%	100% 100%	32	3.2 3.2 3.2	0.4	0.4	20	25.6 8.6 3.0	64% 82%	35% 53% 71%	100% 100%	100%	0.0	0.0	0.3	0.2	75 26	5
	32.5° 27.5°	20	0.5	100%	100%	100%	100%	32	3.2	0.5	0.5	00	1.6	100%	89% 100%		100%	0.0	0.0	0.5	0.5	50	0
	22.5° 17.5° 12.5°	0.0	0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	0.5	0.5	0.0	0.0	100% 100% 100%	100% 100% 100%			0.0	0.0	0.5	0.5	000	0
	7.5° 2.5°	0.0	0.0	100%	100% 100%			0.0	0.0	0.5	0.5	0.0	0.0	0 100%	100%			0.0	0.0	0.5	0.5	000	0
	-7.5* -12.5*	0.0	0.0	100%	100%			0.0	0.0	0.5	0.5	0.0	0.0	100%	100%			0.0	0.0	05	0.5	0	0

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Split System - Savings Summary

Facility	Public Safety Complex	
Unit Location	Central Supply	

TBD

Existing Conditions

Mfg	Carrier	Peak kW		
Model #	38AKS016	kWh	285,000	
Date Mfg	2008			

Baseline Data

Proposed Conditions

Vlfg	
Model #	

Energy Usage

Existing Conditions	00-08 Hrs	24.9	kW	14,203	kWh	0	Therms
	09-16 Hrs	24.9	kW	28,799	kWh	0	Therms
	17-00 Hrs	24.9	kW	21,632	kWh	0	Therms
	Total	24.9	kW	64,634	kWh	0	Therms
		#DIV/0!		22.7%			
Proposed Conditions	00-08 Hrs	22.9	kW	13,568	kWh	0	Therms
	09-16 Hrs	22.9	kW	26,897	kWh	0	Therms
	17-00 Hrs	22.9	kW	20,583	kWh	0	Therms
	Total	22.9	kW	61,048	kWh	0	Therms
		#DIV/0!		21.4%			
Unadjusted Annual	Savings	2.0	kW	1	Adjusted	for BAS]
		3,586	kWh]	2.0	kW	
		0	Therms]	3004	kWh	

					3	Split and Packaged 09 Hour - 16 H	IDX System - E our: Existing Co	nergy Usage	9				
Facility Unit Location Mfg Model #	Public Safety Central Supp Camer 38AKSU18	Complex: IV-											
■HED TEXT IS/HPH Estimated GF Se Max Cooling Lea Max Heating Lea Design CA Coolin Design CA Coolin Design CA Coolin Design CA Cooling Average retenal Inside Heating D Ktot - Cooling Tbail - Cooling Tbail - Cooling Tbail - Cooling Tbail - Cooling Tbail - Heating Dist Heating	n ved by Unit 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9704 261 1 348 2 97 40 5 9.7 74 70 73 9 -1685 3 69 9	SF ktruthr ktauthr deg F deg F htuth-deg F deg F btuth-deg F deg F deg F	400SF/Ten SC MBH/1000SF y 01	ð Safetty Fáldor								
CX Cooling Syste	m	20 240 101 1.188 9 24.86	tons kburtr New EER/SEES KWTan Age of Unit (Vrs) Fall Laad KW (dr	APLV I consided 0.6% per year	1								
Heat Fund Syste	m	10.0 99999999999 9 9 90.0 0	Hbody COF Age of Unit (yrs) kbody input	0									
Electric Heating (apacity	29	KVV										
Average Electric Average Natural	Dos: Bas Cóst	0.806 0.000	\$65Wh \$/Them										
COOLING ENER	GY CONSUMPT	ION	Heat Lord Rate	EV Canacity	Outling Capacity	Adveted DV Capacity	Rated Electric Input	Octing Time	DV Supplied	EV Electric			
(F) 102 97 92 87 82 77 72	(F) 28.1 23.1 18.1 3.1 3.1 -1.9	(Hrs) 5 174 787 816 809 276 2,669	(kolushri) 318.6 261.8 205.0 148.3 91.5 34.7 -22.0	(kouhr) 225 0 224 4 243 7 253 1 282 4 271 8 201 2	Adding Capacity Adding Capacity 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	(ubukn) (2250 234.4 243.7 253.1 262.4 271.8 281.2	(WA) 24.85 24.85 24.85 24.85 24.85 24.85 24.85 24.85	Fraction 1.00 1.00 0.84 0.69 0.36 0.13 -0.09	Cooling (MMBtu) 0.00 1.17 35.67 116.88 74.86 21.16 -8.13 243.20	Counsumption (Avsh) 0 124 3,830 11,458 7,070 1,934 -542 23,682	-		
HEATING ENER	GY CONSUMPT	ION											
Temp 1 62 57 57 42 47 42 37 22 27 22 17 12 	Bin Temp diff. (F) 7.8 12.9 22.9 27.9 37.9 32.9 37.9 42.9 47.9 62.9 67.9	Weather Bin Data (Hrs) 70 34 17 5 2 1 0 0 0 0 0 0 0 0 0 129 26.0	Heat Loss Rate (kbtu/hr) -52.2 -160.2 -206.2 -206.3 -324.3 -302.3 -400.3 -400.3 -400.3 -400.3 -401.4 -556.4 -814.4 -672.4	Furnace Capacity (ktou/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cycling Capacity Adj, Factor 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	Adj, Furnace Capachy (detulor) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (1870) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cycling Time Fraction -7,85814 -12,507,43 -18,812,50 -26,894,55 -34,806,64 -44,944,95 -44,944,95 -45,564,56 -66,894,85 -61,224,72 -98,464,10 -119,439,19	Heat Pump Supplied Heating (MMBu) -54.62 -51 -51 -0.354 -0.39 -0.29 -0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Fumace <u>Counsumption (Therms</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Audiany Heat (kbtu/hr) -92.18 -150.21 -266.24 -266.27 -324.29 -302.32 -440.34 -499.37 -556.40 -814.42 -672.45	Required Auxiliary Heat (0/0) -27.01 -44.01 -81.01 -79.02 -195.02 -112.02 -128.02 -146.02 -163.02 -180.03 -197.00	Aux Electric Heat Consumption (kVMr) 1,896 1,037 390 190 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kW Total Cooling kW Total Heating kW Total Heating Thi Annual Energy	Liemand h Consumption h Consumption erm Consumption Cost	24.9 23,682 5,117 1 0 \$0	kw kwh kWh Thems										

					5	plit and Packaged 17 Hour - 00 F	I DX System - E our: Existing Co	nergy Usage nditions	P 1				
Facility Unit Location Mfg Model #	Public Safety Central Supp Camer 384KS018	Complex. V-											
■ALC TEXT IS INFO Estimated OF Serv. Max Acading Load Design CA Cooling Approx # of People Average internation Instein Cooling Desing the Instein Cooling Desing the Instein Cooling Desing Instein Cooling Text Instein Cooling Text - Cooling Text - Leating Text - Heating Text - Heating	ryed by Unit 1 Temp 1 Temp 9 In Area 9 In Area 9 Sect gain 190 Temp 9 Temp	8704 2811 3482 97 40 5 5 97 74 70 73 9 -1,053 73 9 -1,805 3 89 9	SF Naturn Kaunn deg-F deg-F Kaunn deg F huth-degF buth-degF buth-degF buth-degF	4005F/Ten 50 MBH/10005F ¥ 0 1	3 Salety Factor								
City Cooling System	ŋ	20 240 10 1.188 9 24.85	tons Kbourr New EER/SEER KWTan Age of Unit (yrs) Full Laad KW (da	APLV graded 0.6% per year									
Heat Fump System	Ri -	900 U 900009999 90009999	Hotolog COF Age of Unit (grs) kbouile input										
Electric Healing C.	apa city	20	KVV										
Average Electric C Average Natural S	os: as Cóst	0.806 0.807	\$/RV4h \$/Them										
COOLING ENERG	BY CONSUMPT	10N	a Heatioss⊟ate	FIX Canacity	Oveling Capacity	Adjusted FIX Capacity	Rated Electric Ioput	Octing Time	DX Supplied	FIX Electric			
(F) 102 97 82 87 82 77 72	(F) 28.1 23.1 18.1 13.1 8.1 3.1 -1.9	(Hrs) 0 1 11 275 621 862 539 2,509	(kbu/hr) 318.6 281.8 205.0 148.3 91.5 34.7 -22.0	(kouthr) 225 0 234 4 243 7 253 1 262 4 271 8 281 2	Adj. Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	(bbuker) 2250 2344 243.7 253.1 262.4 271.8 201.2	(104) 24.85 24.85 24.85 24.85 24.85 24.85 24.85 24.85 24.85	Fraction 1.00 1.00 0.84 0.69 0.35 0.13 -0.08	Cooling (IMMBtu) 0.00 0.23 2.26 40.77 75.11 29.93 -11.68 138.43	Counsumption (AAAh) 0 25 230 4,004 7,113 2,737 -1,050 13,059	-		
HEATING ENERG	Y CONSUMPT	ION											
Temp B (f) 52 57 52 47 42 37 32 27 17 12 Total Cooling k/W/ Total Heating k/W/ Total Heating k/W/ Total Heating k/W/	In Temp diff. (F) 7.8 12.9 17.9 22.9 27.8 32.9 37.8 42.9 47.9 62.9 67.9 Demand Consumption Consumption	Weather Bin Dat (Hrs) 108 80 31 10 0 0 0 0 0 211 24 B 13,059 8,573	 Heat Loss Rate (kibuhr) 822 150.2 206.3 -266.3 -324.3 -324.3 -324.3 -392.3 -498.4 -566.4 -814.4 -872.4 WW WWH WWH WWH 	Furnace Capacity (locs/trr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cycling Capacity Adj, Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj. Furnace Capacity (teru/ry) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (48tr.) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cycling Time Fraction -7,858,14 -13,607,43 -18,812,50 -26,894,55 -34,806,64 -44,044,95 -54,854,56 -68,804,85 -01,224,72 -98,484,10 -119,439,19	Heat Pump Suppled Heating (MBb) 9 77 9 71 9 72 9 71 9 71 9 71 9 71 9 71 9 71 9 71 9 71	Fumace Counsumption (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary 9. Heat (dotum) 9.2719 9.2719 9.2627 9.20627 9.20627 9.20627 9.20232 9.40034 9.49937 9.4034 9.4442 9.67245	Required Austiany + Het (04V) -27.01 -44.01 -61.01 -70.02 -96.02 -112.00 -128.00 -128.00 -180.03 -187.03	Aux Electic Host Consumption (IVAh) 2,863 2,841 1881 700 205 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Facility	Public Safety	Conciex			\$	Split and Package 00 Hour - 08 Ho	d DX System - E our: Proposed C	nergy Usag onditions	e				
Unit Location Mfg	Central Supp	iY.	-										
Nodel # "Plies Toty of Why?" Estimated SF Serio Max Fooling Lood Max Heatma Lood Max Heatma Lood Design OA Heating Agemant & People Average internal he inside Heating Des Krot - Cooling Total - Cooling Total - Cooling Total - Cooling Total - Cooling Total - Heating Total - Heating	ed by Unit Temp Temp in Area sat gain ign Temp ign Temp	8770 = 26 1 108 8 40 5 0 7 70 10,353,0 72 9 60,55 7 89,8	SF Litubin Hatalin Hatalin deg-F deg-F baufn deg-F baufn deg-F baufn deg-F deg-F baufn deg-F deg-F	4005F/Ton 12.5 MEH/s000SF	TÁG	LOCATION	MFG.	MODEL	MPG YR 2017	BER 11.2	COP		
DX Cooling System		20 240 149 149 22.95	tons khtuhr New EERISEERV IVWTon Age of Unit (vrs) Far Load WV (dep	PEV graced 0.5% pervea	1								
Heat Pump System	7	0 12000000000 00.00	kistuller COP Age of Unit (yrs) kistuller input										
Electric Heating Ca	shacity.	.20	1099										
Average Electric Co Average Natoral Go	ord 95 Cost	0.000	\$406m \$706sum										
COOLING ENERG	Y CONSUMPT	ION											
Temp Bir	n Temp diff.	Weather Bin Data	Heat Loss Rate	DX Capacity (Monutor)	Cycling Capacity Adil Eactor	Adjusted DX Capacity (idetuilor)	Rated Electric Input	Cycling Time Eraction	DX Supplied Cooling (MMBall)	DK Electric Counsumption (MMb)			
102 97 92 87 87 82 77 72	28 1 23 1 18 1 13 1 8 1 3 1 -1.9	0 0 54 643 889 624 2,190	318 6 261 8 205 0 148 3 91 5 34.7 -22 0	225 0 234 4 243 7 253 1 252 4 271 8 291 2	1.000 1.000 1.000 1.000 1.000 1.000 1.000	225.0 234.4 243.7 253.1 252.4 271.8 281.2	22.88 22.66 22.86 22.86 22.86 22.86 22.86 22.86	1.00 1.00 0.84 0.59 0.35 0.13 -0.08	0 00 0 00 8 01 56 83 30.18 -13.75 83.26	0 0 723 5,124 2,638 -1,118 7,266	-		
HEATING ENERG	Y CONSUMPT	ION											
Temp Bi (F) 82 57 52 47 47 42 37 32 27 22 27 17	n Tempolifi. (F) 7.8 12.8 17.8 22.0 27.8 32.8 37.8 42.8 47.8 52.8 47.8 52.8	Weather Bin Data (Hrs) 185 123 80 43 15 5 2 0 0 0 0 0	Heat Loss Rate (kbnuhr) -28.3 -46.5 -84.8 -02.7 -100.9 -119.0 -137.1 -155.3 -173.4 -181.5 -000.7	Fumace Capacity (ticsufter) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cycling Capacity Adj. Factor 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Adj. Fumace Capacity (ktruhr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (RBtu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -2.418.80 -4.179.85 -8,147.80 -9,359.25 -10,868.98 -13,711.21 -16,894.83 -20,816.01 -25,315.82 -30,696.58	Heat Pump Supplied Heating (MMBu) -8.88 -5.72 -5.17 -3.58 -1.51 -0.80 -0.27 0.00 0.00 0.00 0.00	Furnace Counsumption (Therms) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Audiary Heat (kitu/hr) -28.36 -46.49 -64.82 -00.88 -100.88 -119.02 -137.15 -155.29 -173.42 -181.55 -000.80	Required Audiary Heat (WV) -8.31 -13.62 -78.93 -24.25 -24.25 -24.65 -34.97 -40.19 -45.50 -50.81 -56.13 -81.4	Aux Electric Heat <u>Consumption (kVAh)</u> 1,675 1,615 1,043 443 174 80 0 0 0 0
Total Cooling KWD Total Cooling KWh Total Heating KWh Total Heating Then Annual Energy Co	Demand Consumption Consumption m Consumption	433 22.9 7,266 8,302 0 \$0	KW KWh KWh Thems	0.0	1.000	0.0	0.00	-37,243.34	0.00	0	-203.03	-01.44	6,302

					•	Split and Packaged 09 Hour - 16 Ho	d DX System - E our: Proposed C	nergy Usage onditions					
Facility Unit Location Mfg Model #	Public Sal Central Sa	ety Conngie⊭ ipply											
 Appl 76X7.85. Estimated 6F Max Cooling L Max Heating 10 Design CA 00 Operating 10 Design CA 00 Average ritem Inside Cooling Inside Heating Kot - Cooling Tbail - Cooling Tbail - Cooling Tbail - Heating Tbail - Heating Tbail - Heating 	neur Served by Unit ozad oling Temp oling Temp sapte is Area wi heat gam Design Temp Design Temp	9704 2011 3482 87 40 8 5 0.7 74 73 73 9 1(1053 0 73 9 1(1055 0 69 9	SF Matuhn Istauln Istauln deg F deg F muh deg F deg F huh deg f tuh deg f deg F	400SF/Ten Sé MB#/4000SF v D)	8 Safety Factor								
Cis Cooling S	vistem	20 240 10 <i>5</i> 1.142 0 22.88	tons kbuihr New EER/SEER KWTon Age of Unit (yrs) Full Load KW (do	n PLV consided 0.6% por year									
Heat Fumo Sy	sten	10.0 200000000 0 00.0	Hotuður COF Age af Unit (yrs) kbluðy inpút										
Electric Health	g Capacity	28	KVV										
Average Elect Average Natu	no Gos: ral Gas Cóst	6.896 6.805	\$65Vh \$/Them										
COOLING EN	ERGY CONSUM	PTION	Heat Loss Rate	FIX Canacity	Oveling Capacity	Adjusted DX Capacity	Rated Electric Input	Octine Time	DX Supplied	FX Electric			
	F) (F) (F) 02 20.1 97 23.1 97 23.1 97 13.1 92 8.1 77 3.1 72 -1.9	(Hrs) 0 5 174 787 816 806 276 2,689	(kolurhr) 318 6 261 9 205 0 148 3 91.5 34.7 -22.0	(kouhr) 225 0 234 4 243 7 253 1 282 4 271 8 281 2	Add g Coputer 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	(totuler) 2250 2244 243.7 253.1 262.4 271.8 281.2	(kW) 22.86 22.86 22.86 22.86 22.86 22.86 22.86 22.86 22.86	Fraction 1.00 1.00 0.84 0.69 0.35 0.13 -0.08	Cooling (MMBtu) 0.00 1.17 35.67 116.88 74.66 21.16 -8.13 243.20	Counsumption (AVM) 0 114 3,346 10,638 6,502 1,778 -498 21,780			
HEATING EN	ERGY CONSUM	PTION											
Ter Total Cooling	np Bin Temp di (F) (F) (F) </th <th>ff. Weather Bin Data (Hrs) 70 34 17 5 2 1 0 0 0 0 0 0 0 120 22.8</th> <th> Heat Loss Rate (kbtu/hr) -82.2 -160.2 -206.2 -206.3 -324.3 -302.3 -40.3 -40.8 -556.4 -614.4 -672.4 WW </th> <th>Furnace Capacity ((cou/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</th> <th>Cycling Capacity A) (360 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000</th> <th>Adj Fumere Capacity (thruly) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</th> <th>Heat Pump Input (1690) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0</th> <th>Cycling Time Fraction -7,558.14 -13,507.43 -18,812.50 -26,894.55 -34,806.64 -44,044.455 -54,564.56 -68,804.65 -64,804.65 -74,904.65 -74,904.75 -74,904.75 -74,904.75 -74,904.75 -74,904.75 -74,904.75 -74,904.75 -74,904.75 -74,904.75 -74,90</th> <th>Heat Pump Suppled Heating (MMStu) - 8-845 - 5-11 - 3-54 - 0.35 - 0.35 - 0.05 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00</th> <th>Heat Pump Electric Counsumption (Thems) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>Required Auxiliary Heat (datu/ir) -92.18 -150.21 -206.27 -206.27 -324.28 -400.34 -400.34 -400.34 -400.37 -656.40 -614.42 -672.45</th> <th>Pequired Auskiary Heat (847) -27 01 -44 01 -61 01 -78 02 -65 02 -112 02 -128 02 -128 02 -168 02 -168 02 -160 03 -187 03</th> <th>Aux Electric Heat Consumption (KMA) 1,896 1,037 990 180 180 112 0 0 0 0 0 0 0 0 0 0 0 0</th>	ff. Weather Bin Data (Hrs) 70 34 17 5 2 1 0 0 0 0 0 0 0 120 22.8	 Heat Loss Rate (kbtu/hr) -82.2 -160.2 -206.2 -206.3 -324.3 -302.3 -40.3 -40.8 -556.4 -614.4 -672.4 WW 	Furnace Capacity ((cou/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cycling Capacity A) (360 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Adj Fumere Capacity (thruly) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (1690) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cycling Time Fraction -7,558.14 -13,507.43 -18,812.50 -26,894.55 -34,806.64 -44,044.455 -54,564.56 -68,804.65 -64,804.65 -74,904.65 -74,904.75 -74,904.75 -74,904.75 -74,904.75 -74,904.75 -74,904.75 -74,904.75 -74,904.75 -74,904.75 -74,90	Heat Pump Suppled Heating (MMStu) - 8-845 - 5-11 - 3-54 - 0.35 - 0.35 - 0.05 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00	Heat Pump Electric Counsumption (Thems) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary Heat (datu/ir) -92.18 -150.21 -206.27 -206.27 -324.28 -400.34 -400.34 -400.34 -400.37 -656.40 -614.42 -672.45	Pequired Auskiary Heat (847) -27 01 -44 01 -61 01 -78 02 -65 02 -112 02 -128 02 -128 02 -168 02 -168 02 -160 03 -187 03	Aux Electric Heat Consumption (KMA) 1,896 1,037 990 180 180 112 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling Total Heating Total Heating Annual Energy	kWh Consumptio kWh Consumptio Therm Consumpt y Cost	n 21,780 n 5,117 ton 0 \$0	kWh kWh Therms										

					3	Split and Packaged 17 Hour - 00 Ho	i DX System - E bur: Proposed C	nergy Usage onditions	8				
Facility Unit Location Mfg Model #	Public Sale Central Sup	ty Comple∝ ipty.											
→ep2 YeXT IS/IN Estimated GF S Max Cooling Lo Hax Heating Lo Design CA Coo Design CA Coo Design CA Coo Average Interna Inside Heating Ktot - Cooling That- Dooling That- Dooling That- Heating Toal - Heating	907 ierved by Unit ved ling Temp ling Temp aple is Area si beat gan Design Temp Design Temp	8704 281 1 548 2 87 40 8 0.7 74 70 73 3 1(553 0 73 8 -(1605 3 69 9	SF Mauhr Nauhr deg-F deg-F deg-F huh-degF deg F huh-degF deg F	400SF/Ton 50 MBH/1000SF v D	8 Salety Factor								
Cis Cooling Sys	stem	20 240 19.5 1.142 0 22.80	tons kbuuPr New EER/SEEF KWTon Age of Unit (Irs Full Laad KW (d	arety) consided 0.5% per year	1								
Heat Pump Sys	der:	10 (0 9999999999 0 90 (0	Housing COF Age of Unit (yrs kbluife input	0									
Electric Healing	Capacity	29	KVV										
Average Electric Average Natura	e Cos: Il Gas Còst	0.866 0.000	\$00Mh \$/Them										
COOLING ENE	RGY CONSUMP	Weather Bin Data	Heat Loss Rate	DK Capacity	Cycling Capacity	Adjusted DX Capacity	Rated Electric Input	Cycling Time	DX Supplied	DK Electric			
11 9 9 8 8 8 7 7 7	(F) (F) 12 28.1 7 23.1 2 18.1 7 13.1 2 8.1 7 3.1 2 -1.9	(Hrs) 0 1 11 275 821 862 539 2,509	(kolurhr) 318 8 281 8 205 0 148 3 91.5 34.7 -22.0	(k80,04m) 225 0 234.4 243.7 253.1 262.4 271.8 201.2	Adj.Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	(46tuler) 2250 2344 243.7 253.1 282.4 271.8 281.2	(KW) 22.06 22.06 22.06 22.06 22.06 22.06 22.06 22.06	Fraction 1.00 0.84 0.56 0.35 0.13 -0.09	Cooling (MMBtu) 0.00 2.23 40.77 75.11 29.93 -11.66 138.43	Counsumption (49/h) 23 212 3,882 6,542 2,517 -966 12,010	-		
HEATING ENE	RGY CONSUMP	TION											
Terry 66 5 4 4 3 3 2 2 2 2 1 1 1 1	p Bin Temp dff (F) (F) 7 (F) 7 12,9 7 12,9 7 22,9 7 22,9 7 22,9 7 22,9 7 22,9 7 37,9 7 42,9 7 42,9 7 42,9 7 42,9 7 42,9 7 42,9 7 5,9 8 4,9	. Weather Bin Cata (Hrs) 106 80 31 10 3 1 0 0 0 0 0 0 0 211	 Heat Loss Rate (kbu/hr) -82.2 -160.2 -206.2 -206.3 -324.3 -392.3 -40.3 -499.4 -566.4 -614.4 -812.4 	 Furnace Capacity (ktp./m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 	Dyeling Capacity Adj. Factor 1 080 1 080 1 080 1 080 1 080 1 080 1 080 1 080 1 080 1 080 1 080 1 080 1 080 1 080	Adj Fumace Capachy (btrubr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (KBtu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -7.85814 -13,517.43 -18,812.50 -26,894.55 -34,806.64 -48,944.85 -54,564.56 -68,804.85 -61,224.72 -98,484.10 -119,439.19	Heat Pump Suppled Heating (WMBu) -9.77 -9.01 -8.46 -2.88 -0.97 -0.39 0.00 0.00 0.00 0.00 0.00	Fumate Counsumption (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Ausiliary Heat (dtu/hr) -42:19 -150,21 -206,24 -206,27 -324,28 -302,32 -400,34 -409,37 -556,40 -614,42 -872,45	Required Auxiliary Heat (WV) -27.01 -44.01 -61.01 -79.02 -95.02 -112.02 -146.02 -146.02 -163.00 -197.00	Aux Electric Heat <u>Consumption (RVM)</u> 2,863 2,841 1,881 780 285 112 0 0 0 0 0 0 0 0 0 8,573
Total Cooling K Total Cooling K Total Heating K Total Heating T Annual Energy	WhiConsumption WhiConsumption Nerm Consumption In Cost	12,010 8,573 on 0 \$0	kWh kWh Therms	-									

An CNOIC CONDUNY

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

OPTERRA

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Broward Public Sa Optimize	County Fety Complex - Tact HVAC Schedules ar	lical Train nd Set Po	ning oints																	Orașe Fiistră (J	19407412 (642010
Assumption 1) 2) 3) 4)	85: 2016 hp minimum with V Setup load simulated by Setback load simulated 1 Only recognizes "off" fan	PDs reduction of by reduction savings fo	of CA tem n of CA te n OV fan s	p equal h mp equa	s selup delu I lu selback	tertiat Se diferential	lup kadii Sebacki	MINI(CIAT Kad = MP	Lag'ISan IliHeXing	np T - Spec Ioad zoro T	DAT-1	ing zoro ka Lag"(Spinco	a 1) ()) / ((F Selbed	700king 1 () 1 Th:0j / ()	mad 7 - Coa Sealing zoro	Hing zaro I Holed T - H	oad T) feiding fuil	Scall T)			
Busis:	Fanoparate	on type	CV		Constant V	alame CV	VFD. VFD	r, inlet Vian	n: IV, Diret	nigo Dang	per DD										
	Total fan m Motor loai Cuisting average m D	olon hp. d factor lotte eff lerve eff VFD eff	14.0 % 50% 25.0% 96% 97%	a,																	
t æd profik	characteristics (enter + Fullicad Hauting eff Heating ful Hasting tail	underEqui heating ficiency fouc at total at Delta	60 Semanta 82 M 100 M 100 M 100 M 100 M	iny poge, lBiutr	r	4	Fullion Cooling fo Cooling fo Cooling ter	d cooling efficiency il tood ut re land at Delta	26.5 T 14 97* 74* 33*	torra aVVitturi	(Include p	umps&cut	ling towar	fans in ký	iten if applic	natile)					
Schadule	First month of cooling a	000001	25	obstary		West	thornana i	For Laude	rdálo Terre	orature Ele		Annie (*10	d Heating Effectric De	Savings: Savinge: Imand Sav	20,622 11,862 ngs Claime	kWh d)					
Loud Adjus	Unents: Selpoint adjustment nos	division.	0.8		Dampers &	T.changes	n seiporit	e .()/ <1.,m	eluces lass	(cheepe)		Syseine C Baselore I	ooling En leating En	engy-	97,590 3,683	KWE: KWE	(Electric Co	(
	Unoccupied selbad Unoccupied selbad Unoccupied antback Westenda	ck ands begins	11 24 Vec V	ni/No	Flopoaed	Unoccu	sipied selb pito setba	ack enits of begins	b 20 Vec	Vos 7No				EFLHs	1949.700	Hours					
Ôco	ipred cooling space temp Coping space temp	etalare aratare	74		Occup	red cooling	space tem	merature nuerature	74"	lout de			i jung	/ Bapoline	205.120	KWWK KWWH	33.2%				
Fani	vode during unoccupied pred heating space temp	cooling: rendurii	Cyde		Fan m	ode dunnig wid menting	unaccupio space tem	d codling: npetiture,	Cyde	On Off.	Cycle		Exten Mine (ev Lighting Equipment HVAC	5,168 2,838 101,274	kvvt:	1.8% 1.0% 35.5%			ū1	W/%
Fant	Realing setback temp mode during unoccupied i	beating:	Cyclin		f an in	Heating a	Binocolipies	d beating:	Eycle	On, Off	Cycle		1.10	Calaba	203,790	Lobe.	11.2%				
	Unoccupied Percent Out	side Ain	0%		U	noccacind	Percent Or	utside.Air	0%					a canada	an here		144.0				
Bin Average	Cooing Hows	Load Pro	<i>tia</i> 1	Occupier Cansf Existing	Cooling /cl.stm Proposed	Const Vi Evisting	N Fan Proposed	Cooling Existing	Елегду Proposed	Cooling	Hours	Load	Profile	Const Existing	d Conting Al dm Proposed	Conth. Exusing	ol Fan Proposito	Cooling	Energy Proposed	Fan	Cosing
107.5° 102.5°	Existing Proposed E 0.0 0.0 0.0 0.0	100%	100%	1000		(AVA) 0.0 0.0	0.00	1MM) 0.0	(HM) 0.0 0.0	Eesting 0.0 0.0	Proposes 0.0	Existing 100% 100%	100% 100%	Ime	1000	0.0 0.0	DD DD DD	(MM) 0.0 0.0	(KM) 0.0 0.0	00060	(A99/h)
90.67 87.65 87.55	130.0 126.4 764.3 860.4 1660.0 933.2	90% 59% 37%	80% 60%	100%	100% 100% 100%	20.9	20.9 20.9 20.9 20.9	24 3 17 7 11 2	24.3 17.7 17.2	52.0 314.7 625.0	55.8 438.6	80% 59%	60% 38%	100%	100%	20.9	20.9 20.9 20.9 20.9	24.3 17.7 11.2	180	242 1,911 6,455	351 2,768 7,800
77 5 72 5 57 4	1437 1 728.4 721 4 138.0 777 1 135.9	15% 0%	15% 0%	100%	100% 100%	20.9 20.9 20.9	20.9 20.9 30.9	48	46	574.9 301.6 112.9	V263.6 672.0 264.1	15% 0%	0% 0%	100%	100%	20.9	20.9 20.9 20.9	46	0.0	4,078	5,906
62.5° 57.5° 52.5°	142.9 63.9 79.3 31.8 37.1 13.8	0% 0% 0%	0% 0% 0%	100% 100% 100%	100% 100% 100%	20.9 20.9 20.9	20.9 20.9 20.9	0.0 0.0 0.0	0.0 0.0 0.0	57.1 30.7 14.9	136.1 78.2 38.3	0%	0% 0% 0%	100% 100% 100%	100% 100% 100%	20.9 20.9 20.9	20.9 20.9 20.9	0.0 0.0 0.0	0.0	0000	000
47.5° 42.5' 37.5'	14.3 4.6 5.0 1.4 0.7 0.2	0% 0% 0%	0% 0% 0%	100% 100% 100%	100% 100% 100%	20.9 20.9 20.9	20.9 20.9 20.9	0.0	0.0 0.0 0.0	5.7 2.0 0.3	15.4 5.6 0.6	0%	0% 0% 0%	100% 100% 100%	100% 100% 100%	20.9 20.9 20.9	20.9 20.9 20.9	0.0 0.0 0.0	0.0	000	0
32.5° 27.5° 22.5°	0.0 0.0 0.0 0.0 0.0 0.0	0% 0%	0% 0%			0.0	0.0 0.0 0.0	0.0	0.0 0.0 0.0	0.0	0.0	0 0%	0% 0% 0%			0.0	0.0	0.0	0.0	0000	0
17.5° 12.5° 7.5°	0.0 0.0	0% 0% 0%	0%			0.0	0.0	0.0	0.0	0.0	0.0	0%	0% 0%			0.0	0.0	0.0	0.0	000	000
2.5° -2.5°	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0%	0%			0.0	0.0	0.0	0.0	0.0	0.0	0%	0%	2		0.0	0.0	0.0	0.0	000	000
-12.5	0.0 0.0 5,192 3,031	0%	0%	_		0.0	0.0	0.0	0.0	0.0 2,080	4,24	0%	0%			0.0	0.0	0.0	0.0	0 11,691	16,931
Bin		0	Occu	pied Hea Const	ting /ol.cfm	ConstV	ol Fan	Heating	Energy		26 - L	1999 - MS	201	Unoccupie	d Heating /ol.cfm	Consty	/ol Fan	Heating	Energy	Sa	wings
Average (*F) 107.5*	Heating Hours Existing Proposed E	Load Pro sisting Pr 0%	file I oposed 0%	Existing	Proposed	(kW) 0.0	(kW) (0.0	Existing (therm/hr) 0.0	Proposed (therm/hr) 0.0	(hrs) 0.0	Hours (hrs)	Load F Existing	hofile Retroft D%	Existing	Retroft	Existing (pk.KW) 0.0	Retrofit (pk KW) 0.0	Existing (therm/hr) (0.0	Proposed (herm/hr) 0.0	Fan (kWh) 0	Heating (therm)
102.51 97.51 92.51	0.0 0.0 0.0 0.0 0.0 0.0	0%	0%			0.0	0.0	0.0	0.0	0.0	0.0	0%0%	0% 0%			0.0	0.0	0.0	0.0	0	0
87.5° 82.5° 77.5°	4.0 4.0 76.0 72.8 308.4 233.2	0%	0%	100%	100% 100%	20.9 20.9 20.9	20.9 20.9 20.9	0.0	0.0	0.0 3.0 32.6	0.0 6.1 107.6	0%	0% 0%	100%	100%	0.0 20.9 20.9	0.0 20.9 20.9	0.0	0.0	0 68 1570	0
72.5' 67.5'	390.6 210.8 213.4 111.0 131.4 71.2	0%	0% 4%	100%	100%	20.9 20.9 20.9	20.9 20.9 20.9	0.0	0.0	51.4 21.6 14.6	231.2 124.0 74.0	0%	0%	100%	100% 100%	20.9 20.9 20.9	20.9 20.9 20.9	0.0	0.0	3754 2155 1290	4
57.5° 52.5°	98.7 46.1 66.3 28.4 37.0 13.6	18%	18%	100%	100%	20.9	20.9	0.1	0.1	10.3	62.9 43.6	18%	6% 14%	100%	100%	20.9	20.9	0.1	0.1	1052 697 394	6
47.5 42.5 37.5	12.4 4.2 4.0 1.0	32% 39% 46%	32% 39% 46%	100%	100%	20.9	20.9 20.9 20.9	0.3	0.3	0.6	8.0	32% 39% 46%	21% 28% 35%	100%	100%	20.9	20.9 20.9 20.9	0.3	0.2	394 125 41	1
32.5° 27.5° 22.5°	0.0 0.0	54% 61% 68%	54% 61% 68%	100%	100%	0.0 0.0	0.0 0.0	0.4 0.5 0.6	0.4 0.6 0.6	0.0	0.0	54% 61% 68%	42% 49% 56%		100%	0.0	20.9 0.0 0.0	0.4 0.5 0.6	0.3	0	000
17.5° 12.5° 7.5°	0.0 0.0	75% 82% 89%	75% 82% 89%			0.0	0.0	0.6 0.7 0.7	0.6 0.7 0.7	0.0 0.0	0.0	75% 82% 89%	64% 71% 78%			0.0	0.0	0.6 0.7 0.7	0.6	000	0
2.5° -2.5° -7.5°	0.0 0.0 0.0 0.0 0.0 0.0	96% 100% 100%	96% 100% 100%			0.0	0.0	8.0 8.0 8.0	0.8 0.8 0.8	0.0	0.0	96% 100% 100%	85% 92% 99%			0.0 0.0 0.0	0.0	0.8 0.8 0.8	0.7 0.8 0.8	000	0
-12.5	1 344 797	100%	100%			0.0	0.0	0.8	0.8	0.0	0.0	100%	100%	sy		0.0	0.0	0.8	0.8	11 165	0

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

OPTERRA

An CNOIC CONDUNY

Broward County

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

An ENGIE company

Broward County

-

Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services:

North Regional Courthouse - New Chiller Savings

MONTHLY ENERGY CONSUMPTION

By Opterra Energy

---- Monthly Energy Consumption -----

						mo	inity chorg	y consum	priori					
Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternati	ive: 1	Bas	eline - Exi	sting Chi	llers									
Electric														
	On-Pk Cons. (kWh)	22,825	21,712	29,709	33,811	36,461	50,789	55,416	57,048	51,253	37,885	32,326	26,601	455,832
	On-Pk Demand (kW)	280	95	102	123	115	182	192	187	188	137	124	107	260
Water														
	Cons. (1000gal)	70	71	107	119	123	180	188	200	179	137	112	89	1,575
	Energy Consun	nption			Er	vironme	ntal Impact	Analysis						
Building	12,884	Btu/(ft2-y	ear)		CC	02	573,136 lbm/	year						
Source	38,656	Btu/(ft2-y	ear)		SC	2	1,626 gm/y	ear						
					NC	x	920 am/ve	ar						
Floor A	rea 120.750	ft2			110									
Alternat	ive: 2	New	/ Chiller											
Electric														
Liecure	On-Pk Cons (IWb)	21.487	20.264	27 074	30.580	33 298	43 391	47 230	48 357	43 467	33 787	29.468	24 605	403.008
	On-Pk Demand (KW)	259	82	87	102	97	148	167	152	164	112	102	90	259
Water														
* vuter	Cons (1000cel)	68	89	103	114	119	173	182	193	173	132	109	86	1 5 2 1
	cons. (rooogar)	00	0.0	100			115	102	100		1.02	103		19441
	Energy Consun	nption			Er	vironme	ntal Impact	Analysis						
Building	11,391	Btu/(ft2-y	ear)		CC	2	508,718 lbm/	year						
Source	34,176	Btu/(ft2-y	ear)		SC	2	1,438 gm/yr	ear						
					NC	x	813 gm/ye	ar						

Floor Area 120,750 ft2 813 gm/year

Alternati	ive: 3	New	Chiller w	VSD										
Electric														
	On-Pk Cons. (kWh)	19,188	17,936	25,180	29,124	31,832	42,322	48,544	47,872	42,853	32,455	27,687	22,648	385,442
	On-Pk Demand (kW)	252	73	81	96	92	145	163	152	161	107	96	83	252
Water														
	Cons. (1000gal)	65	67	102	113	118	172	181	192	172	131	107	84	1,505
	Energy Consun	nption			E	nvironme	ntal Impact	Analysis						
Building	10,895	Btu/(ft2-y	ear)		CC	02	484,631 lbm/	year						
Source	32,687	Btu/(ft2-y	ear)		SC	02	1,375 gm/y	ear						
					NO	хc	778 gm/ye	ar						

120,750 ft2 Floor Area

Project Name: Broward Co - NRCH Chiller Replacement Dataset Name: NRCH.TCE

TRACE® 700 v6.3 calculated at 09.25 PM on 12/14/2017 Alternative - 3 Monthly Energy Consumption report Page 2 of 2

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

DEDITE DAL BARTAIN Front of 1916/17 Marco Give	-D-attr 2.45 2.45 2.45	1,410 4,410	- 16	40 ym											
worwy.		_	_	-	_	_				_	-	-	-		
BAL RECTREATS	144L 902-505	110340	AANR SMI ADIQ	199 20/01	344.V 201.246	11246	.A.B 201712	100	215.540	0.CT 267 600	ND-1-	080 700078	2414.440		
CUT/UNE:	10/2	with the	455	431.2	6008	3015	2019	400.1	\$00.0 42002	47740	42970	400.5	42384		
THERES THERES MAN THEREMOND	0	2	1	T	0 0	0	2	AUG.	200	00	105	000	- NN		
DAWNER	avn.	210	Dre	hh	we	0/0	101	040	B/D	8/6	010	878	6/6		
and faving:		-03		dip.	inte		-	-	in	10	-	-			
ksalte. Adeki Iksa	195,410	112812	118,117	174373	181.536	117,535	101 1021	195.8.7 119.4	401 2	185,200	and #	10174	11/12e1 #40.1		
DAVINE:	1978	1117	MAR	146	42000	3544	.0.4	-400	1914	407.48	AUX-	HIER .	1401		
THERE Inno Tristowich Davide:	000	0.0 0	*	ora	P D/D	0 9 9/0	8 E/0	a Dra	0 eva	10 8/6	a/0	010	EVE-		
LAURAS	JAN	120	LANE	MR	MAY	JUL	JRR.	AUG	180	0.01	NEW	DEC	MN	Saving) Present of Excellue	
THEPEN SAVENOS	0	26.43	***	72.50	0 21-40	0 84 64		80 70	0 78.40	110 70	70.60	-00 10	27.10	#DD-01 6188	and present in terms of the
mias MARC Sch (Siliting) BMI BLECTRETY	JAN	108	-LANS	MA	MAY	Jur	Ju	400	100	0.07	NOV	000			
MAR SW	482.995	406.1 18/7	309 42057	355.7 15.85	321.1 42930	105.358	107.840 107.8 107.14	4132	424.7 14/14	372.1 427.49	073.3 40970	402.2	487.3 42754		
PMI INCURALONE	2005	HER .0	MAR	APR	MAT	JUN	14	AUG	387	0.07	HOV	PEC	NIN		
MAY THERMAN	0.0	010	110	pra.	ave.	0. 970	0. 6/0	ora.	0/E	0 170	a. aro	0.0	B 0/8		
LAVANES KWH SAVNOS	2000 2,454	100 2548	2,076	29R.	MAT 2,362	2278	101	1,858	3.6P	2.08	1.000	0mC 1756	MEY	Laborg 2 Partients of Baseline 1.1 T	
HEAN SALANDS VAL FRANKISS	87 AL	0.40	2.80	3,00	2.60	1.00	1.80	3.10	5 80	10	2.64	2.3/	10.40	11 (27	And Manufactor Web Strength
rgy (ff. Jogradur (Adding Ö	her AllWato C	(9.9)					-	-		-	-				
DHI BLECTIRCITY CRIN MARINE	101.750 TZD.4	100.301	114,100 200 1	APR. 109,151	MAY 102,502 209,1	JUN 129776 405.5	305 100.589 400.4	AUG 138920 4002	121,020	0.01	102,581	112515 441.1	1362247 722.4		
DAWIR	19/6	15/6	42167	23/94	42930	43.023	40994	10/10	1474	427.45	42169	42194	42754		
THEIM MAX THERMAR	0	0		100 H	0	8 0	8	3	6.	0 C4	0	8	10		
ANTIK	0/0	0/0	\$/0 MP(0)	0/0	MAL	2/0	2/0	010	0/0	9/10	2/0	0/0	014	Lawry a Private of Restline	
CHILCOMOS THERM SAMIDS CIRLINATINOS	01.207 0 1205.72	87,24J Ø	18.10	20,010	78,392 B 18,00	04.582 D	1000	53,057 4 17.00	0	76.300 D	75,05 0	14,450 B	138261 B 235./9	04218 #Drudit 465.00	may be used in the Samera
the Box FIGWERROW		11/20		90			in it.					-	Canada		
DAL BULLET NEATY	- MN	TOP	ABAR	MR.	MAL	200		MID	SUF.	110	NOV.	OIL.		DOTABLE.	
MAR HW DAMAR	666.4 10/6	600.0 95/8	364.7 42987	1428	368.0 42930	200.5	997 8 90/14	42900	413 Q 14/14	288.J 42900	281	42594	885.6 42754	605.6 -42754	
THE NATURAL-GAS	1444	rita	ALLA	ans.	MAT	JUN	an	Aus	SEF	a cr	NON	Dec.	- MAN		
MAX THERMOR	010	P10	tra.	919	0/0	2/0	8.0	0/0	610	9/6	810	010	010		
NAVINGS MINE OR/RIDS THEIRS COMPLET	197.9	0 Mis	11,512	11,210	11352	10,340	10,206	18,167	14348	11571	10,144	10,462	140,537	Screpp : Percets at Escaline 6.1% # (true)	
KON'SAGANOS	27.90	9460	(77 MI)	77.20	29.30	92.95	95.W	37.10	31.70	477	27.42	9350	17.90	95.17	And Applicately roll, (2-roll)
Purg Repleaners	-	10	i.m.	-							124	-			
BALL BLUCE REGIT Y	02,038 686.4	14,034 560.2	199,063 2618	APR 87,504 1424	81,591 265.0	107,471	112,245	117,588	107,493 411.7	94.938 2664	142V 92,348 360.8	102,074 407.6	1213,512 885.4		
DATINH DATURAL DAT	10/0	11/0	AUG7	23/64	42932	1014	30/14	42900	1414	42910	4000	4194	42754		
THEFAI MAX THEFANHR	0	8	-	2	0 0	0	3	a a a a a a a a a a a a a a a a a a a	0	8	9	0	8		
LAMOS	-010	FIG	MAR	APR	MAY	300	.Jul	Alla	LEP	90	NEV	DRC	- MW	Farend / Parsant of Resides	
THERE S MANUS CHI SAMANDS	0	0 0 18	010	1.39	0	0	0.20	100	00	0 00	0	0	6 8 10	#(0)(0) (4.17	ING MINERY VIV CONICI
Dile			_	_	-	_	_	_	_		_				
BAT BLECTRICHT	.00	158	MAR.	448	MAT	.J.N.	301	AUG	389	0.0	109	DEC	400		
MAR VON DIATINA	869.6 19/1	504 18/0	726 7 94097	317.0	521.J -12930	213.4 AUZ08	920 1 49394	322.4 42640	241.4 1919	1231 A 447 M	327.5 29/78	7,800 IQ1101	869.6 42794		
THEFOT	JAN	18	MAR.	AR	MAT	.86	305	AUG	Ser	0.07	MOV.	DEC	AR		
MAN THERMAR															
NAME COLIFICATION THEFTALS ALANDS	4,524	4544 0	3,000	9374.	T.MT D	12,112	11000	12,007	12,100	5.9%	0.027 0	0310	1043.00	Fanding 1 Permit All Benaling 423 FOR-01	
div svivitikas VSD Chillier Option	18.80	1620	28.90	25.30	34.30	72.80	17.36	30.50	\$5.30	80.28	25.20	10.80	15.80	43 AU	Ang Manthia WV Sarango
DM1 ELECTRICITY	1444 8 9,199	90.755	1646 \$6.110	APR 90,554	MAY 03.176	JUN 90.506	304 97208	406	325	0.07	145V	00C	Adda 1.102304		
DAWHE	10/6	15/6	219.2 42098	42991	313.8 42970	406 23	00/14	42900	14/14	427.45	29/15	42104	42754		
PM1 NATURAL GAE THERM MAK THERMORE	2011	100	MAR	.MB	MAT	201	394	All	385	lines.	HEN.	DEC	AN		
DAVINE:	144	124	1140	APP	-	194	-	MIG	170	0.4	1000	- 100	MP	Lines Bear of Lines	
THERE SAUTIONS	-507 D	0	14	450	618 0	1454	A41.	731	1.207	170	730	1	6.262	0.2% #DNB1	College and a
KINO:	0.86	080	0.50	1.40	7.53	1.22	5.60	8.90	-2.50	5-0)	315	4.70	0.83	122	and promiting con 17 weeks
BAT BLECTRICTY KONT	28,414 087,414	109	\$2,600 325.4	10.09	MAT 18733	10.700 10.700	\$250 \$250	100 PAUG	01376 778.0	0.CT (02.575	11772 31/772	108C	1059534		
EATHH	two	11/0	40879	43771	42030	40261	10/14	42900	1614	427.49	-50267	-	42714		
THEFEA MAR THEFFAMAR	,249	10	1946	APR.	MAT	JUN	114	Allo)#P	00	065/	260	100		
DAVNE:	240	100	AMR	MR	MAX	Juk	310		144	10.02	100	CHC		Taken Person of Realist	
KINH SHUNDS	2.778	2576	11,484	1,178	1.40	100	4,689	4733	4.07	1438	1.342	3191	43,260	185	
THEFT SHANDS	0					0	.0	2	0	.0	0	0	2	POND)	hard and the second

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

	rnment Center	West													
	MODEL CALIBRATION	Electri	s kWh	Na	t. Gas The	ms	1								
	Baseline eQUEST Model Error	3,467 3,238 -6.0	7.760 8,489 8%		0 #DIV/01	_									
ASELINE	MODEL											_			
	, moule														
LOCKC	HARGES	SAN	1.68	PAYABA.	APE	MAY	12164	-0.0	MIG	REP	OGT	NOV	DEC	VEALE	
-Pape	Consumption														
	USE METERED ENERGY BILLING ENERGY METERED DEMAND BILLING DEMAND ENERGY CHGS(\$)	79450 77450 77450 7981 0 5260	USIE 77860 77960 819.6 0 5287	87989 97989 666 5 0 5975	110206 110205 698.4 0 7484	100012 100012 742:2 0 6792	120006 120006 794 3 0 8150	117576 117576 768.8 0 7985	126129 128129 779.5 0 8701	121533 121533 803 5 0 8253	106841 106841 745.4 0 7256	78234 78234 780.9 0 5313	08327 80327 721.7 0 5659	1209162	
off-Pea	k Consumption USE: METERED ENERGY: BILLING ENERGY: METERED DEMAND BILLING DEMAND ENERGY CHGS(\$)	TIME-OF- 183137 183137 798.6 0 8498	USE 172483 172483 807.7 0 8003	170382 170382 701.4 0 7906	145040 145040 685.2 0 6730	149031 149031 693 1 0 6915	166173 166173 758.6 0 7710	178513 178513 768.7 0 8283	189896 189896 753 0 8754	172088 172088 758.1 0 7985	160190 160190 731.6 0 7433	169157 169157 734.1 0 7849	174247 174247 721.2 0 8085	2029327 94161	
)n-Peak	Demand USE: METERED ENERGY: BILLING ENERGY: METERED DEMAND BILLING DEMAND DEMAND CHGS(\$)	TIME-OF- 77450 0 798.1 798.1 10734	USE 77860 0 813.6 813.6 10943	87989 0 686.5 686.5 9234	110205 0 698.4 698.4 9394	100012 0 742.2 742.2 9982	120006 0 794.3 794.3 10683	117576 0 768.8 788.8 10610	128129 0 779 5 779 5 10484	121533 0 803.3 603.3 10805	106841 0 745.4 745.4 10026	78234 0 730.9 730.9 9830	83327 0 721.7 721.7 9706	1209162	
	TOTAL ENERGY: TOTAL CHARGES (\$):	260587 24491	250343 24234	258371 23115	255246 23608	249043 23689	286180 26543	296089 26877	317015 27949	293621 27043	267031 24714	247390 22992	257574 23450	3238489 298706	
CML-1:	Lighting Upgrades														
LOCK-C	HARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR	
)n-Peak	Consumption USE: METERED ENERGY: METERED DEMAND BILLING DEMAND ENERGY OHOS/SV	TIME-OF- 73084 73094 7281 0 4963	USE 72948 72948 750.9 0 4954	79687 79687 630.2 6 5412	96682 96682 616.5 0 6566	86469 86469 857 5 0 5872	104475 104475 701.2 0 7095	102971 102971 703.5 0 6993	113344 113344 691 0 7697	107158 107158 713.4 0 7277	93571 93571 856 8 0 6354	69783 69783 635.2 0 4739	78198 78198 734.4 0 5310	10781969	
m-Péa	k Consumption USE METERED ENERGY BILLING ENERGY METERED DENAND BILLING DEMAND ENERGY CHGS(\$)	TIME-OF- 190573 180573 734.4 0 8379	USE 165766 165766 755.2 0 7692	153744 153744 620 5 .0 7134	132200 132200 629 0 5138	134831 134831 610.3 0 6256	146343 146343 663.8 0 6883	162202 162202 673.5 8 7526	172637 172637 667 0 8010	156042 156042 672.1 0 7240	145060 145663 641.1 0 6759	152346 152346 641.4 0 7069	171945 171945 694 0 7978	1875990 8 /1164	
in Peak	Denand USE METERED ENERGY BILLING ENERGY METERED DEMAND BILLING DEMAND DEMAND CHGS(\$)	TIME OF 73084 0 728.1 729.1 9792	USE 72948 0 750.9 750.9 10099	79687 0 630 2 630 2 6476	96682 0 616.5 616.5 8292	6575 6575 6525 8776	104475 0 701.7 701.2 9431	102971 0 703.5 703.6 9462	113344 0 691 691 9295	107158 D 713.4 713.4 9595	93571 0 656.6 656.6 8832	69789. 0 635.2 635.2 8544	78198 0 734.4 734.4 9070	1078369	
	TOTAL ENERGY: TOTAL CHARGES (\$)	253657 29134	238714 22745	283431 21021	228969 20990	221300 20904	252818 23409	265174 23901	285981 25002	263199 24112	239234 21945	222128 20352	250143 23167	2954749 270768	
	SAVINGS On-Peak KWh Savings On-Peak KWh Savings	JAN 4,366 2,564	FEB 4,912 6,717	MAP 8,302 16,638	APR 13,523 12,752	MAY 13,543 14,200	JUN 15,531 17,830	JUL 14,605 16,311	AUG 14,785 16,249	SEP 14,375 16,046	OCT 13,270 14,527	NOV 8,451 10,811	DEC 5,129 2,300	ANN 130,752 152,947	Savings Percent of Basevine 3.8% 4.4%

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

	opullize achedules and	aechouica													
BLOCK-C	HARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		NOV	DEC	YEAR	
Dn-Peak	Consumption USE: METERED ENERGY: BILLING ENERGY: METERED DEMAND: BILLING DEMAND ENERGY CHGS(\$):	TIME-OF- 70702 70702 762.9 0 4801	USE 72779 72779 765.1 0 4942	74051 74051 650.8 0 5029	93291 93291 615.5 0 6335	82489 82489 651.9 0 5602	103572 103572 696.1 0 7034	101839 101839 711 0 6916	114512 114512 691.1 0 7777	105920 105920 707.7 0 7193	90016 90016 653.1 0 6113	62092 62092 636.6 0 4217	74467 74467 733.8 0 5057	1045730 71015	
)¶-Pea	k Consumption USE METERED ENERGY: BILLING ENERGY METERED DEMAND BILLING DEMAND ENERGY CHGS(\$)	TIME-OF- 165197 165197 734.5 0 7665	USE 154287 154287 752.3 0 7159	143910 143910 622.1 0 6677	120656 120656 616.9 0 5598	124689 124689 605.3 0 5786	139176 139176 667.3 0 6458	154278 154278 678.3 0 7158	165223 165223 675 0 7666	146882 146882 668.1 0 6815	132173 132173 640.5 0 6133	142135 142135 640.6 0 6595	155815 155815 683.3 0 7230	1744423	
Dn-Peak	Demand USE: METERED ENERGY: BILLING ENERGY: METERED DEMAND: BILLING DEMAND DEMAND CHG8(\$)	TIME-OF- 70702 0 762.9 762.9 10260	USE 72779 0 756.1 755.1 10155	74051 0 650.8 650.8 8754	93291 0 615.5 615.5 8278	82489 0 651.9 651.9 8767	103572 0 698.1 698.1 9289	101839 0 711 711 9663	114512 0 691.1 691.1 9296	105920 0 707.7 707.7 9518	90016 0 653.1 653.1 8784	62092 0 696.6 636.6 8562	74467 0 733.8 733.8 9869	1045730 111197	
	TOTAL ENERGY TOTAL CHARGES (\$)	235899 22727	227066 22257	217961 20460	213947	207178	242749 22880	256117 23638	279736 24738	252803 373527	222189 21030	204227 19374	280282 22156	2790152 263153	
	SAVINGS On Pesk Wh Savings Off-Peak Wh Savings KW Savings	1AN 2,362 15,376 -34 80	169 11,479 4,20	MAR 5,636 9,834 -20.60	APR 3,391 11,632 1.00	3,960 10,142 0,60	908 9167 310	1,132 7,924 -7.50	AUG 1,168 7,414 -0.10	32.P 1,298 9,160 570	3,565 13,490 3,50	7,591 10,211 -1.40	9,731 16,130 0.60	Antini 32,540 131,959 ~54	Savings Percent of Baseline 0.9% 3.6%
CM C-3: 1	JAS System Check Out	-	1							-	a.	127			
OV-PERI	INARCES Consumption USE: METERED ENERGY DILLING ENERGY: METERED DEMAND BILLING DEMAND BILLING DEMAND	TIME-OF- 69482 69482 764 0 4719	FEB USE 72392 72392 753.9 0 4916	73781 73701 544 9 D 5000	82411 92411 605 7 0 6226	(12044) (12044	102695 102695 506 9 0 6974	101660 101660 101660 690.5 0	AUG 113/102 113762 679.8 0 7726	105614 105614 704.5 0 7172	0CT 09398 09498 642.6 0 8078	62313 62319 6261 0 4237	72019 72019 72019 719.2 0	1038478 20523	
JIT-Pea	k Consumption USE METERED ENERGY BILLING ENERGY METERED DEMAND BILLING DEMAND ENERGY CHGS(5)	TIME-OF- 162841 162841 733.7 0 7556	USE 153287 153287 754 0 7113	141967 141967 616 0 6507	119058 119358 636 8 0 5538	124331 124331 597 0 5769	139107 139107 655 0 6455	153714 153714 685 0 7132	(64778 164778 665 3 0 7646	146684 146684 696 3 0 6006	131405 131409 6301 0 6097	141363 141363 632 0 6560	153296 153253 676,1 0 7113	1732148	
on-Peak	Demand UBE. METERED ENERGY. BILLING ENERGY METERED DEMAND BILLING DEMAND: DEMAND CHIGS(\$)	TIME-OF- 69482 0 764 764 10275	USE 72392 0 753.9 753.9 10140	73751 0 644.9 644.9 8674	92411 0 606.2 605.2 8154	82044 0 642 642 8635	102695 0 686.9 606.9 9239	101668 10 698 3 698 3 898 3 8393	113762 0 679.8 579.8 9143	105614 0 704 5 704 5 9475	89498 0 642.6 642.6 8642	62918 0 526.1 526.1 8421	72819 0 719.2 719.2 9674	1038478	
	TOTAL ENERGY TOTAL CHARGES (\$)	232323 22550	225680 22169	2157dB 20271	211769	206374)9976	24 1800 22667	255382 23429	278540. 24514	257297 23453	220903 20817	203698 19213	226111 21731	27770626 260760	
	SAVINGS On-Peak I/Wh Savings Of-Peak I/Wh Savings I/W Gavings	3AN 1,200 2,356 1,10	FEB 287 1,000 1.20	270 1,943 5.90	APR 860 1,298 9.30	MAY 445 056 9.90	300 877 69 1120	JUL 171 564 12.70	AUG 750 445 11:30	306 198 3 20	007 518 768 10.50	NOV 201 752 10:50	DEC 1,648 2,622 14:60	ANN 7,251 12,273 99	Savings Percentor Basefre- 0.2% 0.4%
ECMC-7:1	Variable Flow CHW Pump	JAN .	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	VEAR	
on Pinik	Consumption Hige METERED ENERGY BILLING ENERGY METERED DEMAND BILLING DEMAND BILLING DEMAND ENERGY CHOS(8)	TIME-OF 67311 67311 729.9 0 4571	USE 70474 70474 730.4 0 4786	70949 70949 606.4 0 4818	88279 88279 586.4 0 5995	78692 78692 623.5 0 5344	99046 99046 669.4 0 6776	98167 98167 680.6 0 19857	109971 109971 862 0 7468	102136 102136 595 0 6936	86096 86096 624 3 0 5847	59674 59674 607 // 0 4066	10778 70778 687.1 0 4807	1001773	
Оп-Реа	k Consumption USE METERED ENERGY BILLING ENERGY METERED DEMAND BILLING DEMAND ENERGY CHGS(\$)	TME-OF 154515 154515 7689 0 7170	USE 146202 (46202 730.4 8 6784	195741 135741 595.8 0 6298	113655 113655 583 6 9 5274	117658 117658 577 7 0 5459	132042 132042 637 0 6127	145617 145617 647.1 0 1.757	155100 155100 647 3 5 7197	139221 139221 630 6 0 6460	125163 125163 611 R 0 5808	135479 135479 5135 0 6286	145904 145904 851 4 0 6770	1645296 76389	
On Reak	Demand USE METERED ENERGY BILLING ENERGY METERED DEMAND BILLING DEMAND DEMAND CHGS(\$)	TIME OF 87311 0 7398 7299 9817	USE 70474 0 730.4 730.4 9824	70949 D 606.4 606.4 8156	88279 U 5116 4 586 4 7858	78692 U 623.5 623.5 8386	99046 0 669.4 669.4 9003	98167 0 680.6 640.6 9154	(D9971 D 662 662 8904	102136 U 695 695 9348	86096 U 624.3 624.3 8397	59874 0 607.7 8174	70778 U 687.1 687.1 9241	1001773	
	TOTAL ENERGY TOTAL CHARGES (\$)	221027 21558	216676 21394	200869 19273	201934 19156	196350 19189	231000 21856	243764 22577	265070 23568	241357 22744	711259 20051	195353 18526	210602 20817	2640069 250711	
	SAVINGS DisPeak kWh Savings CM-Peak KWh Savings KW Savings	JAN 2,171 8,300 34.10	FEE 1,918 7,005 23,50	MAR 2,832 6,226 38.50	APR: 4,152 5,701 19,00	MAY 3,352 6,673 18,50	JUN 0,649 7,065 17.50	JUL 9,501 8,097 17.70	AUG 5,791 9,678 17,90	SEP 9,478 7,463 950	001 3,402 6,342 18,30	NOV 2,439 5,904 18:40	DE0 2,041 7,589 32,10	A/01 36,706 05,851 266	Savings Percent of Baseline 1,1% 7,5%

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

LOCK-C	HARGES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR	
												-			
n-Peak	Consumption														
	USE	TIME-OF-	USE												
	METERED ENERGY:	67783	69871	72338	86600	76895	96416	95622	106900	99779	84054	59196	71021		
	BILLING ENERGY:	67783	69871	72338	86600	76895	96416	95622	106900	99779	84054	59196	71021	986475	
	METERED DEMAND:	696.8	709.3	610.7	572.5	608.9	647.6	657.4	642	687	610.3	591.8	661.7		
	BILLING DEMAND	0	0	1010	0	0	0	0	0	0	0	4000	1000	66004	
	ENERGY CHGS(S):	4603	4/45	4912	5861	5222	6548	6494	/260	6776	5709	4020	4823	99991	
ff-Pea	-k Consumption														
	USE:	TIME-OF-	USE												
	METERED ENERGY:	153249	144447	134754	113605	114690	127478	142250	153843	134800	124349	132463	146762		
	BILLING ENERGY:	153249	144447	134754	113605	114690	127478	142250	153843	134800	124349	132463	146762	1622690	
	METERED DEMAND:	664.9	720.9	580.3	608.3	568.6	620.4	635.6	627.4	625.7	598.1	595.2	626.8		
	BILLING DEMAND:	0	0	0	0	0	0	0	0	0	0	0	0		
	ENERGY CHGS(5):	7111	6702	6253	5271	5322	5915	6600	7138	6255	5770	6146	6810	75293	
n-Peak	Demand														
	USE	TIME-OF-	USE												
	METERED ENERGY:	67783	69871	72338	86600	76895	96416	95622	106900	99779	84054	59196	71021		
	BILLING ENERGY:	0	0	0	0	0	0	0	0	0	0	0	0	986475	
	METERED DEMAND:	696.8	709.3	610.7	572.5	608.9	647.6	657.4	642	687	610.3	591.8	661.7		
	BILLING DEMAND	696.8	709.3	610.7	572.5	608.9	647.6	657.4	642	687	610.3	591.8	661.7	1	
	DEMAND CHGS(\$)	9371	9541	8214	2701	8189	8710	8841	8635	9240	8209	7969	8900	103910	
		STATES.			ana ta ta ta ta ta ta ta ta ta ta ta ta ta	3454.095	*******	1010102		THE SEAF		=15101		10000000	
	TOTAL ENERGY	221031	214318	207093	200204	191586	223895	237872	260743	234579	208403	191659	217788	2609165	
	TOTAL CHARGES (\$)	21085	20988	19379	18853	18733	21172	21935	23033	22271	19687	18126	20633	245794	
	SAVINGS	JAN	FE0	MAR	APR	MAY	JUN	JUL	AUG	20P	OCT	NOV	DEC	ANN	Savinos Percent of Baseline
	On-Peak kWh Savings	472	603	-1,309	1,679	1,797	2,630	2,545	3,071	2,357	2,042	678	.243	15,298	0.4%
	Off-Peak KWh Savings	1,266	1,755	907	50	2,969	4,564	3,367	1,257	4,421	814	3.016	-858	23,607	0.7%
	KW Savings	33.10	21 10	-4.30	13.90	14,60	21.60	23.20	20,00	8.00	14.00	15.90	25.40	207	

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

RTU - Savings Summary

Facility	Family Success Center
Unit Location	RTUs

Existing Conditions Mfg

Mfg	Various	
Model #	Various	
Date Mfg	Various	

Proposed Conditions

Mfg	TBD	
Model #	TBD	

Energy Usage

Existing Conditions	00-08 Hrs	32.1	kW	10,682	kWh	0	Therms
	09-16 Hrs	32.1	kW	22,042	kWh	0	Therms
	17-00 Hrs	32.1	kW	16,282	kWh	0	Therms
	Total	32.1	kW	49,006	kWh	0	Therms

Proposed Conditions	00-08 Hrs	27.5	kW	9,957	kWh	0	Therms	
	09-16 Hrs	27.5	kW	19,967	kWh	0	Therms	
	17-00 Hrs	27.5	kW	15,116	kWh	0	Therms	
	Total	27.5	kW	45,039	kWh	0	Therms	

Total Annual Energy Savings	4.6	kW
	3,967	kWh
	0	Therms

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

					opin and 00	Hour - 08 Hour: Ex	isting Conditions	sayo				
Facility Unit Location Mfg Model #	Family Subb RTUs Vancus Vancus	ass Canter		3								
* IED TEXT IS NOTON Estimated SF Server Max Cooling Load Max Heating Load	l by Unit	8250 197.5 78,1	SF abluin abluin	400SF/Ton 12.5 MEH/1000SF								
Design OA Cooling 1 Design OA Heating 1 Approx # of People in Average internal heat Inside Cooling Desig Inside Heating Desig Ktot - Cooling Ktot - Heating Toal - Cooling Toal - Heating	emp Temp 1 Anes 1 gain 1 Temp 1 Temp	97 40 20 7 7 70 8,152 7 73 8 2604 7 80.2	deg.F kbtwfv deg.F deg.F onufh.degF deg.F onufh.degF deg.F		TAG	LOCATION	MFG Rheem (O' Rheem (O'	MODEL RSMI-BOSECK PAESSONCODAA RSMA-AUBICK PAESZOHODAA	MEC YR: 2010 2004 2004 2000	EER 10.4 10.5 8.0	COP 1 00 1 00 1 00 1 00	Tons. 70 1
DX Coping System		25.6 306 6.510607049 1.361 11 33.99	tons struhr New EER/SEE KWTon Age of Unit (yn Full Load KWT)	RWPLV Q Segraded 0.6% per yea	*Replace Units in	Rel						
Heating System		09999999999 00 11 0.00	kbituhn COP Age of Unit.(yn kbituhn input	0								
Electric Heating Cap	acity	75,00	RVV									
Average Electric Cos Average Natural Gas	t Cost	0.000 0.000	\$Akilvin \$71 harm									
COOLING ENERGY	CONSUMPT	ION										
Temp Bin (F)	Temp diff. (F)	Weather Bin Dat (Hrs)	a Heat Loss Rat (kbtu/hr)	e EX Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adjusted DX Capacity (ktu/hr)	Rated Electric Input (kW)	Cycling Time Fraction	DX Electric Counsumption (kWh)			
102 97 92 87 82 77 72	28.2 23.2 18.2 13.2 8.2 3.2 -1.8	0 0 52 633 867 627 2,179	230.3 189.5 148.7 108.0 67.2 28.5 -14.3	286.9 290.8 310.7 322.7 334.6 346.5 358.5	1.000 1.000 1.000 1.000 1.000 1.000 1.000	288.8 280.8 310.7 322.7 334.6 348.5 348.5	33,99 33,99 33,99 33,99 33,99 33,99 33,99 33,99	0.80 0.63 0.48 0.33 0.20 0.08 -0.04	0 0 592 4,323 2,250 -850 8,314	-		
HEATING ENERGY	CONSUMPT	ION										
Temp Bin (F) 62 57 52 47 42 37 32 27 22 17 12	Temp diff. (F) 7 2 12 2 27 2 27 2 27 2 32 2 37 2 42 2 47 2 57 2 57 2	Weather Bin Dat (Hins) 168 125 78 44 16 5 2 0 0 0 0 0 0 0 0 0 0 0 0	a Heat Loss Rat (kbs./hr) -168 -31.9 -44.9 -57.8 -70.9 -93.9 -93.9 -110.0 -123.0 -136.0 -149.0	e Furnace Capadity (kbu/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cycing Capacity Adj, Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Adj. Fumace Capacity (bbu/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (HBru) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -1,805.57 -2,864.68 -4,288.74 -5,849.06 -7,838.88 -9,870.22 -12,014.66 -14,742.52 -17,956.20 -21,786.21 -28,472,78	Furnace Counsumption (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary Heat (Hoturhr) -18 85 -31 87 -44 80 -57 81 -70 83 -93 95 -96 87 -109.99 -123.01 -136.03 -149.05	Required Audiary Heat (4A0) - 5.52 - 8.34 - 13.15 - 20.78 - 24.80 - 28.41 - 32.23 - 36.04 - 39.86 - 43.67	Aux Electric Heat <u>Contsumption (IdVM)</u> 917 1,167 1,026 747 333 123 57 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling KW De Total Cooling KWh C Total Heating KWh C Total Heating Therm Annual Energy Cos	mand onsumption onsumption Consumption t	32.1 6,314 4,368 1 0 \$0	kW kWh kWh Therms	_								

Split and Packaged DX System - Energy Usage 00 Hour - 08 Hour: Existing Conditions

					9	Split and Package 09 Hour - 16 F	d DX System - E lour: Existing Co	nergy Usag Inditions	0				
Facility Unit Location Mfg Model #	Family Suco RTUs Various Various	rest Center				1.01.01							
-Heu Kar skiller Estimater 67 skiller Max George Laud Max Having Laud Design AN Couling Temp Design CA Couling Temp Design CA Couling Temp Inde Couling Design Temp Inde Pashig Design Temp Inde Pashig Design Temp Inde Pashig Design Temp Inde Pashig Design Temp Inde Pashig Design Temp Table Couling Kitz - Couling Kitz - Couling Kitz - Couling		8250 1976 9500 87 40 15 2.0 74 70 8,152 2 78 8,152 2 78 8,152 2 78 8,152 2 78 8,152 2 78 8,152 2 78 8,155 2 8,155 1 78 8,155 1 70 1 70 1 70 1 70 1 70 1 70 1 70 1	SF klauhn klaunn deg F deg F klaunn deg F deg F huh-segF deg F bluh-segF deg F	4005F/Ton 50 MBH/10005F v 01	ð Safeby Factor								
Cis Cooling Syst	em	25.5 308 9.519607043 1.281 11.21560627 33.09	tons Kbuiller New EER/SEER KWTan Age of Unit ((rs) Fail Load KW (dr	MPLV Considered B.5% port year									
Heat Fund Syst	erri	10.0 200000002 11 00 00.0	Hotofi COF Age of Unit (yrs) Hotofe input										
Electric Healing	Capacity	75	EVV										
Average Electric Average Natural	Goss Gas Cóst	0.806 0.000	\$//Wh \$/Them										
COOLING ENER	RGY CONSUMP	TION											
Temp (F) 107 97 82 87 82 87 77 72	Bin Temp diff (F) 28 2 23 2 18 2 13 2 8 2 8 2 3 2 -1.8	Weather Bin Data (Hrs) 0 4 172 781 815 819 281 2,872	 Heat Loss Rate (kbturhr) 230.3 189.5 146.7 108.0 67.2 28.6 -14.3 	DX Capacity (k30Jrtr) 206.8 209.8 310.7 322.7 334.8 346.5 359.5	Cycling Capacity Adj. Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adjusted DX Capacity (46tu8re) 206.8 299.8 310.7 322.7 334.8 346.6 366.6	Rated Electric Input (WW) 33.98 33.99 33.99 33.99 33.99 33.99 33.99 33.99	Cycling Time Fraction 0.63 0.46 0.33 0.20 0.08 -0.04	DX Supplied Cooling (MMBtu) 0.00 25.56 84.33 64.70 16.38 -4.02 177781	DX Electric Counsumption (4Wh) 96 2,789 8,884 5,585 1,886 -361 18,680			
HEATING ENER	IGY CONSUMP	TION											
Temp (#1) 82 67 62 67 47 42 97 42 97 22 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 17 12 12 17 12 12 12 12 12 12 12 12 12 12 12 12 12	Bin. Temp diff. (F) 7.8 12.8 17.8 22.8 27.8 32.8 37.8 42.8 47.8 57.8 (Demand th Consumption	Weather Bin East (Hrs) 34 16 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a Heat Loss Rate (kbu/hr) -B4 7 -106.3 -146.0 -146.0 -146.0 -146.0 -231.3 -272.0 -314.7 -356.9 -396.0 -499.7 -461.3 -401.3	Funce Capacity 0.0	Cycing Capacity Adj. Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj, Fumace Capathy (druhr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (489a) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -5,512.98 -8,652.36 -14,081.83 -19,150.25 -24,901.33 -31,451.61 -30,982.15 -47,786.58 -66,102.19 -70,456.40 -85,494.38	Heat Pump Suppled Heating (WMShu) -47(21) -332 -237 -023 -023 -023 -020 080 080 080 080 080 080 080 080 080	Fumace Counsumption (Therms) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary -64.68 -106.34 -106.34 -108.88 -108.88 -231.34 -273.01 -314.67 -398.01 -398.07 -481.34	Required Aurolary Heat (047) -18 95 -31 16 -43 37 -55 59 -79 99 -79 99 -104 41 -116 52 20 -128 82 -128 82 -141.03	Aux Electric Heat Consumption (&/W) 1383 1059 064 279 68 0 0 0 0 0 0 0 0 0 0 0 0 0 3,482
Total Heating Th Annual Energy	erm Consumption Consumption Cost	n 0 \$0	Therms	2									

					5	Split and Packaged 17 Hour - 00 H	d DX System - E lour: Existing Co	nergy Usage					
Facility Unit Location Mfg Model #	Family Suco RTUs Various Various	ress Center											
■HED TEXT IS/HE Estimated SF Se Max Cooling Lux Max Heating Lo. Design CA Cool Design CA Cool Design CA Cool Design CA Cool Apprové of Pen Average reternal Inside Heating Kiton - Cooling Thail - Cooling Thail - Cooling Thail - Cooling Thail - Cooling Thail - Cooling Thail - Cooling Thail - Cooling Thail - Cooling Thail - Cooling	ur nved by Unit ed ad ing Temp ing Temp Ing Temp Ing Temp Ing Temp Ing Temp Ing Temp Ing Temp	8250 1878 9500 87 40 15 20 74 70 8,162,2 73 8,052,2 73 8,052,3 73 8,052,3 73 8,052,3 73 8,052,3 73 8,052,3 73 8,052,3 75 75 75 75 75 75 75 75 75 75 75 75 75	SF ktaultr Heautr deg F deg F deg F deg F deg F deg F biuth-deg deg F	400SF/Ten 50 MDH/1000SF v D1	3 Safety Factor								
Ck Cooling Syst	en)	25.5 308 9.519607043 1.281 11.21560627 38.99	tons Kbuuhr New EER/SEER KWTan Age of Unit (vrs) Fail Load KW (do	11PLV graded 0.5% pcr year	v								
Heat Pump Syst	em	10.0 202002022 11 00.0	House COF Age of Unit ((rs) kbluite input										
Electric Healing	Copacity	75	RVV										
Average Electro Average Natural	Cos: Gas Cost. RGY CONSUMP	0.806 8.808 TION	\$//Wh \$/Them										
Temp (F	Bin Tempdiff) (F)	Weather Bin Dat (Hrs)	a Heat Loss Rate (köturhr)	DK Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adjusted DX Capacity (kbtu/hr)	Rated Electric Input (kW)	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	DK Electric Counsumption (KMh)			
10, 97 82 87 87 72 72	2 28 2 23 2 18 2 13 2 8 2 3 2 -1.8	0 10 269 814 887 544 2,504	230.3 189.5 146.7 108.0 67.2 28.6 -14.3	206.8 298.8 310.7 322.7 334.6 346.5 358.5	1.000 1.000 1.000 1.000 1.000 1.000 1.000	206.8 298.8 310.7 322.7 334.6 348.6 358.5	33,89 33,99 33,99 33,99 33,99 33,99 33,99 33,99	0.80 0.63 0.40 0.33 0.20 0.08 -0.04	0.00 0.00 1.49 29.05 54.71 22.94 -7.78 100.40	0 163 3,080 5,559 2,250 -738 10,293	-		
HEATING ENER	RGY CONSUMP	TION											
Temp (F 62 42 37 32 27 22 27 12 12	Bin, Temp diff, (F) 7.6 12.8 17.8 22.9 27.8 32.9 37.8 32.9 37.8 32.9 37.8 32.9 37.8 32.8 37.8 32.8 37.8 32.8 37.8 37.8 57.8	Weather Bin Data (Hrs) 61 30 10 3 0 0 0 0 0 0 0 0 0 0 0 211	a Heat Loss Rate (k0tu/hr) -84 7 -106 3 -146 0 -198 7 -231 3 -273 0 -314 7 -356 3 -369 0 -499 7 -481 3	Furnace Capacity (ktou/hr) 00 00 00 00 00 00 00 00 00 00 00 00 00	Cycling Capacity Acj. Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Ad), Furnace Capacity (ktrulwr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (KBtu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -5,512.93 -9,562.235 -14,081.83 -9,4801.33 -31,451.81 -36,882.15 -47,765.88 -66,102.19 -70,458.40 -85,494.38	Heat Pump Supplied Heating (MMBtu) - 8-849 - 4-44 - 1-90 - 0-68 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00	Funace Counsungtion (Thems 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Ausliary Heat (<i>bhuhr</i>) -84.68 -106.34 -108.36 -231.34 -273.01 -314.87 -366.34 -398.01 -439.87 -481.34	Required Auxiliary Heat (k/V) -18.85 -31.16 -43.37 -55.58 -79.99 -82.20 -104.41 -116.62 -128.82 -141.03	Aux Electric Heat Consumption (kWh) 2,028 1,901 1,301 566 203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kV Total Cooling kV Total Heating kV Total Heating th Annual Energy	V Demand Vh Consumption Vh Consumption Ierrn Consumptio Cost	32.1 10,293 5,989 n 0 \$0	kW kWh kWh Thems	2									

Broward County Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

						Split and Package 00 Hour - 08 H	ed DX System - E four: Proposed C	Energy Usage Conditions	0				
Facility Unit Location Mfg	Family Succe RTUs	ess Center	_	2									
Model # * ABD TEXT & WPV7 Estimated SP Served by Unit Max Cooling Load Max Heating Load		6270 187.5 78.1 52	SF katu/kr katu/kr deg-F	AUUSE/Ton 12.5 MBH/1000SE									
Design CA Heating Aporox # of People (Temp n Area	40 15	deg-F		TAG	LOCATION	MFG Rheam	NODEL RSNI BOBBCK	2010	EER 10.5	COP 1 00	Tons	
Average internal heat Inside Cooling Desig	atigaan an Tenap	2,0 74	kbcu/hr .deg-F				TBD TBD	760 760	2017 2017	112	1.00	7,5	
noide Heating Desig (not Cooling	pri Terripi	8,928 F	deg-F htu/b-degF				TBD	TBD	2017	11,2	1.00	16	
foot Heating Not Heating		2604 2 89.2	deg-F btu/hidegF deg-F		-		-				-	-	h.,
JX Cooling Bystem		25.5 306 1 11754708 1 079 27.84	Erns Kotu/hr New EER/SEEI KA(Ton Age of Unit.)vrs Full Load K/V (i	RAPLV ;) fegraded 8 5% per yea	*Replace Units in	Red							
leut Purre System		0 0 0 0 0 0 0 0	Rosulfin COP Age of Unit (yrs Rosulfin Inigut	9									
Rectric Heating Cap	acity	133.00	KW										
verage Electric Converage National Ga.	at s Cost	0000	Snorth B/Thomas										
COOLING ENERGY	CONSUMPT	ION											
Temp Bin (F)	Temp diff. (F)	Weather Bin Data (Hrs)	a Heat Loss Rat (kbtu/hr)	e DK Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adjusted DX Capacity (kbtu/hr)	Rated Electric Input (KW)	Cycling Time Fraction	DK Supplied Cooling (MMBtu)	DX Electric Counsumption (k94h)			
102 97 02	28.2 23.2 18.2	0	262.0 207.4 162.7	286.9 296.8 310.7	1.000	286.9 298.8 310.7	27.84 27.84 27.84	0.88 0.69 0.52	0.00	0 0			
87	13.2	62 633	118.1 73.4	322.7 334.6	1.000	322.7 334.6	27.84 27.64	0.37	6.14 46.48	526 3,839			
77 72	3.2 -1.8	887 627 2,179	28.8 -15.9	346.5 358.5	1.000	348.5 358.5	27.84 27.84	-0.08 -0.04	24.96 -9.94 67.63	1,990 -767 6,589	-		
Temp Br	CONSUMPT Temp diff.	Weather Bin Date	a HeatLoss Rat	e Furnace Capacity	Cycling Capacity	Adi Fumace Capacity	Heat Pump Input	Ording Time	Heat Pump Supplied	Furnace	Required Auxiliary	Required Auxiliary	Aux Electric Heat
(F) 62	(F) 7.2	(Hrs) 166	(idstuihr) -18.8	(kbtu/hr) 0.0	Adj Factor 1.000	(kbtu/hr) 0.0	(kBtu) 0.00	Fraction -1,805.57	Heating (MMBtu) -3.13	Counsumption (Therms) 0	Heat (kbtu/hr) -18.85	He at (KVV) -5.52	Consumption (KAN 917
67 52	12.2	125	-31.9 -44.9	0.0	1.000	0.0	0.00	-2,864.58 -4,289.74	-3.98 -3.50	0	-31.87 -44.89	-9.34 -13.15	1,167 1,026 747
47 42 37	22.2 27.2 32.2	18	-578 -709 -839	0.0	1.000	0.0	0.00	-5,848.06 -7,633.66 -9,670.22	-2.55 -1.13 -0.42	0	-70.93	-16.87 -20.78 -24.80	333
32	37 2 42 2	2	-97.0	0.0	1.000	00	0.00	-12,014.66	-0.19	0	-96.97	-28.41	57
22 17	47.2 52.2	0	-123.0 -136.0	0.0	1.000	0.0	0.00	-17,956.20	0.00	0 0	-123.01 -136.03	-36.04 -39.86	0
12	57.2	0 436	-149.0	0.0	1.000	0.0	0.00	-26,472.76	0.00	0	-149.05	-43.67	0 4,368
rotal Cooling KW De Fotal Cooling KWh C Fotal Heating KWh C	mand Consumption Consumption	27.5 5,589 4,368	KAV KAVh KAVh										
Annual Energy Cos	t consumption	\$0	rienns	-									

lif and Packaged DV Survey

						:	Split and Package 09 Hour - 16 H	d DX System - E our: Proposed C	nergy Usage onditions					
Facility Unit Locatio Mfg Model 8		anily Succe TUS	iss Center											
■BCJ TAXT SN/BN/T Estimate GFT SAVid by Unit SN/BN/T SN/BN/T SN/BN/T DEG TAXT SN/BN/T SN/BN/T DEG TAXT SN/BN/T SN/BN/T DEG TAXT SN/BN/T SN/BN/T N/SN/BN/T SN/BN/T N/SN/BN/T SN/BN/T N/SN/BN/SN		0250 1870 850 40 15 2.0 74 70 8,928 6 78 9 0033,3 69,8	SF kbultn kbultn deg-F deg-F kbultn deg F hruh-degF deg F bultn-degF deg F	400SF/Ton SC MBH/1000SF v D1	8 Saleby Factor									
Cis Cooling S	eystern		25.5 308 11.11764705 1.878 0.823529412 27.64	tons kburr/ New EER/SEER KWTar) Age of Unit (yrs) Fail Laad KW (da	APLV cgraded 0.6% per year									
Heat Pump S	ystem		10 0 9999999999 1 90 0	Hotolog COF Age of Unit (grs) kbouing (oput										
Blecox Heal	ng Capa)	dhy	195	KVV										
Average Elec Average Nati	the Coss Insl Gas (Cóst.	0.006 0.006	\$/854h \$/Them										
COOLING E	NERGY	CONSUMPTI	ION		51 Que 10		A.D. 194 (194 (194 (194 (194 (194 (194 (194	David Disease law 4	0.000 Too	DV Comella d	EN Electric			
	(E) 102	(E) 28.2	(Hrs)	(koturhr)	(kotu/hr) 286.9	Adj. Factor	(kbtuhr) 286.9	(KVV) 27.8d	Fraction	Cooling (MMBtu)	Counsumption (KMh)			
_	97 92 87 82 77 72	23.2 18.2 13.2 8.2 3.2 -1.8	4 172 781 815 619 281 2.672	207 4 162 7 118,1 73,4 28,8 -15,8	298.8 310.7 322.7 334.8 346.5 358.5	1.000 1.000 1.000 1.000 1.000 1.000 1.000	298.8 310.7 322.7 334.6 348.6 358.5	27,84 27,84 27,84 27,84 27,84 27,84 27,84	0.69 0.52 0.37 0.22 0.08 -0.04	0.83 27.99 92.21 59.04 17.82 -4.48 194.24	77 2,489 7,898 4,943 1,421 -344 18,484			
HEATING EN	ERGY C	ONSUMPTI	ON											
Te	mp Bin	Temp diff.	Weather Bin Dat	a Heat Loss Rate	Furnace Capacity	Cycling Capacity	Adj. Furnace Capacity	Heat Pump Input	Oycling Time	Heat Pump Supplied	Heat Pump Electric	Required Auxiliary	Required Auxiliary	Aux Electric Heat
-	62 57	7.8	73	-64.7 -106.3	0.0	1.000 1.000	0.0	0.00	-5,512.93	-4.72 -3.62	Courisampoon (merris 0	-64.68	-18.95 -31.16	1,383 1,059
	62 47	17.8 22.8	16 5	-148.0 -189.7	0.0	1.000	0.0	0.00	-14,081.83 -19,150.25	-2 37 -0 95	0	-148.01	-43.37 -55.58	694 278
	42 37	27.8 32.8	1	-231.3 -273.0	0.0	1.000	0.0	0.00	-24,901.33 -31,451.61	-0.23 0.00	0	-231.34 -273.01	-67.78 -79.99	68 0
	32 27 22	42.8	0	-314.7 -356.3	0.0	1.000	0.0	0.00	-36,992.15 -47,785.98 59,193.19	0.00	0	-314.67 -356.34 399.01	-92.20 -104.41 116.62	0
	17 12	62.8 57.8	ŭ	-439.7 -481.3	00	1.000	0.0 0.0	0.00	-70,459,40 -85,494,38	0.00	ů	-439.87 -481.34	-128.82 -141.03	ů 0
Total Cooling	kW Dem	and	129	kW							0			3,482
Total Cooling Total Heating	kWh Co kWh Co	nsumption insumption	16,484 3,482	kvvh kvvh										
Total Heating Annual Ener	gy Cost	Consumption	0 \$0	Therms	2									
						Split and Package 17 Hour - 00 H	d DX System - E our: Proposed C	nergy Usage onditions	14					
---	--	--	--	--	---	---	---	--	--	---	--	---	---	
Facility Unit Location Mfg Model #	Family Succe RTUs	ess Center												
 HED TEXT IS/IPPUT Estimated GF Serv Max/Heating Load Design CA Cooling Approx # of People Average internal heating Instée Cooling Tastie Heating Tasti - Cooling Tasti - Cooling Tasti - Cooling Tasti - Cooling Tasti - Cooling Tasti - Cooling Tasti - Cooling Tasti - Cooling Tasti - Heating Tasti - Cooling Tasti - Cooling Tasti - Cooling Tasti - Heating Tasti - Heating 	ed by Unit Temp Temp In Area set gain tao Temp Agri Temp	6250 187 0 950 0 40 15 2.0 74 70 8,928 6 73 8 6933 3 89 8	SF kbultn kbultn deg-F deg-F kburn deg F bruh-degF bruh-degF deg F bluh-degF deg F	400SF(Ton SC MBH/1000SF ⊻ 01	8 Saleby Factor									
Ck Cooling System	a	25.5 308 11.11764705 1.078 0.323529412 27.64	tons kburr/ New EER/SEER KWTan Age of Unit (vrs) Full Load KW (de	1PLV graded 0.6% per year										
Heat Fump System	2	10 0 202020222 1 00 0	Howing COF Age of Unit (grs) kbouile (oput											
Electric Heating Co	apa city	135	KVV											
Average Electric C Average Natural G	os: as Côst	0.006 0.006	\$635h \$7Them											
COOLING ENERG	CONSUMPT	TION		54 G		1.1	Daniel Filozofie Isona	0.000 Too.	DV Ourselfert	EN Electric				
(F)	(F)	(Hrs)	a Heat Loss Rate (koturhr) 252 D	(kbtu/hr) 286.9	Adj. Factor	Adjusted DX Capacity (kbtuhr) 286.8	(kW) 27.64	Fraction 0.68	Cooling (MMBtu)	Counsumption (kWh)				
97 92 87 82 77 72	23 2 16 2 13 2 8 2 3 2 -1.8	0 10 269 814 887 544 2.504	207 4 162 7 118 1 73.4 28.8 -15.9	298.8 310.7 322.7 334.8 348.5 358.5	1.000 1.000 1.000 1.000 1.000 1.000	298.8 310.7 322.7 334.6 346.6 356.6	27.84 27.84 27.84 27.84 27.84 27.84 27.84	0.69 0.52 0.37 0.22 0.08 -0.04	0.00 1.63 31.78 59.77 24.96 -9.83 109.48	0 145 2,720 4,937 1,930 -665 9,127				
		101												
Temp Bi	n Temp diff.	Weather Bin Dat	a Heat Loss Rate	Furnace Capacity	Oveling Capacity	Adi. Furnace Capacity	Heat Pump Input	Ovcling Time	Heat Pump Supplied	Fumace	Required Auxiliary	Required Auxiliary	Aux Electric Heat	
(F) 62 57 52 47 32 37 32 27 22 17 12	(F) 7.8 12.9 27.8 32.9 37.8 32.9 37.8 42.9 47.8 62.8 57.9	(Hrs) 107 61 30 10 3 0 0 0 0 0 0 0 211	(kbtu/hr) -64.7 -106.3 -146.0 -169.7 -231.3 -273.0 -314.7 -356.3 -398.0 -439.7 -481.3	(icou/ne) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Adj. Factor 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	(tetuler) (tetuler) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		Fraction -5,512.93 -9,562.35 -14,081.83 -19,150.25 -24,801.33 -31,451.81 -30,892.15 -47,765.98 -56,102.19 -70,459.40 -85,494.30	Heating (AMBbu) Heating (AMBbu) -8 32 -8 49 -4 44 -1 90 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00	Counsurgian (Therms) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Heat (dotu/hr) -64.88 -106.34 -148.01 -231.34 -231.34 -273.01 -314.67 -356.34 -396.01 -439.87 -481.34	Heat (kW) -18.95 -31.16 -43.37 -55.50 -57.78 -79.99 -92.20 -104.41 -116.62 -128.82 -141.03	Consumption (kVAh) 2,028 1,901 1,301 556 203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Total Cooling kW D Total Cooling kWh Total Heating kWh Total Heating Then Annual Energy Co	Demand Consumption Consumption In Consumption Set	27.5 9,127 5,989 n 0 \$0	kW kWh kWh Thems											

An ENGIE company

Broward County

Broward County Energy Savings Performance Contract Whole Building Energy Moder

MODEL CALIBRATION	Electr	IC HAR	118	L Gas The	(11)5										
eOUEST Model	183	L058	2	0	_										
Error	0.3	20%	2	ADIVIDI											
						-		_	_	_					
MODEL															
EM1 ELECTRICITY	JAN_	FEB	MAR	AME	MAY	JUN	JUL	AUG	3EP	DET	NOU	DEC	ANN		
MAD IOV	15.8	35	31.5	38.3	42	41.6	34.8	44.8	47.3	42.3	181	36.7	AT 2		
DAVINE	36/16	43960	47909	3346	26/14	20/16	1310	10:15	14154	42900	23/16	15015	\$2992		
FMT NATURAL-GAG	IAN	ren	MAR	APR	MAY.	LIN	E.L.	AUG	4342	. OET	NOV	DEC	ANN		
MAX THERMOR	p	ő	œ	ă.	a	a l	a.	a	.a	ō	ð.	Q	0		
DAVIHE	Drn.	04.02	0/0	0/ 0.	Q. U.	or a.	0/6.	0/ 0.	a.a.	0.0	0.0	ain	2.0		
sting liberade		_	_	_	_	_	_	_	_	_	_	_	_		
nui n comioni				400	alley.	-		400	inen.	~	hight				
KW04	10,129	9,738	10,794	AP16 11,548	12,727	14,356	15,388	15,873	14,657	13,296	11,418	10,531	150,272		
MAX XXV UA V/HE	20 A 19/ G	33.0	20 42809	28.9	25/14	36	35.3	18/15	14/14	32.T 42900	28.7	287	37.5		
EN1 INTI DAL DAS	ikel.	100	MAD	600	ALAY	1.00		4110	960	007	100	0.EC	AAM		
THERM	0	6	0	0	0	0	0	0	0	0	000	0	0		
MAX THERMORE DAYONS	evo	er a	010	0 10	0	0 010	0 0	0 0	0.0	ere.	0.0	000	00		
PERSONALIVE	La M	1111	MAI	APP	MAY	1.152		4110		007	1019	-010	ann	Sporters Parcent of Baseline	
KWH SAVINGS	2,400	2,367	2,927	2,867	2,967	2,959	3,029	3,031	2,903	2,859	2,670	2614	33,386	18.7%	
KVI SAVINGS	7 40	1,20	9.50	9.40	9.50	9.60	960	9 60	9.70	9 60	9.50	6.00	870	8.55	AND MORTHY KW Save
work Thermostals			_	_		_	_			-	_	_	_		
EM1 ELECTRICITY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANN		
KWH MAX KW	8,357	8,027	9,158	9,670	10,342	12,025	37.1	13,139	12,240	10,957	9,430	8,702	124,915		
DAY/HR	19/ 9	43017	30/14	21/13	25/14	29/14	13/6	42780	14/14	42839	23/15	15/15	42992		
FM1 NATURAL-GAS	SAN	FEB	MAR	APR	MAY	3,19	JUL	AUG	SEP	OCT.	NOV	DEC	ANN		
MAX THERMINR	0	0	0	0	0	0	0	0	0	0	0	0	a		
DAVHR	0.0	UP 0	0.0	0/0	0.0	010	0.0	W D	0/0	9.0	0.0	EV B	0.0		
BAVINOU	HAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	362	1001	NUV	DEC	ANN	Savings Percent of Baseline	
THERM SAVINGS	0	0	U.	U	0	1	0,522 U	4,004	0	0	U.	0	and a	#DIVIOI	
KW SAVINGS	-4.30	-0,70	-0,00	-1,20	-1.50	-1.50	-1.00	-2,50	-210	-1.90	-1 20	0.60	-216	-1.50	Arig Montaly KW. Saym
Ventilation & Exhaust	_	_								_	_	_			
ENI DECTRICITY	14.14		MAD	APR	MAY			410	-950	0.00	NOW	nec	40.01		
KWH	7,994	7,583	8,600	9,040	9,671	10,714	11,322	11,629	10,009	10,071	8,007	8,297	114,593		
DAYOHR	301 B 1977	43015	42809	23/15	25/14	30/16	13/16	42781	14/14	42840	23/15	15/15	42992		
FM1 NATURALIGAS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP.	OCT	NOV	DEC	ANN		
THERM MAY THERMONY	0	0	0	0.	0	0	0.	0	0	0	0.	0.	0		
DAYMR	010	010	0.0	0.0	0.0	0.0	0.0	0.0	DV D	010	0.0	EV D	0.0		
DAVINGS	IAN	FEB	MAR	APR	MAY	JUN	JUL	AUQ	SEA	OCT	NOV	DEC	ANN	Sivings Percent of Baseline	
KWH BAVINGS THERM SAVINGS	363	464	470	622 0	0	1,312	1,545	1,510	1,351	0	823 0	405	10,322	5.6% #ELV/01	
KW SAVINGS	00.1	R 30	4.30	4.80	6.70	7.40	7 30	7 20	8.70	6.10	4.50	3.90	870	5.87	And Montrly MV Save
LINAC Devicement					_	-	-	_		_	_		_		
CUARC IODISCIUM								100							
EM1-ELECTRICITY RMH	JAN 7,831	FEB 7,446	MAR 8,518	APR 8,849	MAY 3,352	3UN 10,411	JUL 10,996	AUG 11,297	SEP 10.589	0CT 9,834	NOV 8,625	DEC 8,162	ANN 111,958		
MAXION	30.0	25.2	23.6	24.4	26.6	20.7	20.4	29.1	29.5	27.2	24.4	23.2	30.0		
Dis circle	107	4,015	47909	23/15	2014	,quité	1.816	42/81	14/14	42840	230.2	150.5	42/94		
FM1 NATURAL GAS	JAN	PEB	MAR	APR	MAY	JUN	JUL	AUG	BEP	OCT B	NOV	DEC	ANN		
MAK THERMINE	0	0	0	0	0	0	0	0	0	0	0	0	0		
PR THE	ta 0	CH C	01.0	01.0	0.0	W D	0.0	0.0	0.0	or o	0.0	00	0.0		
SAVINGS EMILITEAVINGS	117	FEB (17	MAR. 172	APR	MAY	-3.94	JUL	AUB TO	SEA	1001	NOV. 192	0E0 105	2,835	Savings Percent of Baseline 1.4%	
THEFT CALIFORN			1.000	100	61.0			100	and the second s			1.010	and the second second	100.00	

Broward County - RFP No: R1243101PI – Consultant Services, Energy Audit and Performance Consultant Services:

Split System - Savings Summary

Facility	EAP Our House	
Unit Location	AHU-1	

Existing Conditions

Mfg	Ruud	Peak kW	0
Model #	UHSA-HM3017JA	kWh	15,231
Date Mfg	2005	_	

Proposed Conditions

Mfg	TBD	
Model #	TBD	

Energy Usage

Existing Conditions	00-08 Hrs	2.6	kW	1,880	kWh	0	Therms	
	09-16 Hrs	2.6	kW	3,487	kWh	0	Therms	
	17-00 Hrs	2.6	kW	2,774	kWh	0	Therms	
	Total	2.6	kW	8,141	kWh	0	Therms	
		#DIV/0!		53.4%		•		
Proposed Conditions	00-08 Hrs	2.6	kW	1,847	kWh	0	Therms	
	09-16 Hrs	2.6	kW	3,403	kWh	0	Therms	
	17-00 Hrs	2.6	kW	2,723	kWh	0	Therms	
	Total	2.6	kW	7,973	kWh	0	Therms	
		#DIV/0!		52.3%				
Total Annual Energy	Savings	0.0	kW					
		168	kWh					
		0	Therms	1				

Baseline Data

					9	Split and Package 09 Hour - 16 F	d DX System - E lour: Existing Co	nergy Usage	10				
Facility Unit Location Mfg Model #	EAP Cur Ho AHU-T Roud UHSA-HM30	USE 017UA											
THE TEXT IS/IP Entimated OF Se Max Cooling Los Max Heating Los Max Heating Los Design CA Cool Design CA Cool Approx # of Peol Average Interna Inside Cooling D Inside Heating D Ktot - Cooling	ur nved by Unit d ng Temp ng Temp tle in Area beat gan esign Temp	1100 33.0 44.0 87 40 8 8.4 73 70 1,275,0	SF Kbulte ktúlte deg-F deg-F Kbulty deg F deg F deg F	400SF/Ton SC MBH/HOODSF v D I	3 Safeb/ Fáctor								
Ktot - Heating Tost Heating		-1468.7 69.7	deg F btum-degF deg F										
Cis Cooling Syst	em	2 5 30 115 1 042 6 2 80	tons kburni New EER/SEER kW/Lan Age of Unit (yrs) Full Laad kW/(da	APLV I graded 0.6% per year									
Heat Fumo Syst	ena	10 0 8003009292 9 90 0	Howhy COF Age of Unit (yrs) Howite input										
Electric Healing	Capacity	7.2	KVV										
Average Electric Average Natural	Cos: Gas Cost	0.806 0.000	\$68Viti \$/Them										
COOLING ENER	RGY CONSUMPT	TION											
.Temp (F)	Bin Tempdiff. (F)	Weather Bin Data (Hrs)	a Heat Loss Rate (koturhr)	DK Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adjusted DX Capacity (kbtu/hr)	Rated Electric Input (KW)	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	DK Electric Counsumption (KMh)			
102 97 92 87 82 77 72	2 28.3 24.3 19.3 14.3 9.3 4.3 -0.7	0 5 174 816 806 278 2,889	40.3 33.4 28.5 19.7 12.8 5.9 -1.0	28.1 29.3 30.5 31.6 32.8 34.0 35.1	1.000 1.000 1.000 1.000 1.000 1.000 1.000	28 1 29 3 30 5 31 8 32 8 34 0 35 1	2.69 2.69 2.69 2.69 2.69 2.69 2.69 2.69	1.00 1.00 0.67 0.62 0.38 0.17 -0.03	0 00 0 15 4 62 15 46 10 42 3 59 -0 27 33 97	0 13 407 1,314 864 284 -21 2,862			
HEATING ENER	IGY CONSUMPT	TION											
Temp (F) 52 57 47 42 37 37 32 27 22 17 12	Bin Temp diff. (F) 77 12.7 17.7 22.7 27.7 32.7 32.7 32.7 32.7 42.7 42.7 47.7 62.7 67.7	Weather Bin Data (Hrs) 70 34 17 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a Heat Loss Rate (kbtu/hr) -11.3 -18.7 -26.0 -33.3 -40.7 -40.0 -55.3 -65.3 -65.3 -65.7 -77.0 -77.3 -94.7	Furnace Capacity (ktou/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cycling Capacity Adj. Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj Furnace Capachy (btrubry) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (45b) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -988 18 -1,678 66 -2,473 83 -3,367 00 -4,377 47 -5,573 95 -8,656 67 -9,400,36 -10,218,90 -12,218,90 -12,218,90 -15,038,48	Heat Pump Supplied Heating (MMBbu) -7.83 -0.63 -0.08 -0.07 -0.08 -0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Furnace Counsumption (Therms) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary + Heat (dotu/hr) - 11.35 - 10.666 - 20.01 - 33.34 - 40.66 - 40.61 - 40.61 - 40.61 - 40.61 - 40.61 - 77.34 - 64.87	Required Airollary 3.32 5.47 7.62 9.77 11.92 14.07 18.22 19.38 -20.51 22.86 -24.81	Aux Electric Heat Consumption (IVVh) 233 130 49 24 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kV Total Cooling kV Total Heating kV Total Heating Th Annual Energy	(Demand (h Consumption (h Consumption erm Consumption Cost	2.6 2,852 635 0 \$0	kW kWh kWh Therms	-									

					9	Split and Package 17 Hour - 00 F	d DX System - E lour: Existing Co	nergy Usage nditions					
Facility Unit Location Mfg	EAP Our Hos AHU-7 Roud	150											
■ Processing Control (1997) (1997	on contract ved by Unit g Temp g Temp g temp e in Area e at gain sign Temp sign Temp	1100 33.0 44.0 40 40 40 40 40 40 40 40 40 40 40 73 70 727 70 727 727 1466.7 69.7	SF ktouhr ktouhr deg-F deg-F ktouhr deg F deg F hruh-degT deg F bluh-degT deg F	400SF/Ton .50 MBH/1000SF v.D.1	8 Safety Factor								
Cis Cooling Syste	m	2.5 30 11.5 1.842 6 2.80	tons Kburr New EER/SEEF KWTan Age of Unit (yrs Fall Laad KW (d	SAPLY) consided 0.5% per year									
Heat Pump Syste	10	0 00 00 00	Httufir COF Age of Unit (yrs kbtufir input	j.									
Electric Healing C	apa city	7.2	KVV										
Awarage Electric (Average Natural (Cos: las Cóst	0.806 0.005	\$/kV/h \$/Them										
COOLING ENER	GY CONSUMPT	ION											
Temp 6 (F) 102 97 82 87 82 77 72	lin Tempdiff. (F) 28.3 24.3 18.3 14.3 9.3 4.3 -0.7	Weather Bin Das (Hrs) 0 1 11 275 821 882 539 2,509	a Heat Loss Rati (kbu/h) 40.3 33.4 28.5 19.7 12.0 5.9 -1.0	 DX Capacity (k00/hr) 28.1 29.3 30.5 31.6 32.8 34.0 35.1 	Cycling Capacity Adj, Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Adjusted DX Capacity (Motuler) 28 1 29 3 30 5 31 8 32 8 34 0 35 1	Rated Electric Input (IAM) 2.69 2.69 2.69 2.69 2.69 2.69 2.69 2.69	Cycling Time Fraction 1.00 1.00 0.82 0.82 0.38 0.17 -0.03	DX Supplied <u>Cooling (MMBtu)</u> 0.03 0.03 5.40 10.49 5.09 -0.53 20.77	DX Electric Counsumption (MAN) 3 26 469 869 402 -40 1,709			
HEATING ENER	BY CONSUMPT	ION											
Temp E (F) 82 57 52 47 42 37 32 27 22 27 17 12 22 17	in Temp diff. (F) 17,7 12,7 17,7 22,7 32,7 32,7 32,7 32,7 32,7 42,7 47,7 62,7 67,7	Weather Bin Dist (Hrs) 106 80 31 10 3 1 10 3 1 0 0 0 0 0 0 0 211 2 16	a Heat Loss Rate (kbpuhr) -113 -28 0 -33 3 -40 7 -40 0 -55 3 -62 7 -70 0 -77 3 -94 7	 Furnace Capacity (ktbu/kr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 	Cycling Capacity Adj. Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj. Furnace Capachy (btulw) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (18tu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction - 888 18 -1,678 66 -2,473 83 -3,967 00 -4,377 47 -5,529 95 -6,666 67 -8,400,36 -10,218,90 -12,393,18 -15,036,49	Heat Fung Supplied Heat Fung (MMBt) - 1 20 - 0 51 - 0 51 - 0 50 - 0 12 - 0 05 - 0 12 - 0 05 - 0 00 - 0 00 - 0 00 - 0 00 - 0 00 - 0 00 - 0 00	Fumare Counsumption (Therms) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary Heat (khtu/hr) -11.36 -28.01 -33.34 -40.01 -55.34 -42.67 -77.01 -77.34 -64.67	Required Auxiliary Heat (IAV) -3 32 -5 47 -7 52 -9,77 -11 92 -14,07 -16,22 -19,36 -20,51 -22,86 -24,81	Aux Electric Heat Consumption (kVkh) 3220 328 98 98 36 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kW Total Cooling kW Total Heating kW Total Heating The Annual Energy C	Demand Consumption Consumption rm Consumption Sost	2.6 1,709 1,064 1 50	kW kWh kWh Therms	_									

						Split and Package 09 Hour - 16 Ho	d DX System - E our: Proposed C	nergy Usage onditions					
Facility Unit Location Mfg Model #	EAP Dur Ho AHU-7	use											
Text 16 / 16 / 16 / 16 / 16 / 16 / 16 / 16	nr ved by Unit I ig Temp ig Temp ig Temp	1100 33.9 44.0 97 40	SF Kbulte Kbulte Kbulte deg-F deg-T	4005F/Ton 50 MBH/1000SF 2 0 1) Safety Factor								
Average internal i inside Cooling De Inside Heating De Ktot - Cooling Tbal - Cooling Ktot - Heating Tbal - Heating	eetgan sigo Tenno sigo Tenno sigo Temp	0.4 73 70 1,275 0 72 7 -1466.7 69 7	Ktowing deg F deg F bruih-degF deg F bruih-degF deg F										
Cis Cooling Syste	m	25 30 115 1.042 0 2.61	tons kbturr/ New EER/SEE/ kWTan Age of Unit (yrs Fail Load kW (d	54 PLV) egnaled 8 5% per year									
Heat Fumo Syste		0 0 900000000 0 90 0	Hittohir COF Age of Unit (grs kbtuße (oput	j.									
Electric Healing C	apacity	7.2	KVV										
Average Electric Average Natural	Doss Bas Cöst	0.806 0.000	\$65Mh \$/Them										
COOLING ENER	GY CONSUMPT	ION											
Temp i	Bin Temp diff.	Weather Bin Dat (Hrs)	a Heat Loss Rate (khtudor)	 DK Capacity (kttu/hr) 	Cycling Capacity Adi, Factor	Adjusted DX Capacity (idituality)	Rated Electric Input	Cycling Time Fraction	DX Supplied Coping (MMBtu)	DK Electric Counsumption (IAMh)			
102 97 82 87 82 87 82 77	28.3 24.3 19.3 14.3 9.3 4.3	0 5 174 787 816 809	40.3 33.4 28.5 19.7 12.0 5.9	28.1 29.3 30.5 31.8 32.8 34.0	1.000 1.000 1.000 1.000 1.000 1.000 1.000	28.1 29.3 30.5 31.6 32.8 34.0	2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61	1 00 1.00 0.67 0.62 0.39 0.17	0.00 0.15 4.62 15.46 10.42 3.69	0 13 395 1,275 829 276			
	-0.7	2,669	-1.0	35.1	1.000	30.1	2.61	-0.03	-0.27 33.97	2,768			
HEATING ENER	3Y CONSUMPT	ION											
Temp i (F) 62 57 52 42 37 32 27 22 17 12	8in Temp diff. (F) 12.7 12.7 22.7 22.7 32.7 32.7 32.7 32.7 42.3 42.3 42.7 62.7 67.7	Weather Bin Dat (Hrs) 70 34 17 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a Heat Loss Rate (khtu/hr) - 113 - 10.7 - 26 0 - 33.3 - 40.7 - 49.0 - 55.3 - 62.7 - 70.0 - 77.3 - 64.7	 Furnace Capacity (ktou/kr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	Dycling Capacity Adj. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Adj, Furnace Capacity (Utruliny) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (1600) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Cycling Time Fraction -08818 -1,678.66 -2,473.83 -3,367.00 -4,377.47 -5,529.95 -8,656.67 -9,400.36 -10,218.90 -12,389.18 -15,039.48	Heat Pump Supplied Heating (MMBtu) -0.83 -0.83 -0.44 -0.17 -0.08 -0.05 -0.05 -0.00 0.00 0.00 0.00 0.00 0	Heat Purg Electic Counsungtion (Therms) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Ausliary Heat (<i>kbtuhr</i>) -11.36 -28.01 -33.34 -40.66 -40.01 -55.34 -62.87 -70.01 -77.34 -84.67	Required Auxiliary Heat (0/V) -3.32 -5.47 -7.52 -9.77 -11.92 -14.07 -18.22 -18.22 -18.36 -20.51 -22.86 -24.81	Aux Electric Heat Consumption (KVMs) 106 130 49 24 14 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kW Total Cooling kW Total Heating kW Total Heating The Annual Energy (Demand n Consumption n Consumption rm Consumption Cost	2.6 2,768 635 1 0 \$0	kW kWh kWh Therms	_									

					5	Split and Package 17 Hour - 00 H	d DX System - E our: Proposed C	nergy Usage onditions	1.0				
Facility Unit Location Mfg	EAP Our Hol AHUL7	150											
Nodel # * 460 TEXT IS/16907 Estimated DF Servey Max Cooling Load Max Heating Load Design DA Cooling Approx # of People Average ritema heating Desi Inside Cooling Deal Inside Heating Deal Inside Deal Inside Deal Inside Deal Inside Deal Inside Heating Deal Inside Dea	nd by Unit Temp Temp In Area at gam go Temp gr Temp	1100 3330 440 87 40 8 0.4 73 70 (3750 727	SF ktoutre ktourre deg-F deg-F ktourre deg-F bruh-degF deg F	400SF/Ten SC MBH/1000SF v D T	3 Salesy Factor								
ntot - Heating Total Heating CK Cooling System		-1965.7 69.7 2.5 30 11.5 1.642 0 2.81	tons kbturr kbturr kwiter/seer kwitan Age of Unit (yrs Fall Laad kW (d	arPLV) ograded 0.5% pcr yeur									
Heat Punc System		10 0 2020000292 0 0 0	Himhr COF Age of Unit (yrs kbcuða input	i.									
Electric Healing Cap	pacity	7.2	KVV										
Average Electric Co Average Natural Ga	is: Cóst	0.806 0.005	\$/kVMt \$/Them										
COOLING ENERG	Y CONSUMPT	10N Weather Bin Dat	a HeatLoss Rate	DK Capacity	Oveling Capacity	Adjusted DX Capacity	Rated Electric Input	Ovcling Time	DX Supplied	EX Electric			
(F) 102 97 92 87 82 87 82 77 72	(F) 28.3 24.3 19.3 14.3 8.3 4.3 -0.7	(Hrs) 0 1 11 275 621 882 536 2,509	(kblufin) 40.3 33.4 28.5 19.7 12.8 5.9 -1.0	(kousky) 28.1 29.3 30.5 31.6 32.8 34.0 35.1	Adj. Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	(bbu%r) 28.1 29.3 30.5 31.8 32.8 34.0 35.1	2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61	Fraction 1.00 1.00 0.87 0.82 0.38 0.17 -0.03	Cooling (MMBtu) 0.00 0.28 5.40 10.49 5.09 -0.53 20.77	Counsumption (AVM) 0 3 25 446 834 391 -39 1,659			
HEATING ENERGY	CONSUMPT	ION											
Termp Bir (F) 52 57 52 47 42 37 32 27 22 17 12	(F) (F) 12.7 17.7 22.7 27.7 32.7 37.7 32.7 37.7 42.7 47.7 62.7 67.7	Weather Bin Data (Hrs) 108 60 31 10 3 1 0 0 0 0 0 0 0 0 0 211	a Heat Loss Rate (ktourhar) -11.3 -10.7 -26.0 -33.3 -40.0 -55.3 -82.7 -70.0 -77.0 -77.3 -94.7	 Furnace Capacity (ktou/kr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 	Cycling Capacity Ael, Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj. Furnace Capachy (Mculhr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input: (Hat Pump Input: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Cycling Time Fraction -886.18 -1.678.66 -2.473.83 -3.367.00 -4.377.47 -5.529.95 -6.666.67 -8.400.36 -10,218.90 -12,393.18 -15,038.48	Heat Pump Supplement Heating (MMBtu) -120 -030 -012 -005 000 000 000 000 000 000 000	Furnace Counsumption (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Ausiliary Heat (ddtu/hr) -11.36 -26.01 -33.34 -40.06 -49.01 -55.34 -62.67 -70.01 -77.34 -84.67	Perquirred Auxiliary Heat (4%) -3.32 -5.47 -7.62 -9.77 -11.92 -14.07 -18.22 -18.36 -20.51 -22.86 -24.81	Aux Electric Heat Consumption (kVM) 362 326 98 36 36 14 0 0 0 0 0 0 0 0 0
Total Cooling kW D Total Cooling kWh C Total Heating kWh C Total Heating hVm C Total Heating Them Annual Energy Co	emand Consumption Consumption n Consumption st	2.6 1,659 1,064 1 0 \$0	kW kWh kWh Therms	_									

Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services:

Split System - Savings Summary

Unit Location AULL1	
AHO-T	

Existing Conditions

Mfg	Peak kW	32
Model #	kWh	107,287
Date Mfg		

Proposed Conditions

Mfg Model #

Energy Usage

Existing Conditions	00-08 Hrs	7.6	kW	3,920	kVVh	0	Therms
	09-16 Hrs	7.6	kW	7,953	kVVh	0	Therms
	17-00 Hrs	7.6	kW	5,994	kWh	0	Therms
	Total	7.6	kW	17,867	kWh	0	Therms
		23.7%		16.7%			
Proposed Conditions	00-08 Hrs	6.8	kW	3,588	kWh	0	Therms
	09-16 Hrs	6.8	kW	6,982	kWh	0	Therms
	17-00 Hrs	6.8	kW	5,453	kWh	0	Therms
	Total	6.8	kW	16,024	kWh	0	Therms
		21.2%		14.9%			
Unadjusted Annual S	Savings	0.8	kW		Adjusted	for BAS	
		1,843	kWh		0.8	kW	
		0	Therms		1006	kWh	

Baseline Data

					5	Split and Package 09 Hour - 16 F	d DX System - E lour: Existing Co	nergy Usag	e				
Facility Unit Location Mfg Model #	Mosquite Con AHU-1 D	ntrol											
THE TRATING THE TR	r ved by Unit g Temp e In Area eat gam eat gam sign Temp sign Temp	2400 72.9 86.0 40 5 0.7 74 74 3,140,4 73.8 -3200.0 69.8	SF Mawhr Hainn deg F deg F Hulm deg F bruh deg F bruh deg F bruh deg deg F deg F	400SF(Ten SC MBHY1000SF v 0)	3 Safety Factor								
Cis Cooling System	n	6.6 78 10.3 1.165 10 7.58	tons kburk/ New EER/SEER KV/Tan Age of Unit (yrs) Full Laad KV/ (do	n PLV optaded 0.5% pcr year									
Heat Pump System	Ti	10 0 2020000222 01 90 0	Howhy COF Age of Unit (grs) kbouite input										
Electric Healing C	apa city	ū	KVV										
Average Electric C Average Natural C	ias Cóst	0.806 0.808	\$7659h \$7Them										
COOLING ENER	BY CONSUMPT	10N	s Hast Loce Rota	EV Canacity	Outling Capacity	Advisted DV Capacity	Pated Electric Ioput	Octing Time	DV Supplied	EV Electric			
(F) 102 97 92 87 82 87 82 77 72	(F) 28 2 23 2 18 2 13 2 8 2 3 2 -1.8	(Hrs) 0 5 174 787 816 809 276 2,669	(kbu/hr) 68.3 72.7 57.0 41.4 25.7 10.1 -5.8	(kouhr) (kouhr) 78.1 78.2 78.2 82.3 85.3 88.3 81.4	Addy Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	(bbt/br) (bbt/br) 73.1 76.2 78.2 82.3 85.3 85.3 88.3 91.4	7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.96	Fraction 100 0.96 0.72 0.50 0.30 0.11 -0.06	Cooling (MMBtu) 0.00 0.38 9.82 32.55 20.99 6.13 -158 88.39	Counsult (Avh) Counsult (Avh) 0 38 987 3,150 1,958 562 -135 8,580	-		
HEATING ENERG	Y CONSUMPT	ION											
Temp E (F) 57 52 47 42 37 32 27 17 12 Total Conjust 444	in Temp diff. (F) 7.8 12.8 17.8 22.8 27.8 32.9 37.8 32.9 37.8 42.8 47.9 62.8 57.9	Weather Bin Dat (Hrs) 70 34 17 5 2 1 0 0 0 0 0 0 0 0 129 7.6	a Heat Loss Rate (kbtu/hr) - 74.9 - 40.9 - 56.9 - 72.9 - 80.9 - 104.9 - 126.9 - 126.9 - 126.9 - 164.9 - 164.9	Furnace Capacity ((cou/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cycling Capacity Adl, Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj Furnace Capacity (400hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (1690) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Cycling Time Fraction -2,125.80 -3,681.06 -5,417.06 -7,367.00 -8,673.02 -12,098.09 -14,885.54 -16,365.54 -16,365.67 -22,326.07 -22,326.07 -22,326.07 -22,026.07 -22,026.07 -22,026.07 -22,047.64	Heat Pump Suppled Heating (MMSb) -17.45 -13.45 -0.87 -0.87 -0.18 -0.18 -0.10 -0.10 0.00 0.00 0.00 0.00 0.00	Fumace Counsumption (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Austiany) Heat (dutuh) -24.95 -40.94 -56.94 -72.94 -104.94 -104.94 -108.94 -138.94 -182.94 -184.94	Required Auxiliary + eta (64%) - 7.31 - 12.00 - 16.68 - 21.37 - 26.06 - 30.76 - 35.44 - 40.12 - 44.61 - 40.50 - 54.19	Aux Electric Heat Consumption (KVAh) 512 400 284 107 52 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kW Total Cooling kW Total Heating kW Total Heating The Annual Energy C	Consumption Consumption Consumption Consumption ost	6,560 1,393 1 0 \$0	kVVh kVVh Therms										

					9	Split and Package 17 Hour - 00 F	d DX System - E lour: Existing Co	nergy Usage nditions	5.6 C				
Facility Unit Location Mfg Model #	Mosquita AHU-7 D	Control											
■ACT TEXT IS/IN Estimated EF S Max Cooling Lo Max Heating Lo Design CA Coo Design CA Coo Approx # of Peet Average reterna Inside Heating Ktot - Cooling Tbail - Cooling Tbail - Cooling Tbail - Heating Tbail Heating	eur avved by Unit ed ad ing Temp ing Temp ple is Area bestgan bestgan bestgan Temp	2100 729 960 40 5 07 74 70 3,120,4 739 -3200,0 699	SF ktaufter ktaufter deg F deg F ktaufter deg F bruh-deg F bruh-deg F deg F deg F deg F	400SF/Ten SC MGH/1000SF V D I	Salety Factor								
Cis Cooling Sys	terg	8.5 78 10.3 1.165 10 7.58	tons KDUPr New EER/SEER KWT an Age of Unit (yrs Fail Laad KW (d	an PLV) ognaded 0.6% por year									
Heat Pumo Sys	erra	0 0) 9999999999 10 0 09	Hituihi COF Age of Unit (grs kbtuiñe input	0									
Electric Healing	Capacity	ũ.	RVV										
Average Electro Average Natura	Cos: I Gas Còsti	0.886 8.000	\$/63/4h \$/Them										
COOLING ENE	RGY CONSUM	IPTION											
Temp	Bin Temp d	iff. Weather Bin Dar (Hrs)	a Heat Loss Rate (kbtuder)	DK Capacity	Cycling Capacity Adi, Factor	Adjusted DX Capacity (idetuilse)	Rated Electric Input	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	DK Electric Counsumption (IAMh)			
9 9 8 8 7 7 7	2 28 2 23 2 18 2 13 2 8 2 3 2 -1.8	0 1 11 275 821 862 538 2,509	000 3 72.7 57.0 41.4 25.7 10.1 -5.8	73.1 78.2 78.2 82.3 85.3 88.3 91.4	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	73.1 76.2 79.2 82.3 95.3 98.3 91.4	7.96 7.96 7.96 7.96 7.96 7.96 7.96 7.96	100 0.96 0.72 0.60 0.30 0.11 -0.06	000 000 0.63 11.37 21.11 8.67 -3.02 38.84	0 6 6 1,101 1,970 781 -263 3,680			
HEATING ENE	RGY CONSUM	IPTION											
Temp 6 5 5 4 4 3 3 2 2 2 2 2 1 1	Bin Tempd (F) 12.8 17.8 22.8 27.8 22.8 27	iff. Weather Bin Dat (Hrs) 108 60 31 10 3 1 0 0 0 0 0 0 211	ta Heat Loss Rate (k0pu/hr) - 24.9 - 40.9 - 55.9 - 77.9 - 80.9 - 104.9 - 120.8 - 136.9 - 152.8 - 164.9 - 164.9	 Furnace Capacity ((counter) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 	Dycling Capacity Adl, Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	Adj Furnace Capacity (4trulw) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (1690) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Cycling Time Fraction -2,125.80 -3,661.06 -5,417.06 -7,367.00 -9,573.02 -12,099.09 -14,885.54 -18,355.67 -22,326.03 -27,072.85 -32,847.94	Heat Pump Suppled Heating (MBbu) 2 84 - 2 46 - 1 78 - 0.73 - 0.27 - 0.10 0 00 0 00 0 00 0 00 0 00	Fumace Counsumption (Themns) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Ausliany Heat (dbtuhr) -24.95 -40.94 -60.94 -72.94 -104.94 -104.94 -104.94 -136.94 -132.94 -152.94 -184.94	Required Austiary Heat (0AV) -7.31 -12.00 -18.68 -21.37 -28.06 -30.75 -35.44 -40.12 -44.81 -40.60 -54.19	Aux Electric Heat Consumption (kVMs) 775 770 517 214 78 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling ki Total Cooling ki Total Heating ki Total Heating T Annual Energy	V Demand Yh Consumptio Yh Consumptio Ierrn Consump Cost	7.6 in 3,660 in 2,334 tion 0 \$0	kW kWh kWh Therms	_									

					1	Split and Package 09 Hour - 16 H	d DX System - E our: Proposed C	inergy Usage onditions					
Facility Unit Location Mfg Model #	Mosquit AHU-7	a Control		1									
THEO YEAT IS/ Estimated OF Max Cooling L Max Heating L Design CA Co Design CA Co Approxi# of Pe Average intern	19907 Served by Unit Gad oling Temp oling Temp sople in Area al best com	2400 72.9 96.0 87 40 3 1 0.7	SF Attulte Istister deg F deg F	400SF/Ton 50 MBH/1000SF v 0	3 Safety Factor								
Inside Cooling Inside Heating Ktot - Cooling That - Cooling Ktot - Heating Tost - Heating	Design Temp Design Temp	74 70 3,130,4 73,8 -3209,0 89,8	deg F deg F bruh-degF deg F bruh-degF deg F										
CK Cooling S,	vatern	5.5 78 115 1.042 0 8.18	tons Klown New EER/SEEF KW/Tar) Age of Unit ((rs Full Lead KW/(d	SAPLY) legraded 0.6% pc: year									
Heat Pump Sy	stera	0 0) 9999999999 0 9 09	Houshi COF Age of Ucit (grs kbtuße input	5									
Electric Health	g Capacity	ũ.	KVV										
Average Electr Average Natur	ne Cos: ral Gas Cóst.	6.806 8.006	\$//Wh \$/Them										
COOLING EN	ERGY CONSU	MPTION diff Weather Bin D	ata Heat Loss Rate	e DK Capacity	Oveling Capacity	Adjusted DX Capacity	Rated Electric Input	Ovcling Time	DX Supplied	DK Electric			
	F) (F 02 28) (Hrs) 2 0	(koturhr) 68.3	(kbtu/hr) 73.1	Adj. Factor 1.000	(kbtu/hr) 73.1	(KVV) 6.78	Fraction 1.00	Cooling (MMBtu) 0.00	Counsumption (kWh) 0	-		
	97 23 92 18	2 5 2 174	72.7 57.0	78.2 79.2	1.000	76.2 79.2	6.79 6.78	0.96 0.72	0.36 9.92	32 849			
	87 13 82 8.1	2 787 2 816	41.4 25.7	82.3 85.3	1.000	82 3 85 3	6.78 6.78	0.60	32.56 20.98	2,684 1,668			
_	772 -1.	2 809 8 278 2,869	-5.8	88.3 91.4	1.000	91.4	8.78	-0.06	0.13 -1.58 68.39	-115 5,589	-		
HEATING EN	ERGY CONSU	MPTION											
Terr	npBin Temp F) (F	diff. Weather Bin D (Hrs)	ata Heat Loss Rati (kbtu/hr)	e Furnace Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adj. Furnace Capacity (kbtu/hr)	Heat Pump Input (KBtu)	Cycling Time Fraction	Heat Pump Supplied Heating (MMBtu)	Heat Pump Electric Counsumption (Therms	Required Auxiliary Heat (kbtu/hr)	Required Auxiliary Heat (IAV)	Aux Electric Heat Consumption (kWh)
	62 7.1 57 12	9 70 9 34	-24.9 -40.9	0.0	1.000	0.0 0.0	0.00	-2,125.60 -3,661.06	-1.75 -1.39	0	-24.95 -40.94	-7.31 -12.00	512 408
	47 22	8 17	-56.9	0.0	1.000	0.0	0.00	-5,417.06	-0.36	0	-56.94 -72.94	-16.68	284
	92 27 37 32	8 1	-00.8	0.0	1.000	0.0	0.00	-12,089.09	-0.18	U U	-104.94	-20.00	31
	27 42	8 C	-136.9	0.0	1.000	0.0	0.00	-18,356.67	0.00	0	-136.94	-40.12	0
	17 62 12 57	8 C	-168.9	0.0	1.000	0.0	0.00	-27,072.85	0.00	0	-168.94	-49.60	0
_		129								0			1,393
Total Cooling Total Cooling	W Demand Wh Consumpt	6.8 Ion 5,589	kvv kvvti										
Total Heating	Therm Consum IV Cost	pton 0 \$0	Thems	-									

					-	Split and Package 17 Hour - 00 He	d DX System - E our: Proposed C	nergy Usage onditions					
Facility Unit Location Mfg Model #	Mosquite Car AHU-7	itrol											
→ec: 7 EX7 is/i/8/i/7 Estimated SF Serve Max Cooling Load Max Heating Load Design CA Cooling Approx # of People Average network for People Inside Heating Desi Inside Heating Desi Kot - Cooling Tbail - Cooling Tbail - Cooling Tbail - Heating	nd by Unit Temp Temp Is Area at gam at Temp gri Temp	2400 72.9 96.0 47 40 6 0.7 74 74 74 7,120,4 739 0,0 5,98	SF Mbultr Hoain deg-F deg-F deg F Mult-degF deg F Mult-degF deg F	400SF/Ten SC MBH/1000SF v 01	ð Safety Fástor								
Cis Cooling System		6.6 78 11.5 1.842 0 8.78	tons New EER/SEER NWTan Age of Unit (yrs) Full Laad KW (de	nPLV opradied 0.6% per year									
Heat Pump System		0 01 0 0 00 0 0	Hotolia COF Age of Unit (yrs) kbtully input										
Electric Heating Cap	sacity	9	KVV										
Average ⊟lectric Co Average Natural Ga	s: s Cost	0.866 8.000	\$765Mt \$7Them										
Temp Bin	Temp diff.	Weather Bin Data	Heat Loss Rate	DK Capacity	Cycling Capacity	Adjusted DX Capacity	Rated Electric Input	Cycling Time	DX Supplied	DK Electric			
(+) 102 97 92 87 82 87 77 72	(F) 28.2 18.2 13.2 8.2 3.2 -1.8	(Hrs) 0 1 11 275 821 862 539 2,509	(kolumn) 883 72.7 57.0 41.4 25.7 10.1 -5.8	(x300/Hr) 78.2 78.2 85.3 85.3 81.4	Adj. Factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	(#20.4977) 76 2 79 2 82 3 95 3 88 3 91 4	6,78 6,78 6,78 6,78 6,78 6,78 6,78 6,78	H 100 0.66 0.72 0.60 0.30 0.11 -0.06	CODING ((MBCU) 0 00 0 00 11.37 21.11 8 67 -302 38 84	Counsumption (499n) 6 54 938 1,679 886 -224 3,119			
HEATING ENERGY	CONSUMPTI	ION											
Temp Bin (F) 52 57 47 42 37 32 27 22 17 12 Total Contine M/CP	Temp diff. (F) 7.8 17.8 22.9 27.8 32.9 37.8 32.9 37.8 42.8 47.8 57.8	Weather Bin Data (Hrs) 108 60 31 10 3 1 0 0 0 0 0 0 0 211 89	 Heat Loss Rate (kbtu/hr) -34 8 -40.9 -56.9 -72.9 -80.9 -104.9 -126.9 -126.9 -166.9 -166.9 -166.9 -166.9 -166.9 -166.9 -166.9 -166.9 -166.9 	Furnace Capacity (idea/hr) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Cycling Capacity Adj. Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj, Furnace Capacity (16tul*r) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (18tu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Cycling Time Fraction -2,125.68 -3,681.06 -5,417.06 -7,367.00 -9,573.02 -12,099.09 -14,885.54 -18,355.87 -22,326.03 -27,072.85 -32,847.04	Heat Pump Supplied Heating (MMBtu) -254 -248 -176 -073 -027 -010 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Fumace Counsurgation (Therms 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary Heat (khtuhr) -24.95 -40.94 -60.94 -72.94 -104.94 -104.94 -104.94 -136.94 -136.94 -136.94 -152.94 -188.94	Required Auxiliary Heat (k/V) -7.31 -12.00 -18.68 -21.37 -28.06 -30.75 -35.44 -40.12 -44.81 -49.50 -54.19	Aux Electric Heat Consumption (kVM) 7720 517 214 78 31 0 0 0 0 0 0 0 2,384
Total Cooling KVh C Total Heating KVh C Total Heating KVh C Total Heating Them Annual Energy Con	Consumption Consumption In Consumption st	3,119 2,334 1 0 \$0	kWh kWh Therms										

OPTERRA An CNOIC company

Project:	Broward - South Maint Blog A									Run Date/Tir	ne: 10/02/17 🕲
Ann	ual Energy										
an	d Demand (pg 1 of 2)	Ann	Source Energy	Annual Site	Energy	Lighting	3	HVAC Energy		-	Peak
-	a semana (pg s or s)	Total	EUI	Elect	Net Ges	Electric	Electric	Nat Gas	Total	Elect	Cooling
Annus	FREEDY LISE OF DEMAND	Mbtu	kBtu/sf/vr	kWh	Therms	kWh	kWh	Therms	Mbtu	kW	Tons
0	Base Design	458	143.17	44 744		13.670	16 939		58	17	5
1	0+TStat Management EEM	443	138.48	43,279	÷÷-	13,670	15,474		53	13	5
2	1+Pkg HVAC Eff EEM	411	125.41	40,131		13,670	12,327		42	13	5
3	2+Lay-In Ceiling Insulation	407	127.10	39.724	-	13.670	11.920		41.	11	5
Increr	nental SAVINGS (values a	re relative to prev	ious measure (% s	avings are relative to	base case use),	negative entries i	ndicate increased us	e)	5 (05.)	.1 (-0 (-194
-	1+ Dia HUAC Eff EEM	15	4.09 (3%)	3 147 (7%)		0 (0%)	3 147 (10%)		11 (19%)	-1 (-3%)	0 (006)
2	2+Lav-In Caling Insulation	4	1.30 (196)	407 (196)		0 (0%)	405 (29%)		1 (296)	2 (15%)	0 (2%)
Cumul	ative SAVINCS (values (and Diseavings) as	e relative to the Ri	vee Case, nenative en	tries indicate in	ressed use)					
1	0+TStat Management EEM	15	4.69 (3%)	1 465 (3%)		0 (0%)	1 465 (9%)		5 (9%)	-1 (-5%)	-0.(-195)
2	1+Pkg HVAC Eff EEM	47	14.76 (10%)	4,613 (10%)		0 (0%)	4.612 (27%)		16 (27%)	-1 (-5%)	-0 (-196)
3	2+Lay-In Ceiling Insulation	51	16.06 (11%)	5,020 (11%)		0 (0%)	5,019 (30%)		17 (30%)	1 (10%)	0 (1%)

Broward County - RFP No: R1243101PI -Consultant Services, Energy Audit and Performance Consultant Services:

Split System - Savings Summary

Facility Unit Location

South Maintenance Bldg C

Existing Conditions Mfg

Mfg	Goodman	Peak kW	
Model #	GSC030361DE	kWh	11,864
Date Mfg	2007	_	

Baseline Data

Proposed Conditions

Mfg Model #

Energy Usage

Existing Conditions	00-08 Hrs	3.1	kW	1,840	kVVh	0	Therms
	09-16 Hrs	3.1	kW	3,621	kVVh	0	Therms
	17-00 Hrs	3.1	kW	2,797	kWh	0	Therms
	Total	3.1	kW	8,259	kWh	0	Therms
		#DIV/0!		69.6%			
Proposed Conditions	00-08 Hrs	3.1	kW	1,792	kWh	0	Therms
	09-16 Hrs	3.1	kW	3,479	kVVh	0	Therms
	17-00 Hrs	3.1	kW	2,718	kWh	0	Therms
	Total	3.1	kW	7,989	kWh	0	Therms
		#DIV/0!		67.3%			
Unadjusted Annual S	Savings	0.0	kW		Adjusted	for BAS	
	270	kWh		0.0	kW		
		0	Therms		147	kWh	

					Split and I 00 Ho	Packaged DX Syst our - 08 Hour: Exis	em - Energy Us ting Conditions	age				
Facility	South Mainte	mance										
Mg	Gooderian			20								
Model #	SISC030861	TE .		4								
" Hall 75x7 (5 W/67 Estimated SF Serv Max Cooling Load Max Heating Load Design GA Cooling Design GA Heating Approxit of People	ed by Unit Temp Temp In Area	1280 36.0 56.0 97 40 7	SF kbtu/hr kbtu/hr cog-F cog-F	400SF/Ton 12.5 MEH/1038SF	TAG	LOCATION	MFG	MODEL	MF/G YR 2007	EER	COP	1
Average internal hi	rat gam	0.9	Repturing							1 m		1
nside Cooling Des naide Heutria Des	ian Temp ian Temp	70	cleg-F cleg-F		-	2				-	-	
tof Conling		1,565.7	bruth-clegF							1		1
Ital - Cooling (tot. Heating		73.9	dag-F Innuk clarif		-	-		-		-		
bal - Heating		69.5	deg-F									1
DN Cooling System	n.	8 96 1.043 1.0 3.29	tons latu/hr New EERSEEr KMTon Age of Unit (yrs Full Load KW(o	aviPLV) legtaced 0.5% per year;	"Repare Units In	Red						
lesting System		nn seasaassae n 0 0 0 0	Iditufin COP Age of Unit lyns Rotufin Input	9								
lectric Heating Ca	ipacty	5,00	10/V									
verage Electric D verage Natural G	es Cost	0.000 0.000	\$3865h \$7Therm									
OOLING ENERG	Y CONSUMPT	ION										
Temp Bi	n Temp diff.	Weather Bin Data	Heat Loss Rate	DX Capacity	Cyding Capacity	Adjusted EX Capacity	Rated Electric Input	Cycling Time	DX Electric			
102	28.2	(Hrs) 0	(kbtu/hr) 44.1	(Kotu/hr) 33.8	Adj. Hactor 1.000	(kotuhr) 33.8	3.29	1.00	Counsumption (K/Vh)	-		
97	23.2	0	36.3	35.2	1.000	35.2	3.29	1.00	0			
87	13.2	54	20.6	38.0	1.000	38.0	3.29	0.54	96			
82	82	643 869	12.8	39.4	1.000	39.4	3 29	0.32	687 348			
72	-1.8	624	-2.9	42.2	1.000	42.2	3.29	-0.07	-139			
EA TING ENERG	Y CONSUMPT	ION										
Temp Bi	n Temp diff. (F)	Weather Bin Data (Hrs)	Heat Loss Rate (kbtu/hr)	e Furnace Capacity (idstu/hr)	Cycling Capacity Adj. Factor	Adj. Furnace Capacity (kbtuhr)	Heat Pump Input (kBtu)	Cycling Time Fraction	Furnace Counsumption (Themis	Required Auditary Heat (kbtu/hr)	Required Auditary Heat (kW)	Aux Electric Hea Consumption (kA
62 57	7.5	165	-3.7	0.0	1.000	0.0	0.00	-318.27	0	-3.75 -6.24	-1.10	181 225
52	17.5	80	-8.7	0.0	1.000	0.0	0.00	-830.95	0	-8.74	-2.56	205
42	27.5	15	-13.7	0.0	1.000	0.0	0.00	-1,478.29	0	-13.74	-4.03	60
37	32.6	6	-18.2	0.0	1.000	0.0	0.00	-1,870.20	0	-16.24	-4.76	24
27	42.5	á	-21.2	0.0	1.000	0.0	0.00	-2,848.29	0	-21.24	-8.22	0
22	47.5	0	-23.7	0.0	1.000	0.0	0.00	-3,464.72	0	-23.74	-6.96	0
12	57.5	0 433	-28.7	0.0	1.000	0.0	0.00	-5,103.61	0	-28.74	-8.42	0 648
stal Cooling KVVE stal Cooling KVVh otal Heating KVVh	emand Consumption Consumption	3.1 992 848	larv larvh larvh									
otal Heating Then	m Consumption	0 \$0	Therms	-								

					9	Split and Package 09 Hour - 16 F	d DX System - E lour: Existing Co	nergy Usage					
Facility Unit Location Mfg Model #	South Maint Bildg C Goodman GSCU30381	enante DE											
THEO TEXT IS /// Estimated SF Sr Max Cooling Los Max Heating Lo Design CA Cool Design CA Cool Design CA Cool	eur erved by Unit ed ing Temp ing Temp ing Temp ing Temp	1200 36.0 48.0 97 40 3	SF kbtwhr kbtwhr deg.F deg. ⁵⁵	4005F/Ton 50 MBH/1000SF x 01) Saleby Factor								
Average Internal Inside Coping D Inside Heating D Ktot - Cooling That - Cooling Ktot - Heating That Heating	heat gàn Iesigo Temp Iesign Temp	0.3 74 76 565 2 73 8 -1600 0 69 8	ktowing deg F deg F bruih-degF deg F bruih-degF deg F										
Cix Cooling Sys	tern	3 96 11.5 1 842 10 9 28	tons kburr New EER/SEER KWP an Age of Unit (yrs) Fall Load KW (do	APLV									
Heat Fump Sys	inter en en en en en en en en en en en en en	10 0 000000022 01 93 0	Hotoly COF Age of Unit (grs) kbouile input										
Electric Healing	Capacity	ň	KVV										
Average ∃lectric Average Natura	-Cos: I Gas Cost	6.866 0.005	\$/0.54h \$/Them										
COOLING ENE	Bin Temp diff.	Weather Bin Data (Hrs)	Heat Loss Rate	DK Capacity	Cycling Capacity Adi. Factor	Adjusted DX Capacity (idetulbe)	Rated Electric Input	Cycling Time Fraction	DX Supplied Cooling (MMRtu)	DX Electric Couplist motion (AMb)			
10 97 82 87 87 87 87 77 72	2 28 2 23 2 18 2 13 2 8 2 3 2 3 2 3 2 -1.8	0 5 174 816 609 276 2,669	44 1 38.3 28.4 20.6 12.8 5.0 -2.9	33.8 35.2 36.6 38.0 39.4 40.8 42.2	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	33 8 35 2 36 6 38 0 39 4 40 8 42 2	3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29	1.00 1.00 0.70 0.54 0.32 0.12 -0.07	0 00 0 18 4 95 16 22 10.44 3 02 -0 80 34.01	0 18 445 1,406 872 244 -82 2,822			
HEATING ENER	RGY CONSUMPT	ION											
Temp	Bin Temp diff.	Weather Bin Data	a Heat Loss Rate	Furnace Capacity	Cycling Capacity	Adj. Furnace Capacity	Heat Pump Input	Cycling Time	Heat Pump Supplied	Fumace	Required Auxiliary	Required Auxiliary	Aux Electric Heat
	7.8	(Hrs) 70 94	-12.5 20.6	(kotu/nr) 0.0	1.000	(xotuvor) 0.0	0.00	-1,068.49	-B 77 0.20	Counsumption (Therms) 0	-12.55	-3.58 6.02	257 257
52	17.8	17	-28.5	0.0	1.000	0.0	0.00	-2,714.87	-0.49	ů O	-28.54	-8.36	142
42	27.8 32.9	2	-44.5	0.0	1.000	0.0	0.00	-4,793.68 -8.052.23	-0.09	0 0	-44.54	-13.05	26 15
32 27	37.8 42.8	0	-60.5 -89.5	0.0	1.000	0.0 0.0	0.00	-7,501.03 -9,198.77	0.00	Ŭ Ŭ	-60.54 -68.54	-17.74 -20.08	0
22	47.8 62.8 57.8	0	-78.5 -84.5 -92.5	0.0	1.000	0.0	0.00	-11,172,75 -13,647,01 -18,435,78	0.00	0	-78.54 -84.54 -92.54	-22.43 -24.77 -27.11	0
Total Cooling ky Total Cooling ky Total Heating ky Total Heating Th Annual Energy	V Demand Wh Consumption Mh Consumption term Consumptio Cost	129 3.1 2,922 699 n 0 \$0	kW KWh KWh Therms							ū			899

					3	Split and Package 17 Hour - 00 F	d DX System - E lour: Existing Co	nergy Usage Inditions	1. A. A. A. A. A. A. A. A. A. A. A. A. A.				
Facility Unit Location Mfg Model #	South Main Bldg C Goodman GSCU303d	enan be											
Text IS/RE Estimated OF Se Max Cooking Los Max Heating Los Design CA Cooli Design CA Cooli Design CA Cooli	ur Ved by Unit 1 d ng Temp ng Temp	1200 36 9 48 0 97 40	SF Hotulter Hotulter deg-F deg-T	400SF/Ton 50 MBH/1000SF x 0 I) Safety Factor								
Average internal Inside Cooling D Inside Heating D Ktot - Cooling Tbal - Cooling Ktot - Heating Tbal - Heating Tbal - Heating	ie in wied heat gam islon Terno islon Terno	0.3 74 70 565 2 73 8 -1600 0 69 8	ktowing deg F deg F bruch-degF deg F bruch-degF deg F										
City Cooling Syste	m	3 36 115 1042 10 9.20	tons kbuiñi New EER/SEER KWTan Age of Unit ((rs) Fail Laad KW (di	MPLV Consided 0.5% pcr year									
Heat Fump Syst	H.	10 9999999999 10 90 90	Howhr COF Age of Unit (grs) kbluife input										
Electric Healing	apapity	ň	KVV										
Average Electric Average Natural	Cos: Bas Cóst	0.806 0.000	\$7655h \$7Them										
COOLING ENER	GY CONSUMP	TION											
Temp (F)	Bin Temp diff (F)	Weather Bin Dat (Hrs)	a Heat Loss Rate (kbturhr)	DK Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adjusted DX Capacity (kbtu/hr)	Rated Electric Input (kVV)	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	DK Electric Counsumption (KMh)			
102 97 82 87 82 77	28 2 23 2 18 2 13 2 8 2 3 2	0 1 11 275 821 862	44.1 38.3 28.4 20.6 12.8 5.0	33.8 35.2 36.6 38.0 39.4 40.8	1 000 1 000 1 000 1 000 1 000 1 000	33 B 35 2 36 6 38 D 39 4 40 B	3.28 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29	1.00 1.00 0.78 0.64 0.32 0.12	0.00 0.04 0.31 5.67 10.50 4.28	0 3 491 878 345			
72	-1.8	539 2,509	-2.9	42.2	1.000	42.2	3.29	-0.07	-1.54 19.25	-120 1,625			
HEATING ENER	GY CONSUMP	TION											
Temp	Bin Temp diff	Weather Bin Dat	a Heat Loss Rate	Furnace Capacity	Cycling Capacity	Adj. Furnace Capacity	Heat Pump Input	Cycling Time	Heat Pump Supplied	Fumace	Required Auxiliary	Required Auxiliary	Aux Electric Heat
62	7.8	106	-12.5 -20.5	0.0	1.000	0.0	0.00	-1,068.49	-1.33 -1.23	C C C C C C C C C C C C C C C C C C C	-12.55 -20.54	-3.68 -6.02	390 361
52 47	17.8 22.8	31 10	-28.5 -36.5	0.0	1.000	0.0 0.0	0.00	-2,714.87 -3,690.24	-0.88 -0.37	0	-28.54 -38.54	-8.36 -10.71	259 107
42 37	27.8 32.9	3	-44.5	0.0	1.000	0.0	0.00	-4,793.68 -8,052.23	-0.13 -0.05	0	-44.54 -52.54	-13.05 -15.39	39 15
32 27 22	42.8 47.8	0	-60.5 -68.5 78.5	0.0	1.000	0.0	0.00	-7,501.03 -9,196.77	0.00	0	-60.54 -68.54 78.54	-17.74 -20.08 -22.49	0
17	62.8 57.9	ŭ	-84.5 -92.5	00	1.000	0.0 0.0	0.00	-13.547.01 -16.435.76	0.00	ů	-84.54 -92.54	-24.77 -27.11	ů 0
Total Cooling kW Total Cooling kW Total Heating kW Total Heating th Annual Energy	Demand h Consumption h Consumption arm Consumptio Cost	211 3.1 1,825 1,172 0 0 \$0	kW kWh kWh Therms	_						0			1,172

					3	Split and Package 09 Hour - 16 He	d DX System - E our: Proposed C	nergy Usage anditions					
Facility Unit Location Mfg Model #	South Mainte Bldg C	2000a	_										
Tech fact is/id/0 Estimated BF Sen Max Cooling Load Max Heating Load Max Heating Load Max Heating Load Desgin DA Cooling Average reternal to Inside Heating De Ktot - Cooling Tbail - Cooling Tbail - Cooling Tbail - Cooling Tbail - Cooling Tbail - Loading Tbail - Heating	ed by Unit Temp Temp Is Area al gain ign Temp Ign Temp	1200 365 480 87 47 3 3 13 74 78 565 2 788 -1600.0 69.9	SF Hawm Isaym degF degF Hawm degF degF huh-segF degF huh-segF degF	4005F/Ten 50 MBH/10005F v D 1	ð Safety Fástur								
Ck: Cooling System	a	3 38 115 1842 0 318	tons kbouhr New EER/SEER KWT an Age of Unit (yrs) Fail Laad KW (do	nPLV									
Heat Pump System	2	0 01 0 0 00 0 00	Hound COF Age of Ucit (yrs) kbouin input										
Electric Healing C	ipacity	ă	EVV.										
Awarage Electric C Average Natural S	os: as Cost	0.806 8.005	\$//39h \$/Them										
COOLING ENER	Y CONSUMPT	ION											
Temp B	n Tempdiff. (F)	Weather Bin Data (Hrs)	Heat Loss Rate (kbturhr)	DK Capacity (kbtu/hr)	Cycling Capacity Adj. Factor	Adjusted DX Capacity (kbtu/hr)	Rated Electric Input (KW)	Cycling Time Fraction	DX Supplied Cooling (MMBtu)	DK Electric Counsumption (KMh)	-		
97 92 87 82 77 72	20 2 23 2 10 2 13 2 8 2 3 2 -1.8	0 174 787 816 609 278 2,669	44,1 38,3 28,4 20,6 12,8 5,0 -2,9	33.0 35.2 36.6 38.0 39.4 40.8 42.2	1.000 1.000 1.000 1.000 1.000 1.000 1.000	33 5 2 36 8 38 0 39 4 40 8 42 2	3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13	1.00 1.00 0.78 0.54 0.32 0.12 -0.07	0.00 0.18 4.95 16.22 10.44 3.02 -0.80 34.01	0 18 424 1,338 830 232 -59 2,780	-		
HEATING ENERG	Y CONSUMPT	ION											
Temp B (F) 62 47 42 37 32 27 22 27 12 12	n Tempdiff. (F) 7.8 12.8 17.8 22.9 27.8 32.9 37.8 42.9 47.8 62.8 57.8	Weather Bin Data (Hrs) 70 34 17 5 2 1 0 0 0 0 0 0 129	Heat Loss Rate (kthuhr) -12.5 -20.5 -28.5 -38.5 -38.5 -44.5 -52.5 -88.5 -78.5 -88.5 -78.5 -88.5 -84.5 -92.5	Furnace Capacity (ktsu/hr) 00 00 00 00 00 00 00 00 00 00 00 00 00	Cycling Capacity Aci, Factor 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000	Adj, Fumace Capacity (btruly) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (KBtu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Cycling Time Fraction -1,06849 -1,04652 -2,71487 -389024 -4,79366 -8,05223 -7,50103 -9,18877 -11,172,75 -11,727 -11,727 -11,6435,78	Heat Pump Supplied Heating (MMStu) -0.184 -0.104 -0.14 -0.04 -0.05 -0.05 -0.00 0.00 0.00 0.00 0.00 0	Heat Pump Electric Counsumption (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Required Auxiliary Heat (dotu/nr) -1256 -20.54 -20.54 -20.54 -38.54 -38.54 -62.54 -60.54 -60.54 -60.54 -60.54 -60.54 -60.54 -61.54 -62.54 -62.54	Required Auxiliary Heat (JAV) -3.88 -6.02 -6.02 -6.02 -15.39 -15.39 -17.74 -20.08 -22.43 -24.77 -27.11	Aux Electric Heat <u>Consumption (kVkh)</u> 205 205 142 54 15 0 0 0 0 0 0 0 0 0 0 0 0 0
Total Cooling kWI Total Cooling kWf Total Heating kWf Total Heating The Annual Energy C	lemand Consumption Consumption m Consumption ost	3.1 2,780 699 1 0 \$0	kW kWh kWh Therms	-									

					5	Split and Package 17 Hour - 00 He	d DX System - E our: Proposed C	nergy Usage onditions					
Facility Unit Location Mfg Model #	South Mainte Bldg C	inan be											
■ ACU TEXT IS //EVO Estimated GF Serv Max / Easting Load Design CA Cooling Approx # of People Average retents /b Inside Cooling Des Inside Cooling Des Inside Feating Des Inside Feating Des Inside Feating Des Inside Feating Des Inside Feating Des Inside Feating Des Inside Feating Des Inside Feating Des Inside Feating Des Inside Feating Des Inside Feating Des Inside Feating Des	ed by Unit Temp Temp In Area Ist gam Ign Temp Ign Temp	1200 389 480 40 3 3 3 3 74 70 5652 738 -16000 698	SF ktruhm ktruhm deg F deg F deg F ktruh deg F deg F btruh deg F deg F deg F	4005F/Ten 50 MB#/10005F y 01	a Safety Factor								
Cix Cooling System	a	3 98 11,5 1,842 0 3,13	tons kbouhr New EER/SEER kW/Tan Age of Unit (yrs) Full Laad kW (de	nPLV consided 0.6% per year									
Heat Puno System	2	10.01 20200000022 0 00.00	Houthin COF Age of Unit (yrs) Kotuite input										
Electric Heating C:	ipacity	ň	EVV										
Average Electric C Average Natural G	os: as Cóst	0.896 8.008	\$7854h \$7Them										
Temp Bi	n Tempdiff.	Weather Bin Data (Hrs)	Heat Loss Rate	DK Capacity	Cycling Capacity Adi. Factor	Adjusted DX Capacity (idetulbe)	Rated Electric Input	Cycling Time Fraction	DX Supplied Cooline (MMBtu)	DK Electric Counsurantian (AAb)			
102 97 82 87 62 77 72	28 2 23 2 18 2 13 2 8 2 3 2 -1.8	1 1 11 275 821 862 539 2,509	(44.1) 38.3 28.4 20.6 12.0 5.0 -2.9	33.8 35.2 36.6 38.0 39.4 40.8 42.2	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	(10,000) 36,52 36,6 38,0 39,4 40,8 42,2	3 13 3 13 3 13 3 13 3 13 3 13 3 13 3 13	1.00 1.00 0.78 0.64 0.32 0.12 -0.07	00010 (millio) 0.04 0.31 5.87 10.50 4.28 -1.54 18.25	0 3 27 467 835 328 -115 1,546	-		
HEATING ENERG	Y CONSUMPT	ION	_										
Temp Bi (F) 82 47 42 37 32 27 22 17 12 Total Cooling KWD	n. Temp diff. (F) 12.8 17.8 22.9 27.8 32.9 37.8 32.9 37.8 42.9 47.9 62.8 67.9	veeather Bin Data (Hrs) 106 80 31 10 3 1 0 0 0 0 0 0 0 0 0 0 0 211 3.1	 Heat Loss Rate (kotu/hr) 12.5 20.5 28.5 36.5 52.5 60.5 68.5 76.5 64.5 62.5 	(courtrace Capacity (courtre) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ael, Factor 1000 1000 1000 1000 1000 1000 1000 10	A G Furnace Capachy (bturk) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Heat Pump Input (EBu) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Cycling Time Fraction -1,08846 -1,04852 -2,714.87 -3,690.24 -4,783.66 -8,052.23 -7,501.03 -9,198.77 -11,172.75 -13,647.01 -16,435.78	Heat Pump Suppled Heating (MMBt) -1-33 -0.8 -0.37 -0.13 -0.05 0.00 0.00 0.00 0.00 0.00 0.00	Fumace Counsumption (Therms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Mequired Auxiliary Heat (ubtu/hr) -1255 -2054 -2854 -3854 -3854 -6054 -6054 -6054 -6854 -6854 -6854 -6854 -6854	Μασμαίτει Αμασίλαγ -8 8 -6 02 -8 8 -10.71 -13.05 -15.39 -17.74 -20.09 -22.43 -24.77 -27.11	Aux Electric Heat Consumption (kWh) 380 381 258 107 39 15 0 0 0 0 0 0 0 1,172
Total Cooling kWh Total Heating kWh Total Heating Ther Annual Energy Co	Consumption Consumption m Consumption ost	1,548 1,172 0 \$0	kWh kWh Thems										

LIGHTING Savings Calculations

OpTerra ES performed a detailed audit of all existing lighting equipment and lighting controls for the buildings identified in Group B. During the audit and development process, OpTerra ES gathered as much information as possible to limit the number of assumptions and to generate savings calculations that are as accurate as possible. At each individual site, the energy consumption data of the existing lighting equipment was observed and recorded. The power consumption of each fixture was calculated and then multiplied by the annual run hours to calculate annual energy usage. The proposed energy usage was then calculated by multiplying the same annual run hours by the power consumption of the proposed LED products. The total annual energy savings were calculated by subtracting the proposed usage from the existing usage. The lighting database is not presented in this document due to its large size. This section presents savings calculation summary tables for interior lighting, exterior lighting and site totals (interior and exterior lighting combined).

Consolid frequency Frequency Saming Consolid frequency <thconsolid frequency<="" th=""> Consolid frequency Consolid frequency Consolid frequency Consolid frequency Consolid frequency Consolid frequency Consolid frequency Consolid frequency Consolid frequency Consolid frequency Consolid frequency Consolid frequency Consolid frequency Consolid</thconsolid>	Energy Usage	Energy Usage	Energy Usage	Usage					nergy Saving	S		Cost Sav.	
No. No. <th>₹</th> <th>Prop Sensor Qty</th> <th>Existing Energy Usage (kW)</th> <th>Existing Energy Usage (kWh)</th> <th>Proposed Energy Usage (kW)</th> <th>Proposed Energy Usage (kWh)</th> <th>Energy Savings (kW)</th> <th>Energy Savings (kWh)</th> <th>Controls Savings (kWh)</th> <th>AC Savings (kWh)</th> <th>Total Savings (kWh)</th> <th>OpEx Savings (\$)</th> <th>Est. FPL 1centive (\$)</th>	₹	Prop Sensor Qty	Existing Energy Usage (kW)	Existing Energy Usage (kWh)	Proposed Energy Usage (kW)	Proposed Energy Usage (kWh)	Energy Savings (kW)	Energy Savings (kWh)	Controls Savings (kWh)	AC Savings (kWh)	Total Savings (kWh)	OpEx Savings (\$)	Est. FPL 1centive (\$)
No. No. <td>25</td> <td>0</td> <td>19.0</td> <td>55,520</td> <td>6.8</td> <td>19,382</td> <td>12.2</td> <td>36,138</td> <td>-</td> <td>417</td> <td>36,555</td> <td>\$ 607</td> <td>\$ 342</td>	25	0	19.0	55,520	6.8	19,382	12.2	36,138	-	417	36,555	\$ 607	\$ 342
	880	82	43.4	289,367	22.0	154,092	21.4	135,274	6,450	10,382	152,106	\$ 5,404	'
32 6 112 3230 0.5 3240 0.5 3240 0.5 3240 0.5 3240 0.5 3240 0.5 3240 0.5 3240 0.5 3240 0.5 3240 0.5 3240 0.5 3240 0.5 3240 0.5 3240 0.5 <	581	71	32.5	166,399	18.0	91,966 23.051	14.5	74,434	4,573	5,627	84,634	\$ 546 \$ 546	- 1
20 0 0 100 000 100 000 100 000 100 000 100 1000	138	46	11.6	38.682	4.1	14.514	7.5	24.168	1.201	1.856	27.225	5 589	
0 0	229	0	16.4	55,344	8.1	26,927	8.3	28,417	-	2,056	30,473	\$ 1,254	'
(b) (c) (c) <td>00</td> <td>5</td> <td>0.8</td> <td>1,600</td> <td>0.5</td> <td>973</td> <td>0.3</td> <td>626</td> <td>141</td> <td>39</td> <td>806</td> <td>\$ 30</td> <td>'</td>	00	5	0.8	1,600	0.5	973	0.3	626	141	39	806	\$ 30	'
Max 17 31.7 3	1098	60	76.8	285,427	36.8	129,895	40.0	155,532	3,572	11,408	170,512	\$ 4,640	'
	1260	17	82.7	338,786	34.9	139,016	47.8	199,770	955	13,847	214,571	\$ 6,440	
127 11 0.00 0.12 0.000 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 <td>1355</td> <td>82</td> <td>90.3</td> <td>281,237 361 451</td> <td>36.2</td> <td>140,126</td> <td>48.3 54 1</td> <td>220 533</td> <td>988</td> <td>15 854</td> <td>130,021 739 336</td> <td>× ۹747</td> <td></td>	1355	82	90.3	281,237 361 451	36.2	140,126	48.3 54 1	220 533	988	15 854	130,021 739 336	× ۹747	
316 110 237 6303 110 5304 110 237 510 2105 510<	1270	21	75.0	245,810	41.2	135,059	33.8	110,751	3, 398	6,963	121,113	\$ 6,898	'
515 310 310 310 310 310 310 310 3100 312 3000 312 3000 312 3000 310 3100	264	10	25.7	88,863	10.6	35,755	15.1	53,107	832	3,775	57,714	\$ 1,414	-
500 130 130.20 11.24 0.24.06 2.4.06 5.4.00 5.2.06	515	13	31.2	89,019	17.8	50,369	13.5	38,649	1,052	2,691	42,392	\$ 1,386	
1 4.14 1.73,200 1.01 3.73,01 5.01 9.105 9	506	18	36.9	130,297	12.4	42,499	24.5	87,799	1,566	5,804	95,169	\$ 2,565	
214 0 161 7.500 61 1.320 1.20 9.4.50 7.13 7.	536	14	43.8	129,289	13.0	37,631	30.7	91,658	540	6,465	98,662	\$ 3,247	
440 2 112 $21,24$ $24,961$	248	0	16.1	54,590	4.1	13,292	12.0	41,297		2,801	44,099	\$ 1,314	
100 111 $37,432$ 52 $10,200$ $51,43$ 52 $10,200$ $11,430$ <	1 16	x (12.4	41,461 20 130	0.0	C08,12	9.0 0 1	19,290 16 000	455	1,388 1,720	21,440 10,040	5 8U/ 212	
320 230 53.0 5.3.04 1.51 3.6.01 3.6.33 5 3.2.045 5.3.04 <	192	0	11.1	30,133	0.0	20.057	5.2	17.426	-	1.192	18.618	\$ 1.261	
313 31 31 31 31 31 32	392	28	29.0	86,434	12.8	38,404	16.1	48,031	1,838	3,456	53,324	\$ 919	
3940 103 2016 97,802 103 640.45 7.638 460.45 7.638 460.45 7.638 460.45 7.638 460.45 7.638 472.45 7.337 5 <	157	2	10.0	32,039	2.8	8,396	7.2	23,643	80	1,664	25,387	\$ 769	\$ 1,119
0 4 7.3.15 1.3 6.5.3.3 1.5 7.3.3 5.5.3.3 5.5.3.3 5.5.3.3 5.5.3.3 5.3.3.3.3 5.3.3.3.3 5.3.3.3	3547	193	201.6	947,802	102.8	487,657	98.8	460,145	7,638	34,999	502,783	\$ 16,250	
228 64 126 126753 119 668 1267 3264 1276 313 733 100 5324 5 737 5 7 447 287 153.2 56447 56.8 2737 34.46 2.737 34.344 5 5.737 5 <	69	0	4.2	27,157	2.3	15,339	1.8	11,818	1	896	12,714	\$ 338	
442 22 23.8 11.1 1.2.6 25.8.4 1.2.6 4.09 32.16 5 </td <td>283</td> <td>64</td> <td>21.6</td> <td>126,535</td> <td>11.9</td> <td>69,890</td> <td>9.7</td> <td>56,645</td> <td>2,261</td> <td>4,289</td> <td>63,194</td> <td>\$ 1,371</td> <td></td>	283	64	21.6	126,535	11.9	69,890	9.7	56,645	2,261	4,289	63,194	\$ 1,371	
386 194 177.2 746, 84 10.29 435,703 74.3 311,121 14,666 22,737 36,344 5 15,207 5	442 1474	22	23.8	127,670 504.472	13.8	73,823 207.910	10.0 87.4	53,847 296.561	1,250	4,099	59,196 332.398	\$ 2,787 \$ 6.543	6.971
680 00 60.7 339.712 35.0 38.78 5 8.47.6 5 8.47.6 5 8.47.6 5 8.47.6 5 8.47.6 5 8.47.6 5 8.47.6 5 8.47.6 5 8.47.7 <t< td=""><td>2869</td><td>194</td><td>177.2</td><td>746,824</td><td>102.9</td><td>435,703</td><td>74.3</td><td>311,121</td><td>14,486</td><td>22,737</td><td>348,344</td><td>\$ 15,207</td><td></td></t<>	2869	194	177.2	746,824	102.9	435,703	74.3	311,121	14,486	22,737	348,344	\$ 15,207	
308 0 22.8 67/36 13.1 33.466 9.7 20.00 7.10 20.03 3.1073 5.173 5.1073 5.1073 5.1073 5.1073 5.1073 5.1073 5.1073 5.1073 5.1073 5.1073 5.1073 5.1073 5.1073 5.1073 5.1073 5.1073 5.103 5.1073 5.103 5.1013	843	0	60.7	329,712	35.0	187,869	25.7	141,844	-	9,512	151,356	\$ 8,476	-
214 19 219 219 80 25 80 25 703 55,105 5 703 703	308	0	22.8	67,536	13.1	38,496	9.7	29,040		2,033	31,073	\$ 827	
673 0 533 143,768 31.2 81,525 22.4 62.243 - 4,770 6,7013 5,801 5 81 5 - 43 0 23,073 -14 13,761 -5,803 16 -7,913 5,913 5 81 5 - 44 137,811 211 2,860 18 -<	224	19	22.9	80,525	8.9	29,374	14.0	51,151	1, 239	3,715	56,105	\$ 783	'
134 3 106 $34/33$ 44 $13/51$ 6.2 $21,033$ \sim 1.468 $22,531$ 5 5 5 47 13 1.1 $2,860$ 1.8 $3,022$ \sim $3,022$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $3,125$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$ 5 $1,127$	673	0	53.7	143,768	31.2	81,525	22.4	62,243		4,770	67,013	\$ 891	
43 0 -23 $-5,824$ 1.1 $-5,804$ 1.8 $-5,012$	194	m d	10.6	34,793	4.4	13,761	6.2	21,033	'	1,498	22,531	\$ 627	
64 13 11 $67,347$ $25,3$ $70,463$ $2,223$ $4,216$ $76,902$ 5 $3,125$ 5 7 111 0 29 7,811 2,15 $6,734$ $2,33$ $70,463$ $2,223$ $4,216$ $76,902$ 5 $3,125$ 5 108 5 1051 5 1051 5 1051 5 1061 5 1061 5 $3,125$ 5 108 5 5 108 5 5 108 5 5 108 5 1061 5 108 5 108 5 108 5 108 5 5 108 5 5 108 5 108 5 108 5 106 5 5 5 108 5 5 106 5 5 5 5 5 5 5 5 5 5 5	5		6.7	700/C	1.1	2,800	0'T	3,022			3,022	CHI ¢	
111 0 29 7,811 2.5 6,760 0.4 1,051 \cdot 76 1,127 5 108 5 \cdot 103 \cdot <td>544</td> <td>19</td> <td>46.4</td> <td>137,811</td> <td>21.1</td> <td>67,347</td> <td>25.3</td> <td>70,463</td> <td>2,223</td> <td>4,216</td> <td>76,902</td> <td>\$ 3,125</td> <td>'</td>	544	19	46.4	137,811	21.1	67,347	25.3	70,463	2,223	4,216	76,902	\$ 3,125	'
200 25 135 $40,805$ 67 19916 6.8 $20,800$ $1,191$ $1,500$ $23,581$ 5 888 5 2 316 0 187 51,659 87 10 $23,333$ $10,11$ $23,236$ 5 1066 5 2 3054 5 1066 5 2 3054 5 1066 5 2 3054 5 1066 5 2 3054 5 1066 5 2 3054 5 2 3054 5 1066 5 5 3075 5 3075 5 3075 5 3075 5 3075 5 3075 5 3075 5 3075 5 3075 5 3075 5 3075 5 3075 5 3075 5 3075 5 3075 5 3075 5 3075 5 </td <td>111</td> <td>0</td> <td>2.9</td> <td>7,811</td> <td>2.5</td> <td>6,760</td> <td>0.4</td> <td>1,051</td> <td>-</td> <td>76</td> <td>1,127</td> <td>\$ 103</td> <td>-</td>	111	0	2.9	7,811	2.5	6,760	0.4	1,051	-	76	1,127	\$ 103	-
316 0 187 51,659 87 23,333 101 23,266 \cdot 2.089 30,334 5 1066 5 \cdot <t< td=""><td>240</td><td>25</td><td>13.5</td><td>40,805</td><td>6.7</td><td>19,916</td><td>6.8</td><td>20,890</td><td>1,191</td><td>1,500</td><td>23,581</td><td>\$ 838</td><td>'</td></t<>	240	25	13.5	40,805	6.7	19,916	6.8	20,890	1,191	1,500	23,581	\$ 838	'
512 10 29.1 11.0 56.09 18.2 43.838 567 2.967 47.32 5 2.395 5 - 231 1 26.8 25.921 11.3 1.1897 15.6 40.025 28 770 47.372 5 2.395 5 - 177 0 64.8 11.307 34 1.56 14.025 28 40.05 5 413 5 - - 1182 21 15.4 36.871 18.044 7.8 18.788 636 1.433 20.852 5 637 5 5 340 5 - - 1182 21 1.304 7.8 1.038.824 7734 3.686 1.119.904 5 8.940 5 -<	316	0	18.7	51,659	8.7	23,393	10.1	28,266		2,089	30,354	\$ 1,066	'
231 1 268 25921 11.3 $11,897$ 15.8 $14,042$ 28 70 $14,823$ 5 347 5 57 137 0 16.4 $19,820$ 3.4 $11,214$ 2.9 $8,606$ -6 00 $9,327$ 5 412 5 5 57 5 57 5 57 5 57 5 57 5 57 5 57 5 5632 5637 5 57 5 57	512	10	29.1	69,947	11.0	26,109	18.2	43,838	567	2,967	47,372	\$ 2,395	'
200 5 15.4 3.630 1.6 18.044 7.8 13.033 636 1.433 2.0382 5 637 5 5 5 2.0382 5 637 5 5 5 2.0382 5 637 5 636 1.139 2.0382 5 637 5 637 5 637 5 637 5 637 5 637 5 637 5 637 5 637 5 637 5 637 5 637 5 637 5 637 5 637 5 637 5 637 5 637 5 5 3342 5 3342 5 340 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <td>137</td> <td></td> <td>26.8 6.4</td> <td>25,921 19 820</td> <td>3.4</td> <td>11,89/</td> <td>15.6 0 C</td> <td>14,025 8 606</td> <td>- 28</td> <td>1/0 FM</td> <td>14,823 9 207</td> <td>\$ 34/ \$ 117</td> <td></td>	137		26.8 6.4	25,921 19 820	3.4	11,89/	15.6 0 C	14,025 8 606	- 28	1/0 FM	14,823 9 207	\$ 34/ \$ 117	
1182 21 275.1 1,507,135 90.3 468.311 184.8 1,038,824 77,394 3,686 1,119,904 5 8,940 5 - 125 0 190 55,520 6.8 19,382 12,354 5 607 5 342 2 345 5 607 5 342 2 345 5 607 5 342 5 36,138 - 417 36,555 5 607 5 342 5 340 5 340 5 342 5 36,138 - 417 36,555 5 607 5 342 5 340 5 342 5 340 5 340 5 340 5 340 5 340 5 340 5 340 5 340 5 340 5 340 5 340 5 340 5 340 5 340 5 5 5	204		15.4	36.827	7.6	18.044	7.8	18.783	636	1.433	20.852	\$ 637	
125 0 190 55,520 6.8 19,382 12.2 36,138 - 417 36,555 5 607 5 342 182 0 14.2 29,330 8.2 16,936 6.0 12,454 - 910 13,364 5 340 5 - - 910 13,364 5 340 5 - - 910 13,364 5 340 5 - - 910 13,364 5 340 5 - - 910 13,364 5 340 5 - - 910 13,364 5 340 5 - - - 910 13,364 5 340 5 - - - 910 5 5 20 5 2 2 - - - 340 5 224 5 - - - - 100 10,301 5 16 5 - <td>1182</td> <td>21</td> <td>275.1</td> <td>1,507,135</td> <td>90.3</td> <td>468,311</td> <td>184.8</td> <td>1,038,824</td> <td>77,394</td> <td>3,686</td> <td>1,119,904</td> <td>\$ 8,940</td> <td></td>	1182	21	275.1	1,507,135	90.3	468,311	184.8	1,038,824	77,394	3,686	1,119,904	\$ 8,940	
182 0 14.2 29.330 8.2 16,936 6.0 12,454 - 910 13.364 5 340 5 - 910 13.364 5 340 5 - - 910 13.364 5 340 5 - - 910 13.364 5 340 5 - - 910 13.364 5 340 5 - - 910 13.364 5 340 5 - - 910 13.364 5 340 5 10 13.364 5 340 5 213 5 214 5 214 5 214 5 214 5 214 5 214 5 214 5 214 5 216 5 214 5 216 5 216 5 216 5 216 5 216 5 216 5 216 5 216 5 216 5	125	0	19.0	55,520	6.8	19,382	12.2	36,138	-	417	36,555	\$ 607	\$ 342
99 5 10.1 22,219 5.6 12,757 4.5 9,462 1,001 534 10,997 5 224 5 - 53 9 5.4 16,020 2.9 8,669 2.5 7,361 1,936 565 9,863 5 166 5 - - 16 - 16 2 - 1036 565 9,863 5 166 5 - - 137 5 307 5 - - 100 5 2 2 - - 100 2 2 2 2 10 2 0 7 00 - 107 5 107 5 - - - 107 2 10 2 10 2 10 7 100 307 5 106 5 5 106 5 - - 107 3 3 7 3 7 107 3	182	0	14.2	29,390	8.2	16,936	6.0	12,454		910	13,364	\$ 340	'
53 9 5.4 16,020 2.9 8,659 2.5 7,361 1,336 565 9,863 5 166 5 - 61 0 3.6 11,915 1.6 2.0 7,361 1,336 565 9,863 5 166 5 - 61 0 3.6 11,915 1.6 2.0 7,301 2 133 5 166 5 - 0.03 5 0.03 5 0.02 2.0	66	5	10.1	22,219	5.6	12,757	4.5	9,462	1,001	534	10,997	\$ 224	'
Image: constraint of the state of	23	6	5.4	16,020	2.9	8,659	2.5	7,361	1, 936	565	9,863	\$ 166	'
	61	0	3.6	11,915	1.6	4,911	2.0	7,003		133	7,137	\$ 307	-

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Broward County

OPTERRA

An ENGIE company

384

EXTERIOR L	IGHTING UPGRADES													
	Site Informatio	ſ				Energy	Usage			Ene	ergy Savin	gs		Cost Savings
Building ID	Column1	Exist Fixture Qty	Prop Fixture Qty	Prop Sensor Qty	Existing Energy Usage (kW)	Existing Energy Usage (kWh)	Proposed Energy Usage (kW)	Proposed Energy Usage (kWh)	Energy Savings (kW)	Energy Savings (kWh)	Controls Savings (kWh)	AC Savings (kWh)	Total Savings (kWh)	OpEx Savings (\$)
BH34	Central Homeless Assistance Center	39	39	0	12.6	22,941	2.9	5,365	9.7	17,576	•		17,576	\$ 224
BH35	Booher building	56	56	0	4.9	21,431	1.4	6,005	3.5	15,426			15,426	\$ 403
BH36	North Homeless Assistance Center	107	107	0	8.5	37,121	2.5	10,911	6.0	26,210	•		26,210	\$ 1,662
BH37	Family Success Center, N, Pompano	51	51	0	4.9	21,317	1.1	4,849	3.8	16,469	•		16,469	\$ 457
BH38	Sexual Assault Treatment Center	9	9	00	2.0	8,541	0.4	1,770	1.5	6,771			6,771	\$ 92 6 717
BH40	EPD EINTOITTIEILLEI INOTI. FACIIILY & LAD EAP Our House	0 0	9	0	0.1	394	0.1	4,932						\$ 242 \$ -
BL13	UBRARY, AF, African American	138	138	0	24.5	107,240	4.3	18,968	20.2	88,272	•	•	88,272	\$ 1,253
BL14	LIBRARY, SW, SW Regional	18	18	0	2.9	12,746	0.6	2,733	2.3	10,013	-		10,013	\$ 98
BL15	LIBRARY, WR, West Regional	64	64	0	18.8	164,416	6.2	54,286	12.6	110,131			110,131	\$ 1,185
BL16	LIBRARY, NO, North West Regional	78	78	0	20.1	87,968	5.1	22,325	15.0	65,643			65,643	\$ 711
BL17	LIBRARY, WE, Weston	45	45	0	7.4	32,478	2.1	9,242	5.3	23,236		'	23,236	\$ 394
BL18	UBRARY, LL, Lauderdale Lakes	39	1 33	0	6.9	30,091	1.3	5,624	5.6	24,467	•	•	24,467	\$ 410 6
BLI9	LIBKARY, SL, Stirling Koad	17	17		1.1.1	48,815	6.2	12,549 r 070	х.х г	36,266	•		36,266	\$ 690 5
BL2U BL2U	LIBKARY, NL, NOTTN LAUGE TGAIE	9 9	Q, Q		4.8	21,169	1.3	3,8/8 13 EE7	3.5	10,201			19,291	\$ 305 \$
DL21	LIBRARY, SIV, Dall Fealt	У К	У К		C./	010/7C	2, 1 10 10	700,21	3.7	11.039			11 079	ې ۲12 ک
BL22 BI 23	UBNART, INU, INBIBATE	23	23		0.4 1.1	18.072	0.9 0.9	3,047	3.5	14,023			14.327	\$ 209
BL24	LIBRARY. CP. Century Plaza	0	0	0		= 10 (nor	, ,		, ,	-	•		-	¢ 1
BL25	UBRARY, DA, Dania Beach	38	38	0	1.4	6,185	0.6	2,462	0.9	3,723	•	•	3,723	\$ 464
BL26	UBRARY, CR, Carver Ranches	38	38	0	5.1	22,452	1.7	7,238	3.5	15,214			15,214	\$ 238
BL27	LIBRARY, NW, Pompano Branch	24	24	0	4.8	21,015	1.0	4,494	3.8	16,521	-	-	16,521	\$ 197
BO28-A	PSC - Public Safety Building	139	139	0	40.4	176,755	8.0	35,250	32.3	141,505			141,505	\$ 1,341
BO28-B	PSC - Logistics Warehouse	2	2	0	0.6	2,584	0.2	718	0.4	1,866			1,866	\$ 20
B028-C	PSC - Inventory & Evidence Warehse	6	9	0	1.6	6,964	0.4	1,918	1.2	5,046	•	•	5,046	\$ 59
B028-D	PSC - BSO District 5 Office	Ω	υį	0	1.0	4,490	0.3	1,205	0.7	3,285			3,285	\$ 49 2
62.08		4/ 9/10	4/ 9/r		12.6	205,66	2.8	12,054	2.2	43,309			43,309	\$ 463 \$ 7.111
	GOVETITITETIC CETTET WEST TBAE ENGN Administration North	8V 077	8V 077		41.9	30,034	0.11	200,21	C.0C	101/77			1CT//77	<u>1112,0 خ</u> خ
RO37	DARK Administration Complex	13	6 5		T'/	50,932	0.5	160,05	0.0	3 737			3 737	ب ₃₅ ک
R033	I PARA AUTITITIS LI BUDIT COTTIPIEX	CT VY	CI V		-1 F	261.0 261.0	0.0 V F	5,400 6,082	6.0	78 157			3,132	ب د 113
BP1	CD REGIONAL	469	469		125.0	318.426	30.1	75.945	94.9	242.481			242.481	\$ 2.514
BP2	TOPEEKEEGEE YUGNEE	75	75	0	4.5	10,322	1.7	3,392	2.8	6,930	•		6,930	\$ 299
BP3	EASTERLIN	53	53	0	3.1	13,753	0.9	4,087	2.2	9,667			9,667	\$ 460
BP4	TREE TOPS	104	104	0	22.6	43,536	7.2	13,658	15.4	29,878			29,878	\$ 622
BP5	LONG KEY	115	115	0	21.0	21,252	1.1	1,397	19.9	19,856	•		19,856	\$ 245
BP6	WEST LAKE / Anne Kolb NC	151	151	0	21.6	60,595	4.4	12,045	17.1	48,550	•	•	48,550	\$ 1,205
BP7	BRIAN PICCOLO	160	160	0	55.5	34,616	11.3	7,063	44.2	27,553			27,553	\$ 185
BP8	FERN FOREST	44	4	0	0.7	2,891	0.4	1,831	0.2	1,060	•	•	1,060	\$ 128
BP9	PLANTATION HERITAGE	102	102	0	18.0	36,095	4.8	9,714	13.1	26,381	•	•	26,381	\$ 420
BP 10	SECRET WOODS	28	28	0	4.4	9,537	0.3	736	4.0	8,802	•		8,802	\$ 138
BP 11	HOLLYWOOD NORTH BEACH	43	43	0	6.7	25,703	6.7	25,703	'	'	•	•		- +
BP 12	SAW PALMETTO	0	0	0							•			
BR41	MASS TRAN, North Maintenance	160	160	0	43.8	191,660	15.8	69,296	27.9	122,364	•	•	122,364	<u>5 1,291</u>
BR42	BSO Maintenance Facility	39	39	0	12.6	22,941	2.9	5,365	9.7	17,576	•		17,576	\$ 224 \$
BR43 PP 44	BCJC South Parking Garage	654	654 27	00	67.1 5 2	489,964	32.2	231,623	34.9	258,341	•	•	258,341	\$ 4,315 \$
BN444 BR45	South Maintenance Shon	13)6 13		1.6	53,131 6,847	1./ 03	1,347	0.0	13,304 5 497			13,304	ج 70 21
BR46	MASS TRAN Northeast Terminal	123	123		16.7	70.921		13.657	13.1	57.264	•	•	57.264	¢ (70 ¢
Total		3,906	3,906	•	709.0	2,747,207	198.9	849,177	510.1	1,898,031		•	1,898,031	29,014

Preliminary Energy Performance Report | January 17, 2018

OPTERRA

An CNGAC company

Preliminary Energy Performance Report | January 17, 2018

Site Totals (Interior and Exterior)

Site		Energy	Usage			E	nergy Saving	şs	
Building ID	Existing Energy Usage (kW)	Existing Energy Usage (kWh)	Proposed Energy Usage (kW)	Proposed Energy Usage (kWh)	Energy Savings (kW)	Energy Savings (kWh)	Controls Savings (kWh)	AC Savings (kWh)	Total Savings (kWh)
BH34	31.6	78,461	9.7	24,748	21.8	53,713	-	417	54,130
BH35	48.3	310,798	23.4	160,097	24.9	150,701	6,450	10,382	167,533
BH36	41.0	203,520	20.5	102,876	20.5	100,644	4,573	5,627	110,844
BH37	20.3	68,914	9.2	27,899	11.0	41,014	2,354	1,701	45,069
BH38	13.6	47,223	4.5	16,284	9.1	30,939	1,201	1,856	33,996
BH39	18.9	66,587	9.2	31,859	9.8	34,728	-	2,056	36,784
BH40	0.9	1,994	0.6	1,368	0.3	626	141	39	806
BL13	101.3	392,667	41.1	148,862	60.2	243,804	3,572	11,408	258,784
BL14	85.6	351,532	35.6	141,749	50.1	209,782	955	13,847	224,584
BL15	96.2	445,653	35.3	158,412	60.9	287,242	896	12,015	300,152
BL16	110.4	449,419	41.3	163,243	69.1	286,176	2,949	15,854	304,979
BL17	82.4	278,288	43.4	144,301	39.1	133,987	3,398	6,963	144,348
BL18	32.6	118,953	11.9	41,379	20.7	77,574	832	3,775	82,181
BL19	42.4	137,834	20.6	62,918	21.8	74,916	1,052	2,691	78,658
BL20	41.8	151,466	13.8	48,377	28.0	103,089	1,566	5,804	110,459
BL21	51.1	161,307	15.9	50,188	35.2	111,118	540	6,465	118,123
BL22	20.6	74,466	5.5	19,140	15.2	55,326	-	2,801	58,128
BL23	16.6	59,533	7.4	25,610	9.2	33,923	456	1,388	35,767
BL24	11.9	38,139	6.6	21,239	5.3	16,900	911	1,229	19,040
BL25	12.5	43,667	6.5	22,518	6.0	21,149	-	1,192	22,341
BL26	34.1	108,886	14.5	45,642	19.6	63,245	1,838	3,456	68,538
BL27	14.8	53,054	3.8	12,890	11.0	40,164	80	1,664	41,908
BO28-A	242.0	1,124,557	110.9	522,907	131.1	601,650	7,638	34,999	644,288
BO28-B	4.7	29,741	2.5	16,058	2.2	13,684	-	896	14,580
BO28-C	23.2	133,499	12.3	71,808	10.8	61,691	2,261	4,289	68,240
BO28-D	24.9	132,160	14.1	75,027	10.8	57,132	1,250	4,099	62,481
BO29	165.8	559,835	68.6	219,964	97.3	339,871	25,397	10,440	375,708
BO30	225.1	1,046,858	114.5	508,586	110.6	538,272	14,486	22,737	575,495
BO31	67.8	360,644	41.9	217,959	25.9	142,684	-	9,512	152,197
BO32	24.2	/3,668	13.7	40,896	10.5	32,772	-	2,033	34,805
BU33	30.7	114,764	10.3	35,456	20.4	79,308	1,239	3,715	84,262
BP1	1/8.6	462,194	61.3	157,471	117.3	304,724	-	4,770	309,494
BP10	14.9	44,331	4.7	14,497	10.2	29,834	-	1,498	31,332
BP11	9.7	31,585	7.8	28,563	1.8	3,022	-	-	3,022
BP12	50.0	140 122	22.7	70 740	20.1	77 202	2 222	4.210	02.022
BPZ	50.8	148,133	22.7	70,740	28.1	10 719	2,223	4,210	83,832
DP 5	6.0	21,303	3.4	10,647	2.0	10,718	- 1 101	1 500	10,794 F2 4F0
BF4	20.9	72 011	13.9	24 790	22.2	19 121	1,151	2,090	50,439
BP5	59.0	120 542	9.0	24,790	30.0	40,121	-	2,069	50,210
BP0	50.7	60 529	13.4	18 060	55.5	92,300	207	2,907	95,922
DP 7		22 711	22.0	18,960	39.7	41,578	20	770 601	42,370
DPO	7.0	72,711	5.9	15,045	3.2	9,000	-	1 422	10,207
BF 3 BD / 1	210.0	1 609 705	106.1	527,607	21.0	43,103	77 204	2,433	47,233
BR/12	21.6	1,090,795	100.1	207,007	212.7	52 712	77,594	5,080	5/ 120
DI\4Z	51.0 91.2	70,401 510.254	9.7	24,748	21.8	270 705	-	41/	24,130
BP44	61.3	J19,354	40.4	246,559	40.9	270,795	1 001	910	2/1,/05
BP/IE	15.4	45,350	7.4	20,304	8.U 7 c	23,040	1,001	534	15 260
BR/6	10.9	22,002	3.2	10,004	5.7	64 267	1,930	122	13,300 64,401
Total	2 720 4	10 917 519	4.0 1 119 E	10,500 (179 / 17	1 601 9	6 220 071	171 009	221 515	6 7/1 505
iutai	2,720.4	10,017,510	1,110.5	+,+/0,+4/	1,001.9	0,335,0/1	1/1,009	231,313	0,741,393

WATER ECM Calculations

- W1 Plumbing Fixture Upgrades
- W2 Install Refrigeration Line Heat Exchanger on Ice Machines
- W3 Central Control Weather Based Irrigation

An CNGAC company

Broward County

Preliminary Energy Performance Report | January 17, 2018

Demographics and Usage

1							
		Count	1	2	4	5	7
		Bidg	1	3	4	5	7
		0		-		-	
		Building Name					
		building Name	North Regional	MASS TRAN, North	Government Center		Public Safety
			Courthouse	Maintenance	West	CD REGIONAL	complex
		Catalan	0// 0100		0/7 0100		0/7 0100
		Category	Office BLDG	Maintenance	Office BLDG	Park & Rec	Office BLDG
		Per Square Feet Per Person Allocation Rusiness	250	2000	250	750	250
		Per Day Vicitor for Park / Percention	250	2000	250	750	250
		rei bay visitor for raiky necleation	230	5	250	800	250
		Square Footage	200,000.00	195,189.00	184,820.00	50,516.00	300,720.00
		Sale Tax%	6.00%	6.00%	6.00%	6.00%	6.00%
		Ave bre (day ON	-2h- ()((-ih)	alter (Miniterer)	2h = () ((site - s)	2h=()((-h)	2h = () (i=i+==)
	SE per v per	Ave firs/day ON	<2nr (visitor)	<2nr (visitor)	<2nr (visitor)	<2nr (visitor)	<2nr (visitor)
	ET U son daily daily	P1 Ave Daily Count	225	5	225	540	225
ď	USE of USE of USE of USE of USE USE USE USE USE	E Sat/Sun days/yr possible ON	261	261	261	261	201
no	Y pe V pe V AL CET CET	5 Holiday/vacation days/vr OFF	10	10	10	10	10
Ģ	WAT daily (flus DRIP Pers Pers SHO	مراجع (Male	50%	50%	50%	50%	50%
uo	0.25 0.25 0.15	MALE count	112.5	2.3	112.5	270.0	112.5
ati	0.50 0.15	FEMALE	112.5	2.3	112.5	270.0	112.5
Inc		Group Occupancy Days	355.0	355.0	355.0	355.0	355.0
b		Group Water Closet Use per day	84.4	1.7	84.4	202.5	84.4
		Group Urinal Use per day	28.1	0.6	28.1	67.5	28.1
		Group Faucet Use per day Group Total Shower Use per day	33.8	0.7	33.8	81.0	33.8
	<u> </u>	Ave hrs/day ON	Visitor <4hrs	Visitor <4hrs	Visitor <4hrs	Visitor <4hrs	Visitor <4hrs
	USE ly pe	P1 Ave Daily Count	25	1	25	60	25
2	SET erson th) th) (1)	☐ M-F days/yr ON	261	261	261	261	261
dn	er per	E Sat/Sun days/yr ON	104	104	104	104	104
ro	ATER I y pi I NAL I NAL I Son CET	ទ្ល៍ Holiday/vacation days/yr OFF	10	10	10	10	10
G	N B C C C C C C C C C C C C C C C C C C	· 원 % Male	50%	50%	50%	50%	50%
ior	0.5 0.5 0.3	MALE count	12.5	0.3	12.5	30.0	12.5
ılat	1.0 0.3	FEMALE	12.5	0.3	12.5	30.0	12.5
br		Group Occupancy Days	355.0	355.0	355.0	355.0	355.0
PC	Visitor <4hrs	Group Urinal Use per day	63	0.4	6.3	45.0	63
		Group Faucet Use per day	7.5	0.2	7.5	18.0	7.5
		Group Total Shower Use per day					
	er per	Ave hrs/day ON	8 hr Regular / Staff	8 hr Regular / Staff	8 hr Regular / Staff	8 hr Regular / Staff	8 hr Regular / Staff
	son son aily aily daily	P1 Ave Daily Count	800.0	97.6	739.3	67.4	1202.9
p 3	LOSE per JSE d JSE d nin) USE	E M-F days/yr ON	261	261	261	261	261
no	ER C / per / h) on (f on (n on (n	5 Holiday/vacation days/yr OF	30	30	30	30	30
ū	WAT daily URIN Pers Pers	% Male	50%	50%	50%	50%	50%
uc	1.0 1.5 0.6 0	D.1 MALE count	400.0	48.8	369.6	33.7	601.4
ati	2.5 0.6 0	D.1 FEMALE	400.0	48.8	369.6	33.7	601.4
nc		Group Occupancy Days	335.0	335.0	335.0	335.0	335.0
jor L		Group Water Closet Use per day	1400.0	170.8	1293.7	117.9	2105.0
-	8 hr Regular / St	aff Group Urinal Use per day	600.0	73.2	554.5	50.5	902.2
		Group Faucet Use per day	480.0	58.6	443.6	40.4	721.7
_		Group rotal shower Use per day	40.0	4.9	57.0	3.4	00.1
		TOTAL POPULATION	1050.0	102.6	989.3	667.4	1452.9
		Occupancy Days	339.8	336.0	340.1	353.0	338.4
		Total Water Closet Use per day	1503.1	172.9	1396.9	365.4	2208.2
		Total Urinal Use per day	634.4	73.9	588.8	133.0	936.5
		Total Faucet Use per day	521.3	59.4	484.8	139.4	763.0
		Total Shower Use per day	40.0	4.9	27.0	2.4	60.1
		rotar snower use per day	40.0	4.9	37.0	3.4	60.1

Preliminary Energy Performance Report | January 17, 2018

Domestic Water Savings Calculations

Preliminary Energy Performance Report | January 17, 2018

Ice Machine Measures

	Broward County Facilities	loe Maohine Measures	
GENERAL SPECS refrigeration	tion line heat exchanger		
With a refrigeration line h	eat exchanger system installed, the ice m	nachine had to work less to produce more ice. The refrigeration line heat exchange	ger system lowered the temperature
of the incoming water by 1	.3.8 F. This drop in temperature improved Lowers incoming water temperature	i the efficiency of the ice machine by more than 18%, as its cycle time dropped fr	om 16 minutes to 13 minutes.

•	Shortens ice making cycle times which produces more ice
	Optimizes ice availability in the bin
	Potentially eliminates the need to buy additional bags of ice
	Saves electricity by filling the bin faster and allowing the ice machine to shut off
	Models available for all types of ice machines
•	Extends the life of the ice machine by lowering compressor head pressure
	Reduces air conditioning costs (for air-cooled ice machines)
	99% Maintenance free utilizing patented anti-mineralization technology
	Delivers performance when you need it the most

	Broward County Facilities	Bldg	CD	REGIONAL	L	ONG KEY
		Model:				
Site Specific						
KWH rate for locat	tion (+ fuel charge)		\$	0.100	\$	0.100
Ice Machine Run T	ime (% per day)			80%		80%
Ice Machine(s)						
Ice Machine Count				2		1
ARI* rated ice proc	duction (Ibs. / 24 hrs)			500		800
ARI* rated KWH us	age (KWH / 100 lbs.)			5		5
Maximicar Info						
Observed energy s	avings studies					
Manitowoc, Hoshi	zaki	15 to 20%				
All others		25 to 30%				
	Selected Savings rate:			15%		15%
Des Unit Freezer He	ere (deibi)					
Fer Onic Lifergy 05	age (ually)	Current Kw/h		20		32
		With Maximicer		17		27.2
Per Unit Pre Energ	y Cost					
		Daily	\$	2.00	\$	3.20
		Monthly	\$	60.00	\$	96.00
		Yearly	Ş	730.00	Ş	1,168.00
Dev Holt Devt From	n Cost (m/maximiser)	3 years	Ş	2,190.00	Ş	3,504.00
Per Unit Post Energ	gy cost (w/maximicer)	Daily	ć	1.70	ć	2 7 2
		Monthly	Ś	51.00	ŝ	81.60
		Yearly	Ś	620.50	Ś	992.80
		3 years	\$	1,861.50	\$	2,978.40
Summary		CAMINES	¢	210.00	6	475.00
		SAVINGS:	Ş	219.00	\$	1/5.20

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Preliminary Energy Performance Report | January 17, 2018

Irrigation Measures

Existing System	1	5	7	
				EPD Environmen
Building				Monitoring Facilit
Meter #	North Regional Courthouse	CD REGIONAL	Public Safety complex	Laboratory
Witter #				
Assumptions/Inputs				
Number of Controllers	1	1	1	1
Number of Stations	12	12	12	
Controller				
Location	outside (WM)	outside (WM)	outside (WM)	outside (WM
Rain Sensor	no	no	no	no
Submeter	no	no	no	no
Sewer Deduct	no	no	no	no
Water Costs: KGAL	4.73	\$ 4.73	\$ 4.73	\$
Zones on Well:				
Zones on City Water	12	12	12	8
Watering Days/WK	3.5	3.5	3.5	3.5
Watering Win/Zone	20	20	20	20
Heads Per Zone	10	10	10	10
Heads GPM	2.10	2.10	2.10	2.10
I Calc'd Annual Usage	635.04	635.04	635.04	4
	635.04	635.04	635.04	4
Savings				
Actual Billed Consumption	635,040.00	635,040.00	635,040.00	423,3
kgal	635.04	635.04	635.04	4
Smart Irrigation Saving	25.00%	25.00%	25.00%	25.00%
Consumption post (gal)	476 280 00	476 280 00	476 280 00	25.00%
Consumption Savings kgal	158.76	158.76	158.76	1
Estimated Consumption Savings	750.54	\$ 750.54	\$ 750.54	\$ 5
Annual Material Savings \$	50.00	\$ 50.00	\$ 50.00	\$
Annual Plant / Tree Replacement \$	25.00	\$ 25.00	\$ 25.00	\$
Annual Overtime Hours		\$ -	\$ -	\$
Annual Overtime Fuel \$	540.00	\$ 540.00	\$ 540.00	\$ 5
l Savings \$	1,365.54	\$ 1,365.54	\$ 1,365.54	\$ 1,1
il Savings \$	1,365.54	\$ 1,365.54	\$ 1,365.54	Ş
Proposed System				
Number of Controllers	1	1	1	
Number of Stations (6,12 of 18)	12 WTPPO2-C-12	12 WTPP02-C-12	12 WTDP02-C-12	
Assessment	F0	WIT NOS-C-12	10	50
Accessory	FU	FU	FU	FU
Accessory	KS	KS	K2	KS
al Irrigation Measure				
				EPD Environme
				Monitoring Facilit

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

ENVELOPE ECM Calculations

• B1 Seal Building Envelope

An CNGIC company

Broward County

Preliminary Energy Performance Report | January 17, 2018

Data Collection

3. BCJC South Parking BR43

612 - 644 South Andrews Ave

BCJC South Parking Garage is a five story, 14,397 sq/ft building with a concrete exterior finish. The building appears to have single pane windows, in good condition. We recommend resealing the ineffective areas of sealant on the window box to wall. The largest area of infiltration/ex-filtration was at the doors on all sides of the building. These doors would benefit from new sweeps and weather strip to reduce air and mois ture infiltration and ex-filtration leading to energy loss.

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

OPTERRA

Broward County

Preliminary Energy Performance Report | January 17, 2018

5. EAP Our House BH40

408 NE 4th Street

EAP Our House BH40 is a single story 1,127 sq/ftbuilding with a wood siding exterior. The largest area of infiltration/ex-filtration was at the doors on all sides of the buildings. These doors would benefit from new sweeps and weather strip. We recommend sealing penetrations to reduce air and moisture infiltration and ex-filtration leading to energy loss. The windows are single pane, double hung and in good condition.

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."
Preliminary Energy Performance Report | January 17, 2018

6. South Maintenance Shop BR45

8500 Griffin Road

South Maintenance Shop BR4S is a one story 6,024 sq/ft building, with a concrete exterior finish. The largest area of infiltration /exfiltration was at the doors on all sides of the building. The doors would benefit from new sweeps, astragals and weather strip. We recommend sealing around penetrations to reduce further air and mois ture infiltration and/or ex-filtration.

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Preliminary Energy Performance Report | January 17, 2018

7. Tree Tops BP 4

3900 S.W. 100th Avenue

Tree Tops BP 4 is a single story 26,103 sq/ft building, with a wood exterior finish. The single pane, tinted windows appear to be in good condition. We recommend sealing penetrations to reduce air and moisture infiltration and ex-filtration. The doors would benefit from new sweeps, weather strip and astragals where needed.

"D7" Recommend weather strip and door sweeps

73.3

"D7" Energy loss around door

OPTERRA

Preliminary Energy Performance Report | January 17, 2018

8. Long Key BP5

3501 SW 130th Avenue

The Long Key Park BPS is a two story, 25,591 sq/ftbuilding, with a stucco exterior finish. The windows are single pane with aluminum frames and in good condition and well-sealed. The largest area of infiltration/ex-filtration was around the doors on all sides of the building. The doors would benefit from new sweeps, astrag als and weather strip to reduce energy loss. We recommend sealing penetrations to reduce air infiltration/ex-filtration and energy loss.

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

An CNGAC company

Broward County

Preliminary Energy Performance Report | January 17, 2018

9. Brian Piccolo BP 7

9501 Sheridan Street

Brian Piccolo BP 7 is a one story 11,706 sq/ft building, with a stucco extenior finish. The largest area of infiltration/ex-filtration was at the doors on all sides of the building. These doors would benefit from new sweeps, weather strip and astragals to reduce air and moisture infiltration/ex-filtration. The windows are single pane, tinted and in good condition, however, a few require sealant around the perimeter to reduce energy loss.

"W1" Recommend sealant

"D1" Recommend weather strip, astragal and

doorsweep

Preliminary Energy Performance Report | January 17, 2018

16. Fern Forest Nature Preserve BP8

4800 SW 4 ST

Fern Forest Nature Preserve BP8 is a two story 9,893 sq/ft building with a wood exterior finish. The doors would benefit from new sweeps, weather strip and as tragals where needed. The single pare, tinted windows appear to be in good condition, however areas of sealant are worn, deteriorated and no longer effective. To maximize energy savings, these areas should be sealed around the perimeter of the window box. Our team also noted penetrations that would benefit from sealant to reduce unwanted air and moisture infiltration/ex-filtration and energy loss.

 "D3" Energy loss around door

Preliminary Energy Performance Report | January 17, 2018

19. Easterlin Park BP3

1000 NW 38 Street

Easterlin Park BP3 is a single story 36,194 sq/ft building with a concrete exterior. The largest area of infiltration/ex-filtration was at the doors on all sides of the buildings. These doors would benefit from new sweeps and weather strip. We recommend sealing penetrations and blank openings to reduce air and mois ture infiltration and ex-filtration leading to energy loss. The windows are single pane, tinted with metal frames and in good condition.

Preliminary Energy Performance Report | January 17, 2018

20. Secret Woods, BP10

2701 W. State Road 84

Secret Woods, BP10 is a one story 7,257 sq/ft building, with a wood exterior finish. The largest area of infiltration /ex-filtration was at the doors on all sides of the building. The doors would benefit from new sweeps, as tragals and weather strip. We recommend sealing around penetrations to reduce further air and moisture infiltration and/or ex-filtration. The building appears to have single pare windows, with deteriorated sealant that is no longer effective. We recommend resealing the ineffective areas of sealant on the window box to wall.

Secret Woods, BP10

Preliminary Energy Performance Report | January 17, 2018

22. CD Regional Park BP1

3700 NW 11TH PL

CD Regional Park BPI is a two story, 50,516 sq/ft building, with a concrete exterior finish, and a single story Tropical S plash aquatic center. The windows are single pane, tinted with abuninum frames. Several windows in the aquatic complex would benefit from sealant around the perimeter of the window box to wall. The largest area of infiltration/ex-filtration was around the doors on all sides of the building. The doors would benefit from new sweeps, astragals and weather strip to reduce energy loss. We recommend sealing around penetrations to reduce air infiltration/ex-filtration and energy loss.

AN ENGLE COMPANY

Broward County

Preliminary Energy Performance Report | January 17, 2018

23. Plantation Heritage BP 9

1100 S. Fig Tree Lane

Plantation Heritage BP 9, is a one story 7,674 sq/ft building, with a stucco exterior finish. The largest area of infiltration/ex-filtration was at the doors on all sides of the building. These doors would benefit from new sweeps, weather strip and astragals where needed, to reduce air and moisture infiltration/ex-filtration. We recommend sealing around penetrations. The windows are single pane, tinted and in good condition; however, a few require sealant around the perimeter to reduce energy loss. Most of the windows were covered with humicane protection shutters.

 S7.8 °F

 77.1

 "D1" Energy loss around doors

 "D1" Energy loss around doors

An CNGAC company

Broward County

Preliminary Energy Performance Report | January 17, 2018

26. Hollywood North Beach BP 11

3601 N. Ocean Drive

Hollywood North Beach BP 11 is a single story 4,000 sq/ft building, with a wood exterior firish. The largest area of infiltration/exfiltration was at the doors on all sides of the buildings. These doors would benefit from new sweeps and weather strip. We recommend sealing around penetrations and window frame to reduce air and moisture infiltration/ex-filtration and energy loss.

 "D1" Energy loss around door
 "D1" Recommend weather strip & door sweeps

TERRA An CNGAC company

Broward County

Preliminary Energy Performance Report | January 17, 2018

27. Topeekeegee Yugnee Park BP2

3300 N. Park Road

Topeekeegee Yugnee Park BP2 is a single story 44,378 sq/ft concrete and stucco building. The doors would benefit from new sweeps and weather strip. Our team also noted penetrations that we recommend sealing to reduce air and moisture infiltration/exfiltration and energy loss. The window sealant is weathered and deteriorated and no longer effective; we recommend sealing the comer gaps and around the perimeter of the window frames to wall to reduce air and moisture infiltration/ex-filtration and energy loss

"B" Recommend sealing around penetrations

Topeekeegee Yugnee Park BP2

"D9" Recommend weather strip and door sweeps

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Preliminary Energy Performance Report | January 17, 2018

OPTERRA An ENGIE company

32. Integrated Waste South Landfill BO33

6541-7101 SE 205 Ave. Fort Lauderdale, FL 33332

The INTEG Waste South Landfill is one story 17,847 square foot concrete building. The largest area of air infiltration/ex-filtration is around entrance doors on all sides of the building. Weather strip, door sweeps and astragals (where applicable) are either, worn and damaged or missing all together. These should be replaced to reduce unwanted air in-filtration/ex-filtration. In addition, weather strip and sweeps should be added to overhead doors to reduce the amount of unconditioned air entering through the garage area. Also sealant is recommended in the corner gaps of the windows.

Preliminary Energy Performance Report | January 17, 2018

37. BSO Maintenance Facility BR42

2001 NW 31st Ave. Lauderdale Lakes, FL 33311

The BSO Maintenance Facility is one story 14,800 square foot concrete building. The largest area of air infiltration/ex-filtration is around entrance doors on all sides of the building. Weather strip, door sweeps are either, worn and damaged or missing all together. These should be replaced to reduce unwanted air in-filtration/exfiltration. We recommend sealing around the perimeters of the window box.

sweeps

Preliminary Energy Performance Report | January 17, 2018

38. Government Center West BO30

1 University Drive. Plantation, FL 33324

The Government Center West is four story 184,820 square foot concrete building. The largest area of air infiltration/ex-filtration is around entrance doors on all sides of the building. Weather strip, door sweeps and astragals (where applicable) are either, worn and damaged or missing all together. These should be replaced to reduce unwanted air in-filtration/ex-filtration.

Preliminary Energy Performance Report | January 17, 2018

40. African American Library BL13

2650 NW 6th Street Fort Lauderdale, FL 33311

The African American Library is two story 183,712 square foot concrete building. The largest area of air infiltration/ex-filtration is around entrance doors on all sides of the building. Weather strip, door sweeps and astragals (where applicable) are either, worn and damaged or missing all together. These should be replaced to reduce unwanted air in-filtration/ex-filtration. We recommend sealing around the perimeters of the window box.

Preliminary Energy Performance Report | January 17, 2018

Calculation of Energy Savings

The energy savings derived from this measure are a result of the heating and cooling systems (chillers and boilers) not having to work as hard to achieve the desired environmental conditions. The amount of savings is dependent on the existing building conditions and the amount of air leakage under the current operating conditions.

Energy savings are based on the ASHRAE crack method calculations. If the process reveals any variation in the as-built conditions, then savings will be adjusted accordingly. Determination of air current air leakage rates is based on many factors, including:

- Linear feet of cracks
- Square feet of openings
- Stack coefficient
- Shield class
- Average wind speed
- Heating or cooling set point
- Average seasonal ambient temperatures

Preliminary Energy Performance Report | January 17, 2018

Savings due to infiltration reduction:

The following equation is based on the ASHRAE crack method:

Heat loss per hour: $\dot{q} = 1.08 \times Q \times \Delta T$

Where Q represents the airflow in cubic feet per minute (CFM) and is calculated in the following manner:

$$Q = A_{crack} \times \sqrt{(C_s \Delta T + C_w V^2)}$$

In this equation, A represents the crack area in square inches to be reduced. The other values in the equation are standard for these buildings and are based upon shelter class, height, and local wind speed.

- Cw = wind coefficient = 0.0104 average
- V = wind speed = 8.8 average mph
- Cs = stack coefficient = 0,0299 (two-story typical)
- ΔT = temperature difference = $T_{out} T_{in}$

 ΔT is calculated by subtracting the average outdoor air temperature per hour from the indoor temperature, using 24 data points per month to accurately account for weather variances, and subsequently calculating airflow and heat loss for each set of data. Therefore, 288 data points are used, and Δt is the number of hours each data point represents. The total heat loss is calculated as follows:

$$q = \sum_{x=1}^{288} 1.08 \times A_{orack} \times \sqrt{C_s (T_{out} - T_{in}) + C_w V^2} \times (T_{out} - T_{in}) \times \Delta t$$

Savings due to insulation improvements:

Steady-state, one dimensional heat flow through insulation systems is governed by Fourier's law:

$$q = -k \cdot A \cdot dT/dx * Hrs / 1MMBTU$$

Where:

q = rate of heat flow, Btu/hr A = cross sectional area normal to heat flow, ft2 k = thermal conductivity of the insulation material, Btu-in/h ft2°F dT/dx = temperature gradient, °F/in

Note that changes in occupancy hours, heating and cooling set points and weather conditions will all affect the savings potential of this envelope improvement measure. An increase in operating hours or the heating set point will reduce the savings potential, but at a rate substantially less than heating costs would have been affected prior to the implementation of these strategies.

Project Name: Date of Report: Type of Report: Weather Data City/State:	Broward County 11/21/2017 Building Emelope Calculation Ft Lauriertale AP, FL			Definitioner: ASBEAR Fund ammetadi 1622-48 Applas Q=As #spar(C2 + At+ Ca*U) Qr = Q*f = InfiltentedErtilibated Air Flow R de, Clin
				Q = Air Flow Rais, Cin Ac = Edictive actions and an G = Stack conditionation (1014 Hrs) Co. * Ward Confiscing teitr ² (1014 * mpH2)
	bitamutan provided by your can pary bitamutan provided by your (an pary			kt = hukcor- Outdoor leurperature differential U = Ward speed, mpls I = Indihatoor/Eetilination Factor
nputs and Assumptions.				
ALLICTIC STATE STA	y blutb	2014m		
emperature with the barner begin		Ar PL		the it is before the second operation of the second operation of the second operation
ay Operation Begins (Surday is I	QuV1)	1 Suni	AV	incentration mail is a memory set a service a first of the intermediate interview on main
uy Operation Ends Cunday is Du	(I)	T Sahi	rday	and a second of the second sec
our Operation Begins (Hour 1 is	Midnight to 1 AM)	B Hour		These Values Used to Existing A Compress from Vy Unocompact Hours
our Operation Ends (Hour 1 is M	Ringhto 1 AM)	II Hour		
inschmul Wind Inflitation/Exdil	ration	70% perc	ent	Tax a set of the set o
locupied Cooling Temperature Se	tpoint	74 *F		Used for Occupied Cooling Enthalpy Calori Infons
coupled Heating Temperature Se	tpoint	-1+ 10 		Used for Occupied Heating AT Calrulations
recentried Cooling Indoor Tenn	erahrre Setpoint	4.08		Used for Uncocupied Cooling EnthalpyCalculations
rocupied Heating Indoor Temp	erature Setpoint	4+ 09		Used for Unoccupied Heating AT Calculations
onling Plant Efficiency		1 1 200%	no	
leating Plant Efficiency		100% perc	eat	
nergy Cost \$0k Wh		\$ 0.04560 perk	Wh	Electric
nel Erergy Cost \$050M		\$ 0.04560 perk	:Wh	Electric
of Floors in Building		2		
ocal Shelter Class (see Table Sh	(iov)	3 Type	cal shelter wed by oth	erbuildings across the street from building under study
c = Effective Air Leakage Area f	ican Survey, A ⁰	6.69 A		
nsting Insulation Area from Sun	≪S, Ĥ ²	H ²		
sisting U-V alue		2		
1				

Preliminary Energy Performance Report | January 17, 2018

Preliminary Energy Performance Report | January 17, 2018

Calculations:		
African American Library BL13		Broward County
Air Leakage from Survey, in $2 = (144 * 7 ft^2)$:	9	63 in ²
Selected Basic Model Stack Coefficient Cs	0.0299	0 cfm^2/(in^4 x *F)
Selected Bæic Model Wind Coefficient C _w	0.008	6 cfm^2/(in^4*mph^2)
Cooling Season Energy from Weather Table-Occupied Cooling ton-hours (84,285,674 Btu / 12,000 Btu/ton):	7,02	4 ton-hours
Cooling Season Energy from Weather Table-Unoccupied Cooling ton-hours (18,569,838 B tu / 12,000 Btu/ton):	1,54	7 ton-hours
Heating Season Energy from Weather Table-Occupied (4,072,967 Btu / 3,412 Btu):	1,19	4 kWh
Heating Season Energy from Weather Table-Unoccupied (2,616,417 Btn / 3,412 Btu):	76	7 kWh
ECM Energy and Cost Savings:		
Cooling Season kWh Energy Savings-Occupied (7,024 ton-hours * 1.00 kW/ton):	7.02	4 kWh/vr
Cooling Seasons kWh Energy Savings-Unoccupied (1,547 ton-hours * 1.00 kW/ton):	1,54	7 kWh/yr
Controls Occupied Hours Per Year	4,38	0 Hrs/year
Controls Unoccupied Hours Per Year	4,38	0 Hrs/year
Fuel Energy Savings-Heating Season-Occupied (1,194 kWh / 100 %):	1,19	4 kWh/yr
Fuel Energy Savings-Heating Season-Unoccupied (767 kWh / 100 %):	76	7 kWh/yr
Cooling Season kWh Energy Cost Savings-Occupied (7,024 kWh/Yrx \$0.04560 per kWh):	\$ 32	0 per year
Cooling Season kWh Energy Cost Savings-Unoccupied (1,547 kWh/Yr x \$0.04560 per kWh):	\$ 7	1 per year
Fuel Energy CostSavings-Heating Season-Occupied (1,194 kWh x \$0.05 per kWh):	\$ 5	4 peryear
Fuel Energy CostSavings-Heating Season-Unoccupied (767 kWhx\$005 perkWh);	\$ 3	5 peryear
Total Savings Cost (\$320 kWh/yr + \$71 kWh/yr + \$54 kWh/yr + \$35 kWh/yr):	\$ 48	0 per year
Building Insulation		
Cooling Season kWh Energy Savings-Occupied (ft ² 2 x (. U-Value U-Value) * 24 * 2571 CDD / 12,000 B tu/ton) * (1.00 kW/ton):		0 kWh/yr
Cooling Season kWh Energy Savings-Unoccupied (ft^2 x (. U-Value U-Value) * 24 * 1602 CDD / 12,000 Btu/ton) * (1.00 kW/ton):		0 kWh/yr
Fuel Energy Savings-Heating Season-Occupied (11/2 x (. U-Value U-Value) * 24 * 138 HDD / 3,412 Btu) / (100 %);		0 kWh
Fuel Energy Savings-Heating Season-Unoccupied (ft 2 x (. U-Vakue U-Vakue) * 24 * 265 HDD / 3,412 Bta) /(100 %):		0 kWh
Cooling Season kWh Energy Cost Savings-Occupied (kWh/Yr x \$0.04560 per kWh):	\$ -	peryear
Cooling Season kWh Energy Cost Savings-Unoccupied (kWh/Yr x \$0.04560 per kWh):	\$ -	peryear
Fuel Energy Cost Savings-Heating Season-Occupied (kWh x \$0.05 per kWh):	\$ -	peryear
Fuel Energy Cost Savings-Heating Season-Occupied (kWh x \$0.05 per kWh):	\$ -	per year
Total Savings Cost (\$0 kWh/yr + \$0 KWh/yr + \$0 KWh/yr + \$0 KWh/yr):	\$ -	peryear

Cracl	k area Cal	culation
<u>Width</u>	LF	<u>π,</u>
1/16	322	1.677
1/8	295	3.073
1/4	93	1.938
1/2		0.000
3/4		0.000
1		0.000
1 1/2		0.000
2		0.000
		6.688

OPTERRA

An CNGAC company

Penetrations 6.688

Constants and calculated values used in calculation

Occupied indoor Buthalpy at 74° F and 60%, RH	29.566 Btu/D (ar)
Theorypie dindsor Buta by at 80* F and 60% RH	33.692 Btu/b(ar)
ASHR AE Sensible Heat Coefficient	1.08
AS HRAE Bulalpy Coefficient	4.5
Btuton	12,000 Bruten
Btu	3412 Btu

ASHRAE TABLE 16 23, Table 4 Basic Model Stack Coefficient Cz.

Story	Stack Coefficient C ₅
1	0.01500
1	0.02990
3	0.04490
4	0.06283
2-	0.07858
6	0.09433
1	0 14008
8	0,12583
9	0.14158
10	0.15733

ASHRAE TABLE 16 23, Table 5 Local Shelter Class: 1 No Obstructions or local shielding.

2 Typical sheher for an isolated rural house

systematics to an encounter the second

ASHRAE TABLE 16 23, Table 6 Basic Model Wind Coefficient Cur

# d	f Staries	Shetter Class 1		Shelter Class 2	Sheker (1ass 3	Shelier Class 4	Sheller Class 5	Values Used
	1		0.0119	0.0092	0.0065	0.0039	0.0012	0.0065
F	2		0.0157	0.0121	0.0086	0.0051	0,0016	0.0086
	3		0.0184	0.0143	0.0101	0.0060	0.0018	0.010
1	¥		0.0218	0.0170	0.0120	0.0071	0.0021	0.012
	5		00251	0.0195	0.0138	0.0082	0.0024	0.013
	6		0.0283	0.0221	0.0156	0.0092	0.0027	0.015
	7		0.0316	0.0246	0.0174	0.0103	0.0030	0.017
	8		0.0348	0.0272	0.0192	0.0113	0.0033	0.019
	9		0.0381	0.0297	0.0210	0.0124	0.0036	0.021
	10		0.0413	0.0823	0.0228	0.0134	0.0039	0.022

These calculations are based on ASHRAE Fundamentals 2009, chapter 16, page 16.23, formula number 48 as shown below.

Wavie Moviel. The Johlswang calculaters are based on the Sher-man and Gramwal (1983) model, which tass the effective art leakage area at 0.016 on 1 waver. This leakage area can be obtained from a wind-whilding pressurgation test. Using effective air leakage area: this artifiest ref. from ard littained in calculate ale according to

Q = aldraucout 048)

where.

photo:
 Q = a effective an independence in⁴
 Q = a effective an independence in⁴
 Q = and a configures,

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Preliminary Energy Performance Report | January 17, 2018

		Indoor Cooling Occupied Setpoint Calculations	
Dry Bulb Temp	DB		74 Deg F
Relative Humidity	RH		60 %
Humidity Ratio	W		0.0108 lb v/lb dry air 75.55 grains/lb dry air
Enthalpy	h		29.566 BTH/lb dry air
Dew Point Temp	DP		59.30 Deg F
Saturation Pressure	PW		0.2496
Saturation Pressure	PWS		0.4159
	TDBR		533.67 Rankin
* All calculations assume TE	DB and TWB above 32 Deg F		
		Indoor Cooling Unoccupied Setpoint Calculations	
Dry Bulb Temp	DB		80 Deg F
Relative Humidity	RH		60 %
Humidity Ratio	W		0.0132 lb v/lb dry air 92.51 grains/lb dry air
Enthalpy Dew Point Temp	h DP		33.692 BTH/lb dryair 64.92 Deg F
Saturation Pressure Saturation Pressure	PW PWS TDBR		0.3044 0.5074 539.67 Rankin
* All calculations assume TE	OB and TWB above 32 Deg F		

SOLAR ECM Calculations

• S1 Install Solar PV System

Broward County Preliminary Energy Performance Report | January 17, 2018

Solar Savings Calculations

The solar savings calculations were performed with ENEGRY TOOLBASE program. Energy Toolbase is an industry leading software platform for analyzing and proposing the economics of solar PV and energy storage projects. Hundreds of the leading renewable energy developers nationwide use our software-as-a-service product to accurately, objectively and transparently analyze their projects and create customer proposals.

⊙ ENERGY TOOLBASE[™]

Prepared For Broward County

The Energy Toolbase provides comprehensive cost analysis for commercial municipal and residential renewable energy projects. We provide the tools that professionals need to compete in the fast paced renewable energy market by leveraging our first hand experience developing energy projects. Our software developers are NABCEP certified energy professionals and have completed energy analysis for companies including the Mirage Casino Resorts, Boston Scientific, Leviton, Balfour Beatty Construction, and many others.

Savings check-up

Prepared By Carl Klinck (626) 658-6057 cklinck@opterraenergy.com 1/12/2018

Broward County Preliminary Energy Performance Report | January 17, 2018

2.1.1 PV System Details

General Information Facility: North Regional Courthouse Address: Broward County R.

Solar PV Equipment Description Solar Panels: 1,239.0kW-DC Standard Modules Inverters: Standard Inverter

Solar PV Equipment Typical Lifespan Solar Panels: Greater than 30 Years Inverters: 15 Years

ENERGY TOOLBASE**

Solar PV System Rating Power Rating: 1,239,000 W-DC Power Rating: 1,079,243 W-AC-CEC

Energy Consumption Mix Annual Energy Use: 2,430,800 kWh

Monthly Energy Use vs Solar Generation

"© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Prepared By: Carl Klinck

P: (626) 658-6057, E: cklinck@opterraenergy.com

Page 6

2.1.3 Utility Rates

The table below shows the rates associate with your current utility rate schedule (GSLD-1). Your estimated electric bills after solar are shown on the following page.

Fixed Cha	nges	Energy Ch	arges	Demand Charges		
Туре	GSLD-1	Туре	GSLD-1	Туре	GSLD-1	
S Monthly	\$75.00	S Flat Rate	\$0.04937	SINC	\$12.56	
W Monthly	\$75.00	W Flat Rate	\$0.04937	W NC	\$12.56	

2.1.4 Current Electric Bill

The table below shows your annual electricity costs based on the most current utility rates and your previous 12 months of electrical usage.

Time Periods	Energy Use (KWh)	Max Demand (kW)		C	harges	
Bill Ranges & Seasons	Total	NC/ Max	Other	Energy	Demand	Total
1/1/2017 - 2/1/2017 W	196,800	386	\$75	\$9,716	\$4,848	\$14,639
2/1/2017 - 3/1/2017 W	184,400	401	\$75	\$9,104	\$5,037	\$14,215
3/1/2017 - 4/1/2017 W	181,600	400	\$75	\$8,966	\$5,024	\$14,065
4/1/2017 - 5/1/2017 S	197,200	399	\$75	\$9,736	\$5,011	\$14,822
5/1/2017 - 6/1/2017 S	200,400	402	\$75	\$9,894	\$5,049	\$15,018
6/1/2017-7/1/2017S	222,000	407	\$75	\$10,960	\$5,112	\$15,147
7/1/2017 - 8/1/2017 S	217,600	518	\$75	\$10,743	\$6,506	\$17,324
8/1/2017-9/1/2017S	216,000	437	\$75	\$10,664	\$5,489	\$16,228
9/1/2017 - 10/1/2017 S	222,400	426	\$75	\$10,980	\$5,351	\$16,405
10/1/2017 - 11/1/2017 S	203,600	420	\$75	\$10,052	\$5,275	\$15,402
11/1/2017 - 12/1/2017 W	200,000	404	\$75	\$9,874	\$5,074	\$15,023
12/1/2016-1/1/2017 W	188,800	392	\$75	\$9,321	\$4,924	\$14,320
Totals:	2,430,800	-	\$900	\$120,009	\$62,700	\$183,608

Rate Schedule: FPL - GSLD-1

⊙ ENERGY TOOLBASE™

Prepared By: Carl Klinck P: (626) 658-6057, E: cklinck@opterraenergy.com

Page 8

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

2.1.5 New Electric Bill

Rate Schedule: FPL - GSLD-1

Tim e Perio ds	Energy Use(kWh)	Max Demand (kW)		C	harges	
Bill Ranges & Seasons	Total	NC/ Max	Other	Energy	Demand	Total
1/1/2017 - 2/1/2017 W	65,776	382	\$75	\$3,247	\$4,792	\$8,114
2/1/2017 - 3/1/2017 W	45,963	390	\$75	\$2,269	\$4,892	\$7,236
3/1/2017 - 4/1/2017 W	4,841	387	\$75	\$239	\$4,861	\$5,175
4/1/2017 - 5/1/2017 S	10,402	372	\$75	\$514	\$4,672	\$ 5,261
5/1/2017 - 6/1/2017 S	18,525	370	\$75	\$915	\$4,647	\$ 5,637
6/1/2017 - 7/1/2017 S	56,714	387	\$75	\$2,800	\$4,861	\$7,736
7/1/2017 - 8/1/2017 S	33,080	487	\$75	\$1,633	\$5,117	\$7,825
8/1/2017 - 9/1/2017 S	42,055	421	\$75	\$2,076	\$5,288	\$7,439
9/1/2017 - 10/1/2017 S	66,376	408	\$75	\$3,277	\$5,124	\$8,476
10/1/2017 - 11/1/2017 S	53,560	402	\$75	\$2,644	\$5,043	\$7,762
11/1/2017 - 12/1/2017 W	73,898	398	\$75	\$3,648	\$4,999	\$8,722
12/1/2016 - 1/1/2017 W	67,273	383	\$75	\$3,321	\$4,804	\$8,200
Totals:	538,463	-	\$900	\$26,584	\$60,100	\$87,584

Annual Electricity Savings: \$96,025

ENERGY TOOLBASE™

Prepared By: Carl Klinck P: (626) 658-6057, E: cklinck@opterraenergy.com

Page 9

*© 2018. OpTerra Energy Services, Inc. All Rights Reserved. Company Confidential. This information is proprietary to OpTerra Energy Services, Inc. and is provided only for presentation to Broward County in January 2018. No part of this information may be used, copied, disclosed, reproduced, republished, posted or distributed in any way without explicit written permission of OpTerra Energy Services, Inc."

Account:	5910870038
Meter:	MV3703A
Rate:	SDTR-1

Baseline: Average of Last Two Years

	High Demand (kW)							On-Peak Demand (kW)					
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		73	82	82	78	78	January		0	0	0	0	0
February		86	89	89	88	88	February		0	0	0	0	0
March		91	71	71	81	81	March		0	0	0	0	0
April		92	113	113	103	103	April		0	0	0	0	0
May		94	107	107	101	101	May		0	0	0	0	0
June		113	106	106	110	110	June		113	106	106	110	110
July		114	110	110	112	112	July		114	110	110	112	112
August		109	91	91	100	100	August		109	91	91	100	100
September		101	83	83	92	92	September		101	83	83	92	92
October		109	73	73	91	91	October		81	52	52	67	67
November		88	77	77	77	77	November		0	0	0	0	0
December	91	91		91	91	91	December	0	0		0	0	0
Annual		-	-	1,093	1,122	1,122	Annual		-	-	442	480	480

		On-l	Peak Consu	mption (kW	h)			Off-Peak Consumption (kWh)					
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		0	0	0	0	0	January		35,220	40,500	40,500	37,860	37,860
February		0	0	0	0	0	February		37,500	37,560	37,560	37,530	37,530
March		0	0	0	0	0	March		45,660	26,940	26,940	36,300	36,300
April		0	0	0	0	0	April		44,700	29,700	29,700	37,200	37,200
May		0	0	0	0	0	May		53,820	60,000	60,000	56,910	56,910
June		5,520	5,280	5,280	5,400	5,400	June		53,280	49,200	49,200	51,240	51,240
July		6,120	5,100	5,100	5,610	5,610	July		58,380	49,620	49,620	54,000	54,000
August		6,360	4,440	4,440	5,400	5,400	August		61,080	38,280	38,280	49,680	49,680
September		5,460	3,540	3,540	4,500	4,500	September		51,420	29,700	29,700	40,560	40,560
October		240	180	180	210	210	October		53,040	31,680	31,680	42,360	42,360
November		0	0	0	0	0	November		43,140	31,080	31,080	37,110	37,110
December	0	0		0	0	0	December	48,180	44,280		44,280	46,230	46,230
Annual				18,540	21,120	21,120	Annual				468,540	526,980	526,980

		Dollars					
				Most	Average of		
				Recent 12	Last Two	В	aseline
Month	2015	2016	2017	Months	Years	S	elected
January		\$2,745	\$3,214	\$3,214	\$2,980	\$	2,980
February		\$3,009	\$3,128	\$3,128	\$3,069	\$	3,069
March		\$3,522	\$2,399	\$2,399	\$2,961	\$	2,961
April		\$3,349	\$3 <i>,</i> 032	\$3,032	\$3,190	\$	3,190
May		\$3,842	\$4,737	\$4,737	\$4,290	\$	4,290
June		\$4,480	\$4,568	\$4,568	\$4,524	\$	4,524
July		\$4,790	\$4,615	\$4,615	\$4,703	\$	4,703
August		\$4,873	\$3,713	\$3,713	\$4,293	\$	4,293
September		\$4,229	\$3 <i>,</i> 054	\$3,054	\$3,642	\$	3,642
October		\$3,973	\$2,710	\$2,710	\$3,342	\$	3,342
November		\$3,221	\$2,709	\$2,709	\$2,965	\$	2,965
December	\$3,787	\$3,313		\$3,313	\$3,550	\$	3,550
Annual				\$41,192	\$43,508	\$	43,508

Table 3-3Broward County - Group B PropertiesAnnual Utility Summary

		Avg. Electric	Electric						
	Area	Monthly Demand	Use	kWh/	Electric	Electric	El.		
Site	(sf)	(kW)	(kWh)	sf	Btu/sf	\$	\$/KWH	Total \$	\$/sf
			PARKS		-				
CD Regional	50,516	670	1,577,766	31.23	106,598	\$169,268	\$0.1073	\$169,268	\$3.35
Topokeegee Yungee	44,378	361	1,580,703	35.62	121,568	\$147,077	\$0.0930	\$147,077	\$3.31
Easterlin	36,194	50	284,961	7.87	26,871	\$27,006	\$0.0948	\$27,006	\$0.75
Iree lops	26,103	/2	307,209	11.//	40,168	\$29,343	\$0.0955	\$29,343	\$1.12
Long Key*	23,591	88	290,538	12.32	42,033	\$30,170	\$0.1038	\$30,170	\$1.28
West Lake / Anne Kolb NC	20,776	131	580,983	27.96	95,442	\$50,787	\$0.0874	\$50,787	\$2.44
Brian Piccolo	11,706	533	453,964	38.78	132,358	\$80,761	\$0.1779	\$80,761	\$6.90
Pentetion Heritage	9,093	59	199,001	10.00	34,344	⊅11,124 ¢20,421	\$0.1117 \$0.1075	\$11,124 \$20,421	\$1.1Z
Secret Woods	7,074	35	109,933	24.73	04,472	¢20,4∠1 ¢11 /12	\$0.1075 \$0.1078	\$20,421 \$11,412	\$2.00 \$1.57
Hollywood North Beach	1,237		69 108	17.28	58 966	ψ11,412 \$8,363	\$0.1070	\$8.363	\$2.09
Saw Palmetto	4,000	#RFFI	#REFI	#RFFI	#RFF!	#REF!	#RFFI	#RFFI	#RFFI
PARK TOTALS	242 248	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!
	212,210	<i>"</i>	IBRARIES	<i>"</i>	<i></i>		<i></i>	<i>"</i>	<i>"</i>
African American	61.150	321	1,671.600	27.34	93,298	\$132.002	\$0.0790	\$132.002	\$2.16
SW Regional ¹	79 747		,- ,	-	-	···-,···	#DIV/01	<u>\$0</u>	\$0.00
West Regional	72.000	275	1.395.480	19.38	66.150	\$114.809	\$0.0823	\$114.809	\$1.59
North West Regional	72.000	337	1,396.080	19.39	66,178	\$123.220	\$0.0883	\$123.220	\$1.71
Weston	51,000	288	1,102,020	21.61	73,749	\$100,460	\$0.0912	\$100,460	\$1.97
Lauderdale Lakes	20,237	88	313,410	15.49	52,857	\$29,505	\$0.0941	\$29,505	\$1.46
Stirling Road	20,000	82	405,342	20.27	69,172	\$34,121	\$0.0842	\$34,121	\$1.71
North Lauderdale	20,000	118	490,980	24.55	83,786	\$43,395	\$0.0884	\$43,395	\$2.17
Dan Pearl	19,500	107	404,700	20.75	70,833	\$37,605	\$0.0929	\$37,605	\$1.93
Margate	15,800	82	447,960	28.35	96,765	\$36,293	\$0.0810	\$36,293	\$2.30
Hallandale	14,700	62	305,400	20.78	70,907	\$26,402	\$0.0864	\$26,402	\$1.80
Century Plaza	11,682	43	190,189	16.28	55,565	\$17,485	\$0.0919	\$17,485	\$1.50
Dania Beach	9,970	42	233,832	23.45	80,047	\$19,365	\$0.0828	\$19,365	\$1.94
Carver Ranches	16,700	92	298,440	17.87	60,993	\$29,268	\$0.0981	\$29,268	\$1.75
	10,000	5/	216,270	21.63	73,813	\$19,971	\$0.0923	\$19,971	\$2.00
LIBRARTIUTALS	494,480		8,871,702	17.94	61,234	\$763,902	\$U.086 I	\$763,902	\$1.54
Public Sofety Complex - Public Sofety Puilding	252.076		E 229 960	25 01	95 251	¢267.264	¢0.0590	¢267.264	¢1 45
Public Safety Complex - Public Safety Building	20 250	904	658 260	20.01	110.045	¢107,204 ¢10,101	\$0.0360	\$307,204 \$49,401	\$1.40 \$2.20
Public Safety Complex - BSO DS Office	20,230	63	285 120	13 77	47 001	\$2/ 130	\$0.0735	\$40,401	φ2.39 \$1.17
Public Safety Complex - Logistics Warebouse	6 690	18	114 840	17 17	58 587	φ24,109 \$8,950	\$0.0047	\$8,950	\$1.17 \$1.34
North Regional Courthouse	200,000	417	2 448 200	12.24	41 779	\$192 152	\$0.0775	\$192 152	\$0.96
Government Center West	184.820	587	3.389.640	18.34	62.595	\$215.041	\$0.0634	\$215.041	\$1.16
Traffic Engn Administration North	71,346	342	2,364,660	33.14	113,119	\$172,549	\$0.0730	\$172,549	\$2.42
Park Administration Complex	35,296	76	325,530	9.22	31,478	\$29,317	\$0.0901	\$29,317	\$0.83
Integ Waste South Landfill	17,847	166	998,826	55.97	191,012	\$78,571	\$0.0787	\$78,571	\$4.40
OFFICE & COURTHOUSE TOTALS	810,029	2,725	16,913,936	20.88	71,266	\$1,136,383	\$0.0672	\$1,136,383	\$1.40
		HEA	LTH AND LAB						
Central Homeless Assistance Center ³	63,244			-	-		#DIV/0!	\$0	\$0.00
Booher Building	53,060	259	1,680,570	31.67	108,100	\$126,221	\$0.0751	\$126,221	\$2.38
North Homeless Assistance Center ²	44,254			-	-		#DIV/0!	\$0	\$0.00
Family Success Center, N, Pompano	11,929	33	244,320	20.48	69,902	\$23,660	\$0.0968	\$23,660	\$1.98
Sexual Assault Treatment Center	10,643	44	182,730	17.17	58,598	\$16,442	\$0.0900	\$16,442	\$1.54
EPD Environmental Monitoring Facility & Laboratory	9,694	151	986,940	101.81	347,475	\$75,219	\$0.0762	\$75,219	\$7.76
EAP Our House	1,127	-	15,676	13.91	47,473	\$1,665	\$0.1062	\$1,665	\$1.48
HEALTH AND LAB TOTALS	193,951	488	3,110,236	16.04	54,732	\$243,207	0.0781958	\$243,207	\$1.25
		PARKING, WA	REHOUSE AN		50.004	AC 10 0 1	#0.070	#0.10.01	A 4.00
MASS I RAN, North Maintenance	195,189	481	3,424,613	17.55	59,881	\$249,319	\$0.0728	\$249,319	\$1.28
BO IN A Derking Operation	14,800	40	233,160	15.75	53,769	\$18,646	\$0.0800	\$18,646	\$1.26
BUJU South Parking Garage	14,397	110	921,717	64.02	218,505	\$73,602	\$0.0799	\$73,602	\$5.11
Reuth Maintenance Shar	9,865	24	109,047	11.05	31,121	\$9,552	\$0.08/6	\$9,552	\$U.97
MASS TRAN Northeast Terminal	0,024	-	110,07	12.50	42,873	۵۲,۵۷۵ ۵۵ مجد	ΦU.1034 \$0.0950	۵۷, ۵۷ ۵ م	\$1.3U \$1.72
	2,000	670	111,300	20.42	69,933	φ 3,4 00	φ0.0000	φ9,400	φ4./3 ¢1.50
	242,273	0/8 #DEE!	4,075,507	20.12	00,003 #DEEL	φ308,402 #DEE!	ΦU.0756	φ306,402 #DEEI	φ1.52 #DECI
GROUP BIDIALS	1,982,989	#KEF!	#KEF!	#KEF!	#KEF!	#KEF!	#KEF!	#KEF!	#KEF!

1 - Electricity and chilled water provided by Charter School attached to building. County is billed by the City of Pembroke Pines; however, this data was not made available to OpTerra.

2 - Annual cost for utility was obtained from the site. Utility usage estimated based upon using average cost for utilities.

3 - No utility data was available. Utility usage estimated based upon the energy indice of the North Homeless Assistance Center.

4 - An electric meter inaccuracy was found at this site. As a result, baseline data was established using the period of Jan-2013 thru July-2015.

	5	Demand (kW)
Baseline:	Average of Last Two Years	
Rate:	Various	
Meter:	Various	
Account:	Various	

	Demand (KW)						
				Most	Average of		
				Recent 12	Last Two	Baseline	
Month	2015	2016	2017	Months	Years	Selected	
January	730	649	643	643	646	646	
February	702	659	652	652	656	656	
March	762	716	719	719	718	718	
April	768	668	721	721	695	695	
May	724	583	716	716	650	650	
June	734	670	247	247	459	459	
July	747	755	256	256	506	506	
August	749	790		790	770	770	
September	738	829		829	784	784	
October	731	759		759	745	745	
November	737	677		677	707	707	
December	715	711		711	713	713	
Annual				7,720	8,045	8,045	

	Total Consumption (kWh)					
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	139,302	119,036	114,514	114,514	116,775	116,775
February	114,638	105,670	99,488	99,488	102,579	102,579
March	136,474	120,947	111,734	111,734	116,341	116,341
April	138,053	137,772	136,075	136,075	136,924	136,924
May	154,245	120,024	133,111	133,111	126,568	126,568
June	136,839	122,078	139,244	139,244	130,661	130,661
July	139,870	157,942	128,355	128,355	143,149	143,149
August	162,326	162,794		162,794	162,560	162,560
September	138,454	161,942		161,942	150,198	150,198
October	141,549	121,854		121,854	131,702	131,702
November	138,760	120,126		120,126	129,443	129,443
December	134,469	127,268		127,268	130,869	130,869
Annual				1,556,505	1,577,766	1,577,766

		Dollars					
				Most	Average of		
				Recent 12	Last Two	Baseline	
Month	2015	2016	2017	Months	Years	Selected	
January	\$17,143	\$14,091	\$14,224	\$14,224	\$14,157	\$ 14,157	
February	\$15,232	\$13,394	\$13,440	\$13,440	\$13,417	\$ 13,417	
March	\$17,387	\$14,908	\$15,173	\$15,173	\$15,040	\$ 15,040	
April	\$17,575	\$15,138	\$16,732	\$16,732	\$15,935	\$ 15,935	
May	\$17,642	\$13,283	\$16,554	\$16,554	\$14,919	\$ 14,919	
June	\$11,072	\$10,736	\$11,631	\$11,631	\$11,184	\$ 11,184	
July	\$11,740	\$13,910	\$11,310	\$11,310	\$12,610	\$ 12,610	
August	\$12,756	\$12,712		\$12,712	\$12,734	\$ 12,734	
September	\$10,850	\$13,186		\$13,186	\$12,018	\$ 12,018	
October	\$16,900	\$15,281		\$15,281	\$16,091	\$ 16,091	
November	\$16,808	\$14,239		\$14,239	\$15,523	\$ 15,523	
December	\$16,310	\$14,968		\$14,968	\$15,639	\$ 15,639	
Annual				\$169,451	\$169,268	\$ 169,268	

		Damard (14)4/)
Baseline:	Average of Last Two Years	
Rate:	Various	
Meter:	Various	
Account:	Various	

	Demand (KW)					
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	342	365	354	354	360	360
February	321	279	367	367	323	323
March	373	331	376	376	354	354
April	423	418	403	403	411	411
May	380	371	392	392	382	382
June	337	388	324	324	356	356
July	314	375	385	385	380	380
August	351	425		425	388	388
September	347	389		389	368	368
October	328	356		356	342	342
November	339	343		343	341	341
December	363	295		295	329	329
Annual				4,409	4,332	4,332

	Total Consumption (kWh)					
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	114,807	144,201	122,274	122,274	133,238	133,238
February	116,322	70,890	121,237	121,237	96,064	96,064
March	99,413	98,321	114,378	114,378	106,350	106,350
April	139,725	154,520	122,113	122,113	138,317	138,317
May	150,835	127,046	133,922	133,922	130,484	130,484
June	135,236	135,738	142,805	142,805	139,272	139,272
July	143,585	161,343	165,591	165,591	163,467	163,467
August	165,088	158,230		158,230	161,659	161,659
September	138,024	147,231		147,231	142,628	142,628
October	131,169	143,686		143,686	137,428	137,428
November	138,396	95,981		95,981	117,189	117,189
December	125,500	103,721		103,721	114,611	114,611
Annual				1,571,169	1,580,703	1,580,703

		Dollars					
				Most	Average of		
				Recent 12	Last Two	Baseline	
Month	2015	2016	2017	Months	Years	Selected	
January	\$11,673	\$12,914	\$11,708	\$11,708	\$12,311	\$ 12,311	
February	\$11,496	\$7,777	\$11,713	\$11,713	\$9,745	\$ 9,745	
March	\$11,042	\$9,840	\$11,740	\$11,740	\$10,790	\$ 10,790	
April	\$14,193	\$13,654	\$12,595	\$12,595	\$13,125	\$ 13,125	
May	\$14,064	\$11,632	\$13,193	\$13,193	\$12,413	\$ 12,413	
June	\$10,625	\$10,756	\$12,497	\$12,497	\$11,626	\$ 11,626	
July	\$13,313	\$14,028	\$15,502	\$15,502	\$14,765	\$ 14,765	
August	\$14,797	\$14,478		\$14,478	\$14,638	\$ 14,638	
September	\$13,162	\$13,274		\$13,274	\$13,218	\$ 13,218	
October	\$12,286	\$12,382		\$12,382	\$12,334	\$ 12,334	
November	\$12,839	\$9,621		\$9,621	\$11,230	\$ 11,230	
December	\$12,274	\$9,491		\$9,491	\$10,882	\$ 10,882	
Annual				\$148,193	\$147,077	\$ 147,077	

Account:VariousMeter:VariousRate:VariousBaseline:Average of Last Two Years			_	
Account:VariousMeter:VariousRate:Various	Baseline:	Average of Last Two Years		
Account:VariousMeter:Various	Rate:	Various		
Account: Various	Meter:	Various		
	Account:	Various		

			Demai	חמ (איע)		
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	55	59	51	51	55	55
February	55	56	60	60	58	58
March	62	59	55	55	57	57
April	52	47	59	59	53	53
May	42	38	63	63	51	51
June	39	42	71	71	57	57
July	33	46	75	75	61	61
August	29	38		38	34	34
September	27	47		47	37	37
October	35	47		47	41	41
November	48	50		50	49	49
December	52	47		47	50	50
Annual				663	601	601

		Т	otal Consu	mption (kWh	ı)	
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	24,100	22,345	23,795	23,795	23,070	23,070
February	21,337	24,170	22,856	22,856	23,513	23,513
March	29,741	25,387	22,929	22,929	24,158	24,158
April	23,486	18,779	25,710	25,710	22,245	22,245
May	21,357	20,521	31,228	31,228	25,875	25,875
June	22,718	21,833	31,295	31,295	26,564	26,564
July	20,267	23,934	39,657	39,657	31,796	31,796
August	16,492	24,500		24,500	20,496	20,496
September	16,964	25,644		25,644	21,304	21,304
October	18,898	19,751		19,751	19,325	19,325
November	25,517	20,919		20,919	23,218	23,218
December	25,812	20,985		20,985	23,399	23,399
Annual				309,269	284,961	284,961

			Do	llars			
				Most	Average of		
				Recent 12	Last Two	В	aseline
Month	2015	2016	2017	Months	Years	Se	elected
January	\$2,441	\$2,192	\$2,210	\$2,210	\$2,201	\$	2,201
February	\$2,218	\$2,267	\$2,233	\$2,233	\$2,250	\$	2,250
March	\$2,911	\$2 <i>,</i> 405	\$2,263	\$2,263	\$2,334	\$	2,334
April	\$2,521	\$1,878	\$2,474	\$2,474	\$2,176	\$	2,176
May	\$2,232	\$1,919	\$2,906	\$2,906	\$2,412	\$	2,412
June	\$2,257	\$2,054	\$2,985	\$2,985	\$2,520	\$	2,520
July	\$1,988	\$2,238	\$3,545	\$3,545	\$2,892	\$	2,892
August	\$1,763	\$2,216		\$2,216	\$1,990	\$	1,990
September	\$1,697	\$2,329		\$2,329	\$2,013	\$	2,013
October	\$1,864	\$1,874		\$1,874	\$1,869	\$	1,869
November	\$2,414	\$1,929		\$1,929	\$2,172	\$	2,172
December	\$2,452	\$1,905		\$1,905	\$2,178	\$	2,178
Annual				\$28,869	\$27,006	\$	27,006

		Domand (k)()
Baseline:	Average of Last Two Years	
Rate:	Various	
Meter:	Various	
Account:	Various	

		Demaild (KW)						
				Most	Average of			
				Recent 12	Last Two	Baseline		
Month	2015	2016	2017	Months	Years	Selected		
January	74	72	63	63	68	68		
February	52	67	63	63	65	65		
March	75	68	63	63	66	66		
April	73	69	65	65	67	67		
May	74	75	74	74	75	75		
June	77	79	73	73	76	76		
July	82	73	68	68	71	71		
August	80	80		80	80	80		
September	78	79		79	79	79		
October	76	71		71	74	74		
November	83	69		69	76	76		
December	77	67		67	72	72		
Annual				835	866	866		

		Т	otal Consu	mption (kWh	ı)	
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	23,702	22,442	20,808	20,808	21,625	21,625
February	17,239	16,375	17,926	17,926	17,151	17,151
March	24,213	23,128	18,107	18,107	20,618	20,618
April	23,998	23,440	20,686	20,686	22,063	22,063
May	28,308	25,493	26,651	26,651	26,072	26,072
June	31,980	31,608	27,996	27,996	29,802	29,802
July	34,461	32,791	29,100	29,100	30,946	30,946
August	32,630	32,383		32,383	32,507	32,507
September	34,245	29,357		29,357	31,801	31,801
October	28,864	23,929		23,929	26,397	26,397
November	27,609	20,258		20,258	23,934	23,934
December	26,493	22,099		22,099	24,296	24,296
Annual				289,300	307,209	307,209

			Do	llars			
				Most	Average of		
				Recent 12	Last Two	В	aseline
Month	2015	2016	2017	Months	Years	Se	elected
January	\$2,521	\$2,229	\$2,103	\$2,103	\$2,166	\$	2,166
February	\$1,836	\$1,797	\$1,949	\$1,949	\$1,873	\$	1,873
March	\$2,530	\$2,232	\$2,013	\$2 <i>,</i> 013	\$2,123	\$	2,123
April	\$2,475	\$2,204	\$2,165	\$2,165	\$2,185	\$	2,185
May	\$2,677	\$2 <i>,</i> 370	\$2,639	\$2,639	\$2,505	\$	2,505
June	\$2,932	\$2,760	\$2,713	\$2,713	\$2,736	\$	2,736
July	\$3,159	\$2 <i>,</i> 756	\$2,725	\$2,725	\$2,740	\$	2,740
August	\$3,034	\$2,815		\$2,815	\$2,924	\$	2,924
September	\$3,093	\$2,635		\$2,635	\$2,864	\$	2,864
October	\$2,744	\$2,240		\$2,240	\$2,492	\$	2,492
November	\$2,749	\$2,026		\$2,026	\$2,387	\$	2,387
December	\$2,600	\$2,095		\$2,095	\$2,348	\$	2,348
Annual				\$28,118	\$29,343	\$	29,343

Baseline:	Average of Last Two Years	
Rate:	Various	
Meter:	Various	
Account:	Various	

			Demai	na (κνν <i>)</i>		
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	67	65	94	94	80	80
February	70	70	85	85	78	78
March	74	75	91	91	83	83
April	77	84	100	100	92	92
May	80	83	100	100	92	92
June	79	83	103	103	93	93
July	78	78	98	98	88	88
August	86	106		106	96	96
September	83	105		105	94	94
October	79	101		101	90	90
November	78	96		96	87	87
December	72	94		94	83	83
Annual				1,173	1,055	1,055

		Total Consumption (kWh)						
				Most	Average of			
				Recent 12	Last Two	Baseline		
Month	2015	2016	2017	Months	Years	Selected		
January	15,488	19,862	22,696	22,696	21,279	21,279		
February	13,650	18,233	17,295	17,295	17,764	17,764		
March	16,410	20,418	22,121	22,121	21,270	21,270		
April	16,273	19,677	22,780	22,780	21,229	21,229		
May	21,097	24,672	26,571	26,571	25,622	25,622		
June	25,712	26,109	32,054	32,054	29,082	29,082		
July	27,252	28,097	30,572	30,572	29,335	29,335		
August	27,800	30,354		30,354	29,077	29,077		
September	26,949	30,215		30,215	28,582	28,582		
October	23,948	26,321		26,321	25,135	25,135		
November	21,667	21,409		21,409	21,538	21,538		
December	19,786	21,470		21,470	20,628	20,628		
Annual				303,858	290,538	290,538		

			Do	llars			
				Most	Average of		
				Recent 12	Last Two	В	aseline
Month	2015	2016	2017	Months	Years	S	elected
January	\$1,692	\$2,018	\$2,489	\$2,489	\$2,254	\$	2,254
February	\$1,623	\$1,975	\$2,065	\$2,065	\$2,020	\$	2,020
March	\$1,825	\$2,162	\$2,440	\$2,440	\$2,301	\$	2,301
April	\$1,859	\$2,246	\$2,584	\$2,584	\$2,415	\$	2,415
May	\$2,174	\$2,546	\$2,734	\$2,734	\$2,640	\$	2,640
June	\$2,392	\$2,658	\$3,090	\$3,090	\$2,874	\$	2,874
July	\$2,499	\$2,783	\$2,960	\$2,960	\$2,872	\$	2,872
August	\$2,638	\$3,113		\$3,113	\$2,875	\$	2,875
September	\$2,534	\$3,089		\$3,089	\$2,811	\$	2,811
October	\$2,325	\$2,805		\$2,805	\$2,565	\$	2,565
November	\$2,193	\$2,451		\$2,451	\$2,322	\$	2,322
December	\$2,016	\$2,429		\$2,429	\$2,222	\$	2,222
Annual				\$32,248	\$30,170	\$	30,170

	Demand (k\\/)	
Baseline:	Average of Last Two Years	
Rate:	Various	
Meter:	Various	
Account:	Various	

				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	115	121	120	120	121	121
February	106	127	118	118	123	123
March	107	125	110	110	118	118
April	124	135	116	116	126	126
May	136	124	118	118	121	121
June	131	131	118	118	125	125
July	152	140	128	128	134	134
August	163	139		139	151	151
September	151	143		143	147	147
October	137	132		132	135	135
November	134	134		134	134	134
December	142	127		127	135	135
Annual				1,503	1,567	1,567

		т	otal Consur	mption (kWh	ı)	
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	36,787	48,358	41,764	41,764	45,061	45,061
February	33,372	37,038	33,216	33,216	35,127	35,127
March	31,665	37,386	35,797	35,797	36,592	36,592
April	39,505	46,931	37,395	37,395	42,163	42,163
May	45,440	48,050	43,712	43,712	45,881	45,881
June	51,930	51,201	50,649	50,649	50,925	50,925
July	55,582	64,389	58,348	58,348	61,369	61,369
August	58,007	63,400		63,400	60,704	60,704
September	54,350	61,727		61,727	58,039	58,039
October	51,390	52,220		52,220	51,805	51,805
November	51,532	45,748		45,748	48,640	48,640
December	49,023	40,334		40,334	44,679	44,679
Annual				564,310	580,983	580,983

			Do	llars			
				Most	Average of		
				Recent 12	Last Two	В	aseline
Month	2015	2016	2017	Months	Years	Se	elected
January	\$3,607	\$4,069	\$3,782	\$3,782	\$3,925	\$	3,925
February	\$3,301	\$3,502	\$3,279	\$3,279	\$3,391	\$	3,391
March	\$3,215	\$3,513	\$3,433	\$3,433	\$3,473	\$	3,473
April	\$3,886	\$4,024	\$3,596	\$3,596	\$3,810	\$	3,810
May	\$4,234	\$3,965	\$3,998	\$3,998	\$3,981	\$	3,981
June	\$4,206	\$3,945	\$4,262	\$4,262	\$4,104	\$	4,104
July	\$5,102	\$5,143	\$5,152	\$5,152	\$5,147	\$	5,147
August	\$5,273	\$5,130		\$5,130	\$5,201	\$	5,201
September	\$5,124	\$5,020		\$5,020	\$5,072	\$	5,072
October	\$4,575	\$4,254		\$4,254	\$4,415	\$	4,415
November	\$4,548	\$3,925		\$3,925	\$4,236	\$	4,236
December	\$4,494	\$3,569		\$3,569	\$4,032	\$	4,032
Annual				\$49,399	\$50,787	\$	50,787

		Demond (14)A/)
Baseline:	Average of Last Two Years	
Rate:	Various	
Meter:	Various	
Account:	Various	

	Demand (kw)					
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	516	570	540	540	555	555
February	575	548	608	608	578	578
March	568	623	611	611	617	617
April	567	625	603	603	614	614
May	577	606	598	598	602	602
June	539	608	14	14	311	311
July	470	598	65	65	332	332
August	478	569		569	524	524
September	573	560		560	567	567
October	585	558		558	572	572
November	588	523		523	556	556
December	572	564		564	568	568
Annual				5,813	6,394	6,394

		Т	otal Consu	mption (kWh	ı)	
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	43,454	36,902	42,834	42,834	39,868	39,868
February	43,783	37,379	52,470	52,470	44,925	44,925
March	49,558	44,577	55,355	55,355	49,966	49,966
April	45,058	43,570	42,510	42,510	43,040	43,040
May	32,917	43,006	30,151	30,151	36,579	36,579
June	31,542	29,990	28,851	28,851	29,421	29,421
July	37,930	28,061	32,717	32,717	30,389	30,389
August	32,041	33,597		33,597	32,819	32,819
September	25,802	31,608		31,608	28,705	28,705
October	32,522	35,039		35,039	33,781	33,781
November	39,256	46,790		46,790	43,023	43,023
December	39,586	43,313		43,313	41,450	41,450
Annual				475,235	453,964	453,964

			Do	llars			
				Most	Average of		
				Recent 12	Last Two	В	aseline
Month	2015	2016	2017	Months	Years	S	elected
January	\$8,563	\$8,277	\$8,673	\$8,673	\$8,475	\$	8,475
February	\$9,235	\$8,062	\$9,962	\$9,962	\$9,012	\$	9,012
March	\$9,536	\$9,270	\$10,295	\$10,295	\$9,783	\$	9,783
April	\$9,248	\$9,289	\$9,455	\$9,455	\$9,372	\$	9,372
May	\$8,521	\$9,046	\$8,669	\$8,669	\$8,857	\$	8,857
June	\$2,539	\$1,886	\$1,908	\$1,908	\$1,897	\$	1,897
July	\$2,960	\$2,319	\$2,758	\$2,758	\$2,539	\$	2,539
August	\$2,878	\$2,934		\$2,934	\$2,906	\$	2,906
September	\$2,859	\$2,356		\$2,356	\$2,607	\$	2,607
October	\$7,796	\$8,099		\$8,099	\$7,948	\$	7,948
November	\$8,990	\$8,321		\$8,321	\$8,656	\$	8,656
December	\$8,828	\$8,591		\$8,591	\$8,710	\$	8,710
Annual		•	-	\$82,022	\$80,761	\$	80,761

	Domand (kW)
Baseline:	Average of Last Two Years
Rate:	Various
Meter:	Various
Account:	Various

				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	49	40	25	25	33	33
February	51	37	27	27	32	32
March	55	26	29	29	28	28
April	50	36	29	29	33	33
May	48	29	25	25	27	27
June	49	26	29	29	28	28
July	44	33	35	35	34	34
August	51	28		28	40	40
September	48	35		35	42	42
October	50	29		29	40	40
November	55	31		31	43	43
December	47	24		24	36	36
Annual				346	412	412

		Т	otal Consu	mption (kWh	n)	
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	7,439	6,763	7,867	7,867	7,315	7,315
February	7,236	6,662	6,842	6,842	6,752	6,752
March	8,367	6,892	7,169	7,169	7,031	7,031
April	8,660	8,113	6,879	6,879	7,496	7,496
May	8,403	8,589	8,027	8,027	8,308	8,308
June	9,541	8,516	9,022	9,022	8,769	8,769
July	10,833	10,543	11,566	11,566	11,055	11,055
August	9,870	9,013		9,013	9,442	9,442
September	11,324	8,198		8,198	9,761	9,761
October	8,477	7,964		7,964	8,221	8,221
November	9,295	6,703		6,703	7,999	7,999
December	7,836	6,972		6,972	7,404	7,404
Annual				96,222	99,551	99,551

		Dollars					
				Most	Average of		
				Recent 12	Last Two	В	aseline
Month	2015	2016	2017	Months	Years	Se	elected
January	\$1,052	\$855	\$817	\$817	\$836	\$	836
February	\$1,063	\$816	\$780	\$780	\$798	\$	798
March	\$1,180	\$746	\$841	\$841	\$793	\$	793
April	\$1,140	\$909	\$833	\$833	\$871	\$	871
May	\$1,075	\$895	\$867	\$867	\$881	\$	881
June	\$1,152	\$830	\$948	\$948	\$889	\$	889
July	\$1,170	\$1,028	\$1,198	\$1,198	\$1,113	\$	1,113
August	\$1,195	\$907		\$907	\$1,051	\$	1,051
September	\$1,240	\$900		\$900	\$1,070	\$	1,070
October	\$1,101	\$809		\$809	\$955	\$	955
November	\$1,205	\$775		\$775	\$990	\$	990
December	\$1,030	\$725		\$725	\$877	\$	877
Annual				\$10,398	\$11,124	\$	11,124

Meter: Various Rate: Various Baseline: Average of Last Two Years			Demand (kW)	-
Meter: Various Rate: Various	Baseline:	Average of Last Two Years		
Meter: Various	Rate:	Various		
Account. Vanous	Meter:	Various		
Account: Various	Account:	Various		

	Demand (kW)						
				Most	Average of		
				Recent 12	Last Two	Baseline	
Month	2015	2016	2017	Months	Years	Selected	
January	63	16	19	19	18	18	
February	57	68	54	54	61	61	
March	81	76	66	66	71	71	
April	83	76	76	76	76	76	
May	83	84	21	21	53	53	
June	81	72	23	23	48	48	
July	87	82	27	27	55	55	
August	72	85		85	79	79	
September	70	84		84	77	77	
October	27	81		81	54	54	
November	28	66		66	47	47	
December	65	55		55	60	60	
Annual				657	697	697	

	Total Consumption (kWh)					
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	18,261	12,281	10,034	10,034	11,158	11,158
February	10,249	14,145	9,355	9,355	11,750	11,750
March	18,485	17,791	10,295	10,295	14,043	14,043
April	21,354	20,226	11,436	11,436	15,831	15,831
May	24,209	21,313	11,554	11,554	16,434	16,434
June	20,845	20,343	11,703	11,703	16,023	16,023
July	19,078	24,032	11,048	11,048	17,540	17,540
August	23,549	23,802		23,802	23,676	23,676
September	17,999	19,481		19,481	18,740	18,740
October	12,493	17,704		17,704	15,099	15,099
November	12,641	17,574		17,574	15,108	15,108
December	15,363	13,703		13,703	14,533	14,533
Annual				167,689	189,933	189,933

	Dollars						
				Most	Average of		
				Recent 12	Last Two	Baseline	
Month	2015	2016	2017	Months	Years	Selected	
January	\$2,043	\$1,118	\$1,021	\$1,021	\$1,070	\$	1,070
February	\$1,496	\$1,751	\$1,360	\$1,360	\$1,556	\$	1,556
March	\$2,207	\$1,968	\$1,587	\$1,587	\$1,777	\$	1,777
April	\$2,376	\$1,996	\$1,800	\$1,800	\$1,898	\$	1,898
May	\$2,539	\$2,013	\$1,203	\$1,203	\$1,608	\$	1,608
June	\$2,313	\$1,981	\$1,197	\$1,197	\$1,589	\$	1,589
July	\$2,050	\$2,216	\$1,215	\$1,215	\$1,715	\$	1,715
August	\$2,340	\$2,475		\$2,475	\$2,407	\$	2,407
September	\$2,019	\$1,921		\$1,921	\$1,970	\$	1,970
October	\$1,312	\$1,802		\$1,802	\$1,557	\$	1,557
November	\$1,247	\$1,840		\$1,840	\$1,543	\$	1,543
December	\$1,915	\$1,546		\$1,546	\$1,730	\$	1,730
Annual				\$18,966	\$20,421	\$	20,421
		Demand (kW)					
-----------	---------------------------	-------------					
Baseline:	Average of Last Two Years						
Rate:	Various						
Meter:	Various						
Account:	Various						

			Demai	nd (kW)		
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	26	31	32	32	32	32
February	25	32	29	29	31	31
March	31	32	30	30	31	31
April	38	38	38	38	38	38
May	42	37	37	37	37	37
June	39	40	38	38	39	39
July	37	43	39	39	41	41
August	40	35		35	38	38
September	38	39		39	39	39
October	33	37		37	35	35
November	31	30		30	31	31
December	34	27		27	31	31
Annual				411	420	420

		т	otal Consu	mption (kWh	ı)	
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	6,670	6,707	6,368	6,368	6,538	6,538
February	5,197	6,480	4,975	4,975	5,728	5,728
March	7,961	9,416	6,175	6,175	7,796	7,796
April	8,889	9,210	9,028	9,028	9,119	9,119
May	10,959	9,032	9,649	9,649	9,341	9,341
June	11,133	9,980	10,110	10,110	10,045	10,045
July	11,659	13,564	10,609	10,609	12,087	12,087
August	12,379	11,834		11,834	12,107	12,107
September	10,969	10,214		10,214	10,592	10,592
October	9,982	5 <i>,</i> 535		5,535	7,759	7,759
November	9,696	5,238		5,238	7,467	7,467
December	8,543	5,970		5,970	7,257	7,257
Annual				95,705	105,832	105,832

			Do	llars			
				Most	Average of		
				Recent 12	Last Two	В	aseline
Month	2015	2016	2017	Months	Years	Se	elected
January	\$786	\$779	\$798	\$798	\$788	\$	788
February	\$676	\$772	\$678	\$678	\$725	\$	725
March	\$917	\$943	\$771	\$771	\$857	\$	857
April	\$1,051	\$993	\$1,034	\$1,034	\$1,013	\$	1,013
May	\$1,195	\$963	\$1,054	\$1,054	\$1,009	\$	1,009
June	\$1,164	\$1,047	\$1,085	\$1,085	\$1,066	\$	1,066
July	\$1,172	\$1,268	\$1,123	\$1,123	\$1,196	\$	1,196
August	\$1,248	\$1,086		\$1,086	\$1,167	\$	1,167
September	\$1,136	\$1,009		\$1,009	\$1,073	\$	1,073
October	\$1,018	\$748		\$748	\$883	\$	883
November	\$975	\$667		\$667	\$821	\$	821
December	\$946	\$680		\$680	\$813	\$	813
Annual				\$10,734	\$11,412	\$	11,412

				Most	Avera			
			Demand (kW)					
Baseline:	Average of Las	t Two Years						
Rate:	Various							
Meter:	Various							
Account:	Various							

				Nost	Average of		
				Recent 12	Last Two	Baseline	
Month	2015	2016	2017	Months	Years	Selected	
January	0	0	0	0	0	0	
February	0	0	0	0	0	0	
March	0	0	0	0	0	0	
April	0	0	0	0	0	0	
May	0	0	0	0	0	0	
June	0	0	0	0	0	0	
July	0	0	0	0	0	0	
August	0	0		0	0	0	
September	0	0		0	0	0	
October	0	0		0	0	0	
November	0	0		0	0	0	
December	0	0		0	0	0	
Annual				0	0	0	

		Т	otal Consu	mption (kWh	ı)	
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	6,436	8,079	3 <i>,</i> 559	3,559	5,819	5,819
February	6,300	6,707	3,523	3,523	5,115	5,115
March	6,173	6,416	4,161	4,161	5,289	5,289
April	7,627	5 <i>,</i> 309	3,471	3,471	4,390	4,390
May	7,723	5,411	3,978	3,978	4,695	4,695
June	8,896	5,827	4,294	4,294	5,061	5,061
July	9,133	6,301	5,188	5,188	5,745	5,745
August	8,970	6,709		6,709	7,840	7,840
September	8,654	6,633		6,633	7,644	7,644
October	7,462	6,422		6,422	6,942	6,942
November	7,396	3,394		3,394	5,395	5,395
December	7,191	3,161		3,161	5,176	5,176
Annual				54,493	69,108	69,108

			Do	llars			
				Most	Average of		
				Recent 12	Last Two	Ва	seline
Month	2015	2016	2017	Months	Years	Selected	
January	\$849	\$976	\$381	\$381	\$679	\$	679
February	\$835	\$841	\$378	\$378	\$609	\$	609
March	\$831	\$817	\$455	\$455	\$636	\$	636
April	\$980	\$701	\$381	\$381	\$541	\$	541
May	\$967	\$711	\$433	\$433	\$572	\$	572
June	\$1,088	\$753	\$465	\$465	\$609	\$	609
July	\$1,112	\$799	\$556	\$556	\$677	\$	677
August	\$1,096	\$839		\$839	\$967	\$	967
September	\$1,054	\$827		\$827	\$941	\$	941
October	\$933	\$806		\$806	\$870	\$	870
November	\$930	\$353		\$353	\$642	\$	642
December	\$910	\$331		\$331	\$620	\$	620
Annual				\$6,204	\$8,363	\$	8,363

Site Name:African American LibraryService Address:2650 NW 6TH ST FORT LAUDERDALE FL, 33311Square Feet:61,150

Electric History

Account:	7733748565
Meter:	MV76938
Rate:	GSDT-1

 Baseline:
 Average of Last Two Years

			On-Peak D	emand (kW)		
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January		310	240	240	275	275
February		295	250	250	273	273
March		300	295	295	298	298
April		300	278	278	289	289
Мау		374	346	346	360	360
June		334	334	334	334	334
July		358	329	329	344	344
August		338	341	341	340	340
September		324	338	338	331	331
October	382	336	470	470	403	403
November	358	353	214	214	284	284
December	329	319		319	324	324
Annual			-	3,754	3,853	3,853

		On	-Peak Cons	umption (kV	Vh)				Of	f-Peak Cons	umption (kW	/h)	
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		25,920	26,160	26,160	26,040	26,040	January		104,160	93,120	93,120	98,640	98,640
February		24,000	22,800	22,800	23,400	23,400	February		88,560	80,880	80,880	84,720	84,720
March		28,800	25,920	25,920	27,360	27,360	March		109,200	99,600	99,600	104,400	104,400
April		42,480	37,920	37,920	40,200	40,200	April		94,080	84,720	84,720	89,400	89,400
May		46,080	47,760	47,760	46,920	46,920	May		91,680	92,640	92,640	92,160	92,160
June		48,000	51,360	51,360	49,680	49,680	June		98,880	116,880	116,880	107,880	107,880
July		50,160	41,760	41,760	45,960	45,960	July		112,800	99,840	99,840	106,320	106,320
August		52,320	47,040	47,040	49,680	49,680	August		97,680	108,240	108,240	102,960	102,960
September		46,800	36,480	36,480	41,640	41,640	September		104,880	97,200	97,200	101,040	101,040
October	48,240	44,640	46,320	46,320	45,480	45,480	October	101,040	89,760	106,080	106,080	97,920	97,920
November	35,520	33,360	25,680	25,680	29,520	29,520	November	111,120	100,800	93,360	93,360	97,080	97,080
December	33,120	31,680		31,680	32,400	32,400	December	140,880	120,720		120,720	130,800	130,800
Annual				440,880	458,280	458,280	Annual				1,193,280	1,213,320	1,213,320

		Т	otal Consu	mption (kWł	າ)					Dol	lars		
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January	0	130,080	119,280	119,280	124,680	124,680	January		\$9 <i>,</i> 803	\$8,886	\$8,886	\$9,345	\$ 9,345
February	0	112,560	103,680	103,680	108,120	108,120	February		\$8,851	\$8,194	\$8,194	\$8,523	\$ 8,523
March	0	138,000	125,520	125,520	131,760	131,760	March		\$10,180	\$10,071	\$10,071	\$10,125	\$ 10,125
April	0	136,560	122,640	122,640	129,600	129,600	April		\$10,402	\$10,207	\$10,207	\$10,304	\$ 10,304
May	0	137,760	140,400	140,400	139,080	139,080	May		\$11,429	\$12,161	\$12,161	\$11,795	\$ 11,795
June	0	146,880	168,240	168,240	157,560	157,560	June		\$11,425	\$13,439	\$13,439	\$12,432	\$ 12,432
July	0	162,960	141,600	141,600	152,280	152,280	July		\$12,396	\$11,800	\$11,800	\$12,098	\$ 12,098
August	0	150,000	155,280	155,280	152,640	152,640	August		\$11,780	\$12,762	\$12,762	\$12,271	\$ 12,271
September	0	151,680	133,680	133,680	142,680	142,680	September		\$11,415	\$11,335	\$11,335	\$11,375	\$ 11,375
October	149,280	134,400	152,400	152,400	143,400	143,400	October	\$12,807	\$10,802	\$14,056	\$14,056	\$12,429	\$ 12,429
November	146,640	134,160	119,040	119,040	126,600	126,600	November	\$11,594	\$10,480	\$8,854	\$8,854	\$9,667	\$ 9,667
December	174,000	152,400	0	152,400	163,200	163,200	December	\$12,561	\$10,715		\$10,715	\$11,638	\$ 11,638
Annual				1,634,160	1,671,600	1,671,600	Annual				\$132,479	\$132,002	\$ 132,002

		Demand (kV
Baseline:	Average of Last Two Years	
Rate:	GSD-1	
Meter:	RV713V0	
Account:	7522132211	

		Demand (kW)						
				Most	Average of			
				Recent 12	Last Two	Baseline		
Month	2015	2016	2017	Months	Years	Selected		
January	269	252	271	271	262	262		
February	235	240	264	264	252	252		
March	250	240	245	245	243	243		
April	259	269	233	233	251	251		
May	298	276	254	254	265	265		
June	288	302	355	355	329	329		
July	290	300	326	326	313	313		
August	293	314	290	290	302	302		
September	283	312	274	274	293	293		
October	257	302	314	314	308	308		
November	238	242	245	245	244	244		
December	230	242		242	236	236		
Annual				3,313	3,296	3,296		

		Total Consumption (kWh)						
				Most	Average of			
				Recent 12	Last Two	Baseline		
Month	2015	2016	2017	Months	Years	Selected		
January	128,880	143,760	119,520	119,520	131,640	131,640		
February	107,520	126,960	102,720	102,720	114,840	114,840		
March	110,400	135,840	93,600	93,600	114,720	114,720		
April	124,080	122,640	91,200	91,200	106,920	106,920		
May	126,720	104,640	96,000	96,000	100,320	100,320		
June	121,440	117,600	120,720	120,720	119,160	119,160		
July	131,520	121,680	118,560	118,560	120,120	120,120		
August	122,400	123,360	133,200	133,200	128,280	128,280		
September	129,600	115,440	135,120	135,120	125,280	125,280		
October	116,880	101,040	119,760	119,760	110,400	110,400		
November	118,080	116,160	89,280	89,280	102,720	102,720		
December	121,680	120,480		120,480	121,080	121,080		
Annual				1,340,160	1,395,480	1,395,480		

		Dollars						
				Most	Average of			
				Recent 12	Last Two	Baseline		
Month	2015	2016	2017	Months	Years	Selected		
January	\$10,843	\$10,709	\$9,836	\$9,836	\$10,272	\$ 10,272		
February	\$9,172	\$9,652	\$8,815	\$8,815	\$9,233	\$ 9,233		
March	\$9,558	\$10,170	\$8,320	\$8,320	\$9,245	\$ 9,245		
April	\$10,486	\$9,407	\$8,042	\$8,042	\$8,724	\$ 8,724		
May	\$10,698	\$8,556	\$8,564	\$8,564	\$8,560	\$ 8,560		
June	\$10,291	\$9,529	\$11,178	\$11,178	\$10,353	\$ 10,353		
July	\$10,890	\$9,717	\$10,717	\$10,717	\$10,217	\$ 10,217		
August	\$10,403	\$9 <i>,</i> 963	\$11,159	\$11,159	\$10,561	\$ 10,561		
September	\$10,656	\$9,509	\$11,084	\$11,084	\$10,296	\$ 10,296		
October	\$9,633	\$8,653	\$10,647	\$10,647	\$9,650	\$ 9,650		
November	\$9,482	\$8,753	\$8,070	\$8,070	\$8,411	\$ 8,411		
December	\$9,594	\$8,976		\$8,976	\$9,285	\$ 9,285		
Annual				\$115,407	\$114,809	\$ 114,809		

		Most
		Demand (kW)
Baseline:	Average of Last Two Years	
Rate:	GSD-1	
Meter:	KV78257	
Account:	3055947497	

				<u> </u>		
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	238	264	314	314	289	289
February	216	269	322	322	296	296
March	352	310	310	310	310	310
April	338	319	336	336	328	328
May	418	418	422	422	420	420
June	427	415	355	355	385	385
July	379	427	276	276	352	352
August	422	365	278	278	322	322
September	422	358	374	374	366	366
October	403	362	317	317	340	340
November	360	355	238	238	297	297
December	374	312		312	343	343
Annual				3,854	4,045	4,045

		Total Consumption (kWh)						
				Most	Average of			
				Recent 12	Last Two	Baseline		
Month	2015	2016	2017	Months	Years	Selected		
January	94,800	104,880	108,000	108,000	106,440	106,440		
February	74,160	84,960	90,720	90,720	87,840	87,840		
March	103,440	102,000	92,640	92,640	97,320	97,320		
April	105,840	116,160	107,760	107,760	111,960	111,960		
May	127,920	118,320	114,720	114,720	116,520	116,520		
June	125,040	132,240	132,240	132,240	132,240	132,240		
July	130,080	151,920	119,040	119,040	135,480	135,480		
August	141,840	152,400	117,840	117,840	135,120	135,120		
September	139,920	155,520	112,800	112,800	134,160	134,160		
October	125,760	118,560	128,880	128,880	123,720	123,720		
November	120,720	100,080	107,520	107,520	103,800	103,800		
December	120,960	102,000		102,000	111,480	111,480		
Annual				1,334,160	1,396,080	1,396,080		

		Dollars						
				Most	Average of			
				Recent 12	Last Two	Baseline		
Month	2015	2016	2017	Months	Years	Selected		
January	\$8,444	\$8,699	\$9 <i>,</i> 687	\$9,687	\$9,193	\$ 9,193		
February	\$6,954	\$7,657	\$8,812	\$8,812	\$8,235	\$ 8,235		
March	\$10,315	\$9,068	\$9,013	\$9,013	\$9,041	\$ 9,041		
April	\$10,298	\$9,638	\$10,192	\$10,192	\$9,915	\$ 9,915		
May	\$12,151	\$10,871	\$11,589	\$11,589	\$11,230	\$ 11,230		
June	\$12,100	\$11,567	\$11,846	\$11,846	\$11,706	\$ 11,706		
July	\$11 <i>,</i> 834	\$12,721	\$10,164	\$10,164	\$11,443	\$ 11,443		
August	\$13,003	\$12,044	\$10,117	\$10,117	\$11,080	\$ 11,080		
September	\$12,846	\$12,097	\$10,926	\$10,926	\$11,512	\$ 11,512		
October	\$11,822	\$10,236	\$11,209	\$11,209	\$10,723	\$ 10,723		
November	\$11,039	\$9,204	\$9,051	\$9,051	\$9,128	\$ 9,128		
December	\$11,214	\$8,816		\$8,816	\$10,015	\$ 10,015		
Annual				\$121,422	\$123,220	\$ 123,220		

		Developed (1)A()
Baseline:	Average of Last Two Years	
Rate:	GSD-1	
Meter:	KV51568	
Account:	1990357467	

	Demand (kW)							
				Most	Average of			
				Recent 12	Last Two	Baseline		
Month	2015	2016	2017	Months	Years	Selected		
January	291	306	247	247	277	277		
February	266	247	260	260	254	254		
March	299	299	290	290	295	295		
April	306	337	247	247	292	292		
May	325	283	259	259	271	271		
June	307	359	282	282	321	321		
July	318	317	322	322	320	320		
August	308	336	317	317	327	327		
September	323	313	287	287	300	300		
October	318	272	278	278	275	275		
November	302	256	268	268	262	262		
December	288	246		246	267	267		
Annual				3,303	3,458	3,458		

		Total Consumption (kWh)						
				Most	Average of			
				Recent 12	Last Two	Baseline		
Month	2015	2016	2017	Months	Years	Selected		
January	103,680	93,000	85,320	85,320	89,160	89,160		
February	90,120	72,960	83,880	83,880	78,420	78,420		
March	99,480	95,040	84,360	84,360	89,700	89,700		
April	110,160	91,680	81,480	81,480	86,580	86,580		
May	112,080	83,520	82,800	82,800	83,160	83,160		
June	116,160	98,760	107,880	107,880	103,320	103,320		
July	126,120	108,360	103,800	103,800	106,080	106,080		
August	120,840	110,640	98,040	98,040	104,340	104,340		
September	126,360	99,000	93,480	93,480	96,240	96,240		
October	111,000	85,560	93,240	93,240	89,400	89,400		
November	106,800	87,600	79,200	79,200	83,400	83,400		
December	98,880	85,560		85,560	92,220	92,220		
Annual				1,079,040	1,102,020	1,102,020		

		Dollars						
				Most	Average of			
				Recent 12	Last Two	Ba	seline	
Month	2015	2016	2017	Months	Years	Se	lected	
January	\$9,578	\$8,503	\$7,650	\$7,650	\$8,076	\$	8,076	
February	\$8,479	\$6,751	\$7,719	\$7,719	\$7,235	\$	7,235	
March	\$9,456	\$8,559	\$8,303	\$8, <mark>303</mark>	\$8,431	\$	8,431	
April	\$10,180	\$8,573	\$7,639	\$7,639	\$8,106	\$	8,106	
May	\$10,164	\$7,540	\$7,854	\$7,854	\$7, <mark>697</mark>	\$	7,697	
June	\$10,198	\$9,195	\$9,590	\$9,590	\$9,393	\$	9,393	
July	\$10,894	\$9,216	\$9,813	\$9,813	\$9,515	\$	9,515	
August	\$10,477	\$9,549	\$9,418	\$9,418	\$9,484	\$	9,484	
September	\$10,923	\$8,669	\$8,803	\$8,803	\$8,736	\$	8,736	
October	\$9,992	\$7,512	\$8,686	\$8,686	\$8,099	\$	8,099	
November	\$9,574	\$7,443	\$7,749	\$7,749	\$7,596	\$	7,596	
December	\$8,962	\$7,224		\$7,224	\$8,093	\$	8,093	
Annual				\$100,447	\$100,460	\$1	.00,460	

		Domond (1/)A/)
Baseline:	Average of Last Two Years	
Rate:	GSD-1	
Meter:	KV35196	
Account:	5516195251	

			Demai	na (kvv)		
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	69	65	70	70	68	68
February	76	49	64	64	57	57
March	67	58	88	88	73	73
April	71	75	83	83	79	79
May	73	77	77	77	77	77
June	78	82	124	124	103	103
July	99	90	86	86	88	88
August	116	116	88	88	102	102
September	90	157	89	89	123	123
October	70	146	86	86	116	116
November	66	97	94	94	96	96
December	67	73		73	70	70
Annual				1,022	1,051	1,051

		Total Consumption (kWh)								
				Most	Average of					
				Recent 12	Last Two	Baseline				
Month	2015	2016	2017	Months	Years	Selected				
January	23,460	24,840	23,040	23,040	23,940	23,940				
February	27,240	18,900	19,980	19,980	19,440	19,440				
March	22,140	18,660	20,820	20,820	19,740	19,740				
April	26,820	24,360	22,020	22,020	23,190	23,190				
May	30,120	23,520	23,340	23,340	23,430	23,430				
June	30,660	28,740	25,560	25,560	27,150	27,150				
July	36,120	33 <i>,</i> 960	32,040	32,040	33,000	33,000				
August	36,480	35,520	29,460	29,460	32,490	32,490				
September	28,500	39,000	29,880	29,880	34,440	34,440				
October	23,880	31,140	26,280	26,280	28,710	28,710				
November	24,720	26,340	23,700	23,700	25,020	25,020				
December	23,100	22,620		22,620	22,860	22,860				
Annual				298,740	313,410	313,410				

		Dollars								
				Most	Average of					
				Recent 12	Last Two	В	aseline			
Month	2015	2016	2017	Months	Years	S	elected			
January	\$2,222	\$2,104	\$2,123	\$2,123	\$2,113	\$	2,113			
February	\$2,529	\$1,601	\$1,882	\$1,882	\$1,742	\$	1,742			
March	\$2,128	\$1,690	\$2,258	\$2,258	\$1,974	\$	1,974			
April	\$2,456	\$2,130	\$2,270	\$2,270	\$2,200	\$	2,200			
May	\$2,584	\$2,110	\$2,278	\$2,278	\$2,194	\$	2,194			
June	\$2,675	\$2,438	\$2,951	\$2,951	\$2,695	\$	2,695			
July	\$3,229	\$2,799	\$2,892	\$2,892	\$2,845	\$	2,845			
August	\$3,446	\$3,174	\$2,764	\$2,764	\$2,969	\$	2,969			
September	\$2,680	\$3,812	\$2,800	\$2,800	\$3,306	\$	3,306			
October	\$2,187	\$3,282	\$2,555	\$2,555	\$2,918	\$	2,918			
November	\$2,188	\$2,479	\$2,496	\$2,496	\$2,488	\$	2,488			
December	\$2,108	\$2,015		\$2,015	\$2,062	\$	2,062			
Annual				\$29,284	\$29,505	\$	29,505			

Site Name:Stirling Road LibraryService Address:3151 STIRLING RD FORT LAUDERDALE FL, 33312Square Feet:20,000

Electric History

Account:	2921100182
Meter:	DNL710A
Rate:	SDTR-1A

Baseline: Average of Last Two Years

			High Der	nand (kW)				On-Peak Demand (kW)					
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		77	72	72	75	75	January		0	0	0	0	0
February		84	72	72	78	78	February		0	0	0	0	0
March		84	73	73	79	79	March		0	0	0	0	0
April		74	83	83	79	79	April		0	0	0	0	0
May		0	0	0	0	0	May		0	0	0	0	0
June		76	97	97	87	87	June		76	97	97	87	87
July		87	119	119	103	103	July		87	119	119	103	103
August		86	118	118	102	102	August		86	118	118	102	102
September		84	127	127	106	106	September		79	105	105	92	92
October		83	113	113	98	98	October		0	0	0	0	0
November		72	104	104	88	88	November		0	0	0	0	0
December	108	83		83	96	96	December	0	0		0	0	0
Annual			-	1,061	988	988	Annual		-	-	439	384	384

		On	-Peak Cons	umption (kV	Vh)				Of	f-Peak Cons	umption (kW	/h)	
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		0	0	0	0	0	January		26,714	28,326	28,326	27,520	27,520
February		0	0	0	0	0	February		23,867	27,221	27,221	25,544	25,544
March		0	0	0	0	0	March		28,582	29,790	29,790	29,186	29,186
April		0	0	0	0	0	April		28,547	31,172	31,172	29,860	29,860
May		0	0	0	0	0	May		28,636	35,494	35,494	32,065	32,065
June		4,215	4,947	4,947	4,581	4,581	June		27,733	42,167	42,167	34,950	34,950
July		4,377	5,047	5,047	4,712	4,712	July		35,149	41,489	41,489	38,319	38,319
August		4,789	5,324	5,324	5,057	5,057	August		33,527	37,798	37,798	35,663	35,663
September		4,262	4,016	4,016	4,139	4,139	September		34,612	33,250	33,250	33,931	33,931
October		0	0	0	0	0	October		32,450	34,214	34,214	33,332	33,332
November		0	0	0	0	0	November		29,827	31,878	31,878	30,853	30,853
December	0	0		0	0	0	December	36,839	34,424		34,424	35,632	35,632
Annual				19,334	18,489	18,489	Annual				407,223	386,853	386,853

		Т	otal Consu	mption (kWł	ר)			Dollars						
				Most	Average of						Most	Average of		
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Ва	seline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Se	lected
January	0	26,714	28,326	28,326	27,520	27,520	January		\$2,318	\$2,420	\$2,420	\$2,369	\$	2,369
February	0	23,867	27,221	27,221	25,544	25,544	February		\$2,241	\$2,426	\$2,426	\$2,334	\$	2,334
March	0	28,582	29,790	29,790	29,186	29,186	March		\$2,427	\$2 <i>,</i> 588	\$2 <i>,</i> 588	\$2,507	\$	2,507
April	0	28,547	31,172	31,172	29,860	29,860	April		\$2,315	\$2,781	\$2,781	\$2,548	\$	2,548
May	0	28,636	35,494	35,494	32,065	32,065	May		\$1,250	\$1,821	\$1,821	\$1,536	\$	1,536
June	0	31,948	47,114	47,114	39,531	39,531	June		\$2,743	\$4,053	\$4,053	\$3,398	\$	3,398
July	0	39,526	46,536	46,536	43,031	43,031	July		\$3,221	\$4,308	\$4,308	\$3,765	\$	3,765
August	0	38,316	43,122	43,122	40,719	40,719	August		\$3,187	\$4,146	\$4,146	\$3,667	\$	3,667
September	0	38,874	37,266	37,266	38,070	38,070	September		\$2,954	\$3,631	\$3,631	\$3,293	\$	3,293
October	0	32,450	34,214	34,214	33,332	33,332	October		\$2,612	\$3,296	\$3,296	\$2,954	\$	2,954
November	0	29,827	31,878	31,878	30,853	30,853	November		\$2,356	\$3 <i>,</i> 058	\$3 <i>,</i> 058	\$2,707	\$	2,707
December	36,839	34,424	0	34,424	35,632	35,632	December	\$3,206	\$ <mark>2,882</mark>		\$2,882	\$3,044	\$	3,044
Annual				426,557	405,342	405,342	Annual				\$37,411	\$34,121	\$	34,121

		Domand (kW)
Baseline:	Average of Last Two Years	
Rate:	GSD-1	
Meter:	KV31114	
Account:	1182111235	

			Demai	nd (kW)	kW)						
				Most	Average of						
				Recent 12	Last Two	Baseline					
Month	2015	2016	2017	Months	Years	Selected					
January	103	84	101	101	93	93					
February	93	92	109	109	101	101					
March	104	113	128	128	121	121					
April	117	113	105	105	109	109					
May	128	121	130	130	126	126					
June	118	100	145	145	123	123					
July	130	108	148	148	128	128					
August	125	124	154	154	139	139					
September	119	108	145	145	127	127					
October	118	109	129	129	119	119					
November	115	105	138	138	122	122					
December	106	108		108	107	107					
Annual				1,540	1,412	1,412					

		Total Consumption (kWh)								
				Most	Average of					
				Recent 12	Last Two	Baseline				
Month	2015	2016	2017	Months	Years	Selected				
January	22,140	27,720	54,720	54,720	41,220	41,220				
February	19,920	22,020	52,860	52,860	37,440	37,440				
March	21,360	29,640	42,420	42,420	36,030	36,030				
April	24,480	35,280	35,520	35,520	35,400	35,400				
May	26,940	38,340	37,260	37,260	37,800	37,800				
June	27,840	46,380	39,060	39,060	42,720	42,720				
July	31,380	45,600	43,080	43,080	44,340	44,340				
August	31,860	48,840	38,760	38,760	43,800	43,800				
September	31,140	48,480	37,740	37,740	43,110	43,110				
October	28,140	50,760	37,920	37,920	44,340	44,340				
November	26,580	51,540	35,580	35,580	43,560	43,560				
December	27,540	54,900		54,900	41,220	41,220				
Annual				509,820	490,980	490,980				

		Dollars								
				Most	Average of					
				Recent 12	Last Two	В	aseline			
Month	2015	2016	2017	Months	Years	S	elected			
January	\$2,538	\$2,474	\$4,256	\$4,256	\$3,365	\$	3,365			
February	\$2,289	\$2,247	\$4,244	\$4,244	\$3,246	\$	3,246			
March	\$2,510	\$2,905	\$3,985	\$3,985	\$3,445	\$	3,445			
April	\$2,849	\$3,128	\$3,316	\$3,316	\$3,222	\$	3,222			
May	\$3,040	\$3,377	\$3,706	\$3,706	\$3,542	\$	3,542			
June	\$2,978	\$3,558	\$3,982	\$3,982	\$3,770	\$	3,770			
July	\$3,319	\$3,609	\$4,252	\$4,252	\$3,930	\$	3,930			
August	\$3,289	\$3,958	\$4,069	\$4,069	\$4,013	\$	4,013			
September	\$3,168	\$3,749	\$3,904	\$3,904	\$3,827	\$	3,827			
October	\$2,985	\$3,878	\$3,730	\$3,730	\$3,804	\$	3,804			
November	\$2,862	\$3,873	\$3,697	\$3,697	\$3,785	\$	3,785			
December	\$2,813	\$4,080		\$4,080	\$3,447	\$	3,447			
Annual				\$47,222	\$43,395	\$	43,395			

Account:	1803471430
Meter:	RU391VV0
Rate:	GSD-1
Baseline:	Average of Last Two Years

		Demand (kW)											
				Most	Average of								
				Recent 12	Recent 12 Last Two								
Month	2015	2016	2017	Months	Years	Selected							
January	105	94	92	92	93	93							
February	103	91	103	103	97	97							
March	113	114	91	91	103	103							
April	139	122	103	103 113		113							
May	117	121	107	107	114	114							
June	116	124	105	105	115	115							
July	123	123	105	105	114	114							
August	126	122	104	104	113	113							
September	123	120	84	84	102	102							
October	122	115	98	98	107	107							
November	123	119	86	86	103	103							
December	111	112		112	112	112							
Annual				1,190	1,283	1,283							

		Total Consumption (kWh) Most Average of											
				Most	Average of								
				Recent 12	Last Two	Baseline							
Month	2015	2016	2017	Months	Years	Selected							
January	37,560	25,980	33,060	33,060	29,520	29,520							
February	31,860	23,700	36,120	36,120	29,910	29,910							
March	39,780	34,440	39,960	39,960	37,200	37,200							
April	44,820	35,820	37,680	37,680	36,750	36,750							
May	41,340	33,240	40,620	40,620	36,930	36,930							
June	39,720	35,820	30,600	30,600	33,210	33,210							
July	44,880	40,500	32,700	32,700	36,600	36,600							
August	46,140	36,240	40,620	40,620	38,430	38,430							
September	43,080	37,140	30,600	30,600	33,870	33,870							
October	40,260	28,800	32,700	32,700	30,750	30,750							
November	37,800	27,780	23,940	23,940	25,860	25,860							
December	37,920	33,420		33,420	35,670	35,670							
Annual				412,020	404,700	404,700							

		Dollars											
				Most	Average of								
				Recent 12	Last Two	В	aseline						
Month	2015	2016	2017	Months	Years	S	elected						
January	\$3,482	\$2,485	\$2,698	\$2,698	\$2,592	\$	2,592						
February	\$3,117	\$2,327	\$2,768	\$2,768	\$2,547	\$	2,547						
March	\$3,722	\$3,179	\$3,029	\$3,029	\$3,104	\$	3,104						
April	\$4,326	\$3,255	\$3,146	\$3,146	\$3,201	\$	3,201						
May	\$3,733	\$3,110	\$3,371	\$3,371	\$3,241	\$	3,241						
June	\$3,632	\$3,280	\$3,574	\$3,574	\$3,427	\$	3,427						
July	\$4,007	\$3,511	\$3,441	\$3,441	\$3,476	\$	3,476						
August	\$4,114	\$3,466	\$3,601	\$3,601	\$3,533	\$	3,533						
September	\$3,890	\$3,696	\$2,784	\$2,784	\$3,240	\$	3,240						
October	\$3,718	\$3,101	\$3,068	\$3,068	\$3,084	\$	3,084						
November	\$3,590	\$3,239	\$2,418	\$2,418	\$2,828	\$	2,828						
December	\$3,458	\$3,206		\$3,206	\$3,332	\$	3,332						
Annual				\$37,104	\$37,605	\$	37,605						

				Recent 12	Last Two
				Most	Average o
			Demar	nd (kW)	
Baseline:	Average of Las	t Two Years			
Rate:	GSD-1				
Meter:	DU5916A				
Account:	8005354108				

				· · ·		
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	77	82	77	77	80	80
February	83	79	79	79	79	79
March	79	84	78	78	81	81
April	88	85	83	83	84	84
May	89	86	83	83	85	85
June	86	91	80	80	86	86
July	84	86	74	74	80	80
August	85	83	91	91	87	87
September	80	88	77	77	83	83
October	78	82	85	85	84	84
November	82	70	90	90	80	80
December	78	82		82	80	80
Annual				979	987	987

	Total Consumption (kWh)											
				Most	Average of							
				Recent 12	Last Two	Baseline						
Month	2015	2016	2017	Months	Years	Selected						
January	48,000	40,680	40,800	40,800	40,740	40,740						
February	38,880	40,200	34,080	34,080	37,140	37,140						
March	40,560	42,600	34,200	34,200	38,400	38,400						
April	37,320	39,840	36,120	36,120	37,980	37,980						
May	39,480	38,760	39,120	39,120	38,940	38,940						
June	37,200	39,120	34,920	34,920	37,020	37,020						
July	36,600	38,040	37,080	37,080	37,560	37,560						
August	35,160	36,840	39,720	39,720	38,280	38,280						
September	33,960	33,240	39,000	39,000	36,120	36,120						
October	29,760	29,400	42,720	42,720	36,060	36,060						
November	29,640	27,120	39,120	39,120	33,120	33,120						
December	35,520	37,680		37,680	36,600	36,600						
Annual		•	•	454,560	447,960	447,960						

		Dollars											
				Most	Most Average of								
				Recent 12	Last Two	B	aseline						
Month	2015	2016	2017	Months	Years	Se	elected						
January	\$3,784	\$3,163	\$3,197	\$3,197	\$3,180	\$	3,180						
February	\$3,307	\$3,104	\$2,844	\$2,844	\$2,974	\$	2,974						
March	\$3,377	\$3,300	\$2,925	\$2,925	\$3,112	\$	3,112						
April	\$3,285	\$3,044	\$3,094	\$3,094	\$3,069	\$	3,069						
May	\$3,303	\$2 <i>,</i> 999	\$3,270	\$3,270	\$3,134	\$	3,134						
June	\$3,141	\$3,077	\$2,991	\$2,991	\$3,034	\$	3,034						
July	\$3,084	\$2 <i>,</i> 965	\$3,048	\$3,048	\$3,007	\$	3,007						
August	\$3,013	\$2 <i>,</i> 869	\$3 <i>,</i> 399	\$3,399	\$3,134	\$	3,134						
September	\$2 <i>,</i> 875	\$2,733	\$3,194	\$3,194	\$2,964	\$	2,964						
October	\$2,613	\$2,467	\$3 <i>,</i> 504	\$3,504	\$2 <i>,</i> 985	\$	2,985						
November	\$2,653	\$2,213	\$3,351	\$3,351	\$2,782	\$	2,782						
December	\$2,941	\$2,894		\$2,894	\$2,917	\$	2,917						
Annual				\$37,711	\$36,293	\$	36,293						

Site Name:Hallandale LibraryService Address:310 S FEDERAL HWY HALLANDALE BEACH FL, 33009Square Feet:14,700

Electric History

Account:	963359922
Meter:	DU3162A
Rate:	SDTR-1A

Baseline: Average of Last Two Years

			High Der	nand (kW)						On-Peak De	emand (kW)		
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		52	44	44	48	48	January		0	0	0	0	0
February		56	56	56	56	56	February		0	0	0	0	0
March		55	60	60	58	58	March		0	0	0	0	0
April		58	67	67	63	63	April		0	0	0	0	0
May		59	67	67	63	63	May		59	67	67	63	63
June		65	66	66	66	66	June		65	66	66	66	66
July		68	66	66	67	67	July		68	66	66	67	67
August		77	72	72	75	75	August		77	72	72	75	75
September		71	65	65	68	68	September		71	65	65	68	68
October		70	68	68	69	69	October		0	0	0	0	0
November	64	53		0	53	53	November	0	0		0	0	0
December	63	57		57	60	60	December	0	0		0	0	0
Annual				688	744	744	Annual		-	-	336	338	338

		On	-Peak Cons	umption (kV	Vh)		Off-Peak Consumption (kWh)						
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		0	0	0	0	0	January		18,060	21,540	21,540	19,800	19,800
February		0	0	0	0	0	February		22,500	23,280	23,280	22,890	22,890
March		0	0	0	0	0	March		24,540	23,220	23,220	23,880	23,880
April		0	0	0	0	0	April		24,540	23,820	23,820	24,180	24,180
May		480	420	420	450	450	May		28,200	28,440	28,440	28,320	28,320
June		3,600	3,780	3,780	3,690	3,690	June		26,880	27,360	27,360	27,120	27,120
July		3,420	3,540	3,540	3,480	3,480	July		25,200	28,140	28,140	26,670	26,670
August		3,960	3,720	3,720	3,840	3,840	August		31,440	26,880	26,880	29,160	29,160
September		2,940	2,520	2,520	2,730	2,730	September		24,960	22,920	22,920	23,940	23,940
October		0	0	0	0	0	October		25,140	28,860	28,860	27,000	27,000
November	0	0		0	0	0	November	23,640	24,480		0	24,480	24,480
December	0	0		0	0	0	December	27,300	24,720		24,720	26,010	26,010
Annual				13,980	14,190	14,190	Annual				279,180	303,450	303,450

		Т	otal Consu	mption (kWł	ו)		Dollars					irs			
				Most	Average of						Most	Average of			
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Ва	seline	
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Se	lected	
January	0	18,060	21,540	21,540	19,800	19,800	January		\$1,576	\$1,725	\$1,725	\$1,650	\$	1,650	
February	0	22,500	23,280	23,280	22,890	22,890	February		\$1,868	\$2,015	\$2,015	\$1,941	\$	1,941	
March	0	24,540	23,220	23,220	23,880	23,880	March		\$1,900	\$2 <i>,</i> 056	\$2 <i>,</i> 056	\$1,978	\$	1,978	
April	0	24,540	23,820	23,820	24,180	24,180	April		\$1,933	\$2,170	\$2,170	\$2,052	\$	2,052	
May	0	28,680	28,860	28,860	28,770	28,770	May		\$2,049	\$2,360	\$2,360	\$2,205	\$	2,205	
June	0	30,480	31,140	31,140	30,810	30,810	June		\$2,484	\$2 <i>,</i> 755	\$2,755	\$2 <i>,</i> 620	\$	2,620	
July	0	28,620	31,680	31,680	30,150	30,150	July		\$2,427	\$2,761	\$2,761	\$2,594	\$	2,594	
August	0	35,400	30,600	30,600	33,000	33,000	August		\$2,873	\$2,797	\$2,797	\$2,835	\$	2,835	
September	0	27,900	25,440	25,440	26,670	26,670	September		\$2,246	\$2,243	\$2,243	\$2,245	\$	2,245	
October	0	25,140	28,860	28,860	27,000	27,000	October		\$2,093	\$2,477	\$2,477	\$2,285	\$	2,285	
November	23,640	24,480	0	0	12,240	12,240	November	\$2,088	\$1,872		\$0	\$1,872	\$	1,872	
December	27,300	24,720	0	24,720	26,010	26,010	December	\$2,202	\$2,048		\$2,048	\$2,125	\$	2,125	
Annual				293,160	305,400	305,400	Annual				\$25,407	\$26,402	\$	26,402	

Account:	4695737454						Account:	5728383133					
Meter:	AC47082						Meter:	KJ91114					
Rate:	GS-1						Rate:	GSD-1					
Baseline:	Average of Las	t Two Years					Baseline:	Average of Last Two Years					
			Den	nand (kW)						Deman	d (kW)		
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January				0	0	0	January	38	40	42	42	41	41
February		0			0	0	February	37	35	39	39	37	37
March				0	0	0	March	40	36	40	40	38	38
April				0	0	0	April	41	44	41	41	43	43
May				0	0	0	May	41	41	41	41	41	41
June		t Applicabl	•	0	0	0	June	37	41	44	44	43	43
July		а Арріїсарі	e	0	0	0	July	42	42	45	45	44	44
August				0	0	0	August	47	50	45	45	48	48
September				0	0	0	September	46	47	46	46	47	47
October	0 0 0			0	October	40	48	46	46	47	47		
November]			0	0	0	November	43	44	43	43	44	44
December				0	0	0	December	42	43		43	43	43
Annual				0	0	0	Annual			-	515	513	513

			Consur	nption (kWh)			Consumption (kWh)					
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected	Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January	994	1,164	1,312	1,312	1,238	1,238	January	10,808	12,687	14,090	14,090	13,389	13,389
February	774	668	1,158	1,158	913	913	February	9,280	8,060	11,678	11,678	9,869	9,869
March	711	822	1,300	1,300	1,061	1,061	March	10,327	8,800	12,091	12,091	10,446	10,446
April	1,174	1,294	1,673	1,673	1,484	1,484	April	13,432	13,549	13,618	13,618	13,584	13,584
May	1,430	1,252	1,455	1,455	1,354	1,354	May	14,331	12,668	12,184	12,184	12,426	12,426
June	1,629	1,566	1,952	1,952	1,759	1,759	June	12,538	15,298	17,452	17,452	16,375	16,375
July	1,650	2,247	2,055	2,055	2,151	2,151	July	14,872	16,683	18,093	18,093	17,388	17,388
August	1,513	1,650	1,928	1,928	1,789	1,789	August	15,596	16,253	17,027	17,027	16,640	16,640
September	1,545	1,668	1,590	1,590	1,629	1,629	September	15,438	20,906	17,142	17,142	19,024	19,024
October	1,286	1,324	1,438	1,438	1,381	1,381	October	13,036	16,760	16,146	16,146	16,453	16,453
November	1,125	1,514	1,070	1,070	1,292	1,292	November	12,611	15,071	13,577	13,577	14,324	14,324
December	1,091	1,231		1,231	1,161	1,161	December	12,274	13,849		13,849	13,062	13,062
Annual				18,162	17,211	17,211	Annual				176,947	172,978	172,978

	Dollars								Dollars						
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Base Sele	eline ected	Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Ba Se	seline lected
January	\$112	\$123	\$139	\$139	\$131	\$	131	January	\$1,108	\$1,160	\$1,299	\$1,299	\$1,229	\$	1,229
February	\$89	\$74	\$124	\$124	\$99	\$	99	February	\$1,005	\$850	\$1,130	\$1,130	\$990	\$	990
March	\$83	\$89	\$143	\$143	\$116	\$	116	March	\$1,106	\$903	\$1,195	\$1,195	\$1,049	\$	1,049
April	\$132	\$134	\$180	\$180	\$157	\$	157	April	\$1,305	\$1,221	\$1,295	\$1,295	\$1,258	\$	1,258
May	\$154	\$130	\$158	\$158	\$144	\$	144	May	\$1,314	\$1,141	\$1,211	\$1,211	\$1,176	\$	1,176
June	\$175	\$160	\$209	\$209	\$184	\$	184	June	\$1,166	\$1,278	\$1,554	\$1,554	\$1,416	\$	1,416
July	\$177	\$226	\$219	\$219	\$223	\$	223	July	\$1,356	\$1,361	\$1,603	\$1,603	\$1,482	\$	1,482
August	\$163	\$168	\$206	\$206	\$187	\$	187	August	\$1,456	\$1,430	\$1,541	\$1,541	\$1,485	\$	1,485
September	\$165	\$170	\$172	\$172	\$171	\$	171	September	\$1,430	\$1,632	\$1,559	\$1,559	\$1,596	\$	1,596
October	\$139	\$136	\$157	\$157	\$146	\$	146	October	\$1,224	\$1,430	\$1,500	\$1,500	\$1,465	\$	1,465
November	\$122	\$155	\$119	\$119	\$137	\$	137	November	\$1,234	\$1,298	\$1,316	\$1,316	\$1,307	\$	1,307
December	\$119	\$127		\$127	\$123	\$	123	December	\$1,204	\$1,223		\$1,223	\$1,213	\$	1,213
Annual				\$1,954	\$1,819	\$	1,819	Annual				\$16,426	\$15,666	\$	15,666

Site Name:Dania Beach LibraryService Address:100 W DANIA BEACH BLVD #LIBRARY DANIA FL, 33004Square Feet:9,970

Electric History

Account:	5774970379
Meter:	MLL786A
Rate:	SDTR-1A

Baseline: Average of Last Two Years

			High Der	nand (kW)				On-Peak Demand (kW)					
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		45	40	40	43	43	January		0	0	0	0	0
February		46	50	50	48	48	February		0	0	0	0	0
March		41	44	44	43	43	March		0	0	0	0	0
April		37	47	47	42	42	April		0	0	0	0	0
May		43	40	40	42	42	May		43	40	40	42	42
June		46	41	41	44	44	June		46	41	41	44	44
July		45	31	31	38	38	July		45	31	31	38	38
August		44	32	32	38	38	August		44	32	32	38	38
September		47	32	32	40	40	September		47	31	31	39	39
October		46	37	37	42	42	October		0	0	0	0	0
November	52	41		0	41	41	November	0	0		0	0	0
December	42	42		42	42	42	December	0	0		0	0	0
Annual		-	-	436	500	500	Annual		-	-	175	200	200

		On	-Peak Cons	umption (kV	Vh)		Off-Peak Cor				isumption (kWh)			
				Most	Average of						Most	Average of		
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline	
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected	
January		0	0	0	0	0	January		22,486	16,984	16,984	19,735	19,735	
February		0	0	0	0	0	February		22,588	19,270	19,270	20,929	20,929	
March		0	0	0	0	0	March		20,926	20,299	20,299	20,613	20,613	
April		0	0	0	0	0	April		18,384	23,115	23,115	20,750	20,750	
May		654	589	589	622	622	May		21,173	19,678	19,678	20,426	20,426	
June		2,403	2,060	2,060	2,232	2,232	June		21,883	17,021	17,021	19,452	19,452	
July		2,420	1,783	1,783	2,102	2,102	July		19,958	14,593	14,593	17,276	17,276	
August		2,557	1,797	1,797	2,177	2,177	August		22,815	14,573	14,573	18,694	18,694	
September		1,778	1,062	1,062	1,420	1,420	September		19,934	14,287	14,287	17,111	17,111	
October		0	0	0	0	0	October		20,918	17,134	17,134	19,026	19,026	
November	0	0		0	0	0	November	21,378	19,768		0	19,768	19,768	
December	0	0		0	0	0	December	22,774	19,999		19,999	21,387	21,387	
Annual				7,291	8,552	8,552	Annual				196,953	235,164	235,164	

	Total Consumption (kWh)							Dollars						
				Most	Average of						Most	Average of		
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Ва	seline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Se	lected
January	0	22,486	16,984	16,984	19,735	19,735	January		\$1,743	\$1,425	\$1,425	\$1,584	\$	1,584
February	0	22,588	19,270	19,270	20,929	20,929	February		\$1,765	\$1,713	\$1,713	\$1,739	\$	1,739
March	0	20,926	20,299	20,299	20,613	20,613	March		\$1,558	\$1,706	\$1,706	\$1,632	\$	1,632
April	0	18,384	23,115	23,115	20,750	20,750	April		\$1,383	\$1,904	\$1,904	\$1,644	\$	1,644
May	0	21,827	20,267	20,267	21,047	21,047	May		\$1,567	\$1,602	\$1,602	\$1,584	\$	1,584
June	0	24,286	19,081	19,081	21,684	21,684	June		\$1,868	\$1,683	\$1,683	\$1,775	\$	1,775
July	0	22,378	16,376	16,376	19,377	19,377	July		\$1,775	\$1,397	\$1,397	\$1,586	\$	1,586
August	0	25,372	16,370	16,370	20,871	20,871	August		\$1,898	\$1,410	\$1,410	\$1,654	\$	1,654
September	0	21,712	15,349	15,349	18,531	18,531	September		\$1,662	\$1,283	\$1,283	\$1,473	\$	1,473
October	0	20,918	17,134	17,134	19,026	19,026	October		\$1,611	\$1,443	\$1,443	\$1,527	\$	1,527
November	21,378	19,768	0	0	9,884	9,884	November	\$1,823	\$1,497		\$0	\$1,497	\$	1,497
December	22,774	19,999	0	19,999	21,387	21,387	December	\$1,727	\$1,615		\$1,615	\$1,671	\$	1,671
Annual				204,244	233,832	233,832	Annual				\$17,180	\$19,365	\$	19,365

Account: Meter:	1421554864 KU31569					
Rate:	GSD-1					
Baseline:	Average of Las	t Two Years				
			Demai	nd (kW)		
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	77	92	85	85	89	89
February	75	77	81	81	79	79
March	00	02	07	07	00	00

March	88	83	82	82	83	83
April	86	82	85	85	84	84
May	99	95	90	90	93	93
June	97	101	90	90	96	96
July	103	103	94	94	99	99
August	101	100	98	98	99	99
September	102	101	95	95	98	98
October	98	95	95	95	95	95
November	97	95	94	94	95	95
December	94	94		94	94	94
Annual				1,083	1,101	1,101

	Total Consumption (kWh)									
				Most	Average of					
				Recent 12	Last Two	Baseline				
Month	2015	2016	2017	Months	Years	Selected				
January	20,400	23,040	22,740	22,740	22,890	22,890				
February	18,180	16,500	19,260	19,260	17,880	17,880				
March	17,760	20,880	21,300	21,300	21,090	21,090				
April	22,800	22,440	22,320	22,320	22,380	22,380				
May	24,540	23,520	24,360	24,360	23,940	23,940				
June	25,620	28,560	27,660	27,660	28,110	28,110				
July	28,980	31,020	29,340	29,340	30,180	30,180				
August	27,900	31,440	31,020	31,020	31,230	31,230				
September	28,560	29,520	25,860	25,860	27,690	27,690				
October	25,740	25,020	24,900	24,900	24,960	24,960				
November	24,660	25,320	23,880	23,880	24,600	24,600				
December	22,200	24,780		24,780	23,490	23,490				
Annual				297,420	298,440	298,440				

	Dollars							
				Most	Average of			
				Recent 12	Last Two	В	aseline	
Month	2015	2016	2017	Months	Years	S	elected	
January	\$2,129	\$2,300	\$2,278	\$2,278	\$2,289	\$	2,289	
February	\$1,973	\$1,775	\$2,037	\$2,037	\$1,906	\$	1,906	
March	\$2,105	\$2,087	\$2,217	\$2,217	\$2,152	\$	2,152	
April	\$2,385	\$2,110	\$2,311	\$2,311	\$2,210	\$	2,210	
May	\$2,563	\$2,313	\$2,488	\$2,488	\$2,400	\$	2,400	
June	\$2,603	\$2,643	\$2,682	\$2,682	\$2,662	\$	2,662	
July	\$2,864	\$2,793	\$2,826	\$2,826	\$2,810	\$	2,810	
August	\$2,780	\$2,781	\$2,971	\$2,971	\$2,876	\$	2,876	
September	\$2,819	\$2,687	\$2,634	\$2,634	\$2,660	\$	2,660	
October	\$2,613	\$2 <i>,</i> 387	\$2,578	\$2,578	\$2,482	\$	2,482	
November	\$2,541	\$2,403	\$2,506	\$2,506	\$2,455	\$	2,455	
December	\$2,367	\$2,364		\$2,364	\$2,365	\$	2,365	
Annual				\$29,890	\$29,268	\$	29,268	

			Most
		Dema	nd (kW)
Baseline:	Average of Last Two Years		
Rate:	GSD-1		
Meter:	KV33766		
Account:	4376940377		

			20			
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	52	62	61	61	62	62
February	43	58	52	52	55	55
March	43	57	55	55	56	56
April	58	56	56	56	56	56
May	59	53	38	38	46	46
June	58	58	52	52	55	55
July	74	69	60	60	65	65
August	71	68	59	59	64	64
September	71	69	57	57	63	63
October	59	52	59	59	56	56
November	59	55	41	41	48	48
December	62	57		57	60	60
Annual				647	683	683

	Total Consumption (kWh)									
				Most	Average of					
				Recent 12	Last Two	Baseline				
Month	2015	2016	2017	Months	Years	Selected				
January	12,060	19,500	19,620	19,620	19,560	19,560				
February	11,880	15,060	16,920	16,920	15,990	15,990				
March	11,280	16,440	16,800	16,800	16,620	16,620				
April	13,200	17,700	18,780	18,780	18,240	18,240				
May	15,780	16,080	16,680	16,680	16,380	16,380				
June	19,860	18,120	17,220	17,220	17,670	17,670				
July	22,140	23,400	19,920	19,920	21,660	21,660				
August	24,660	21,240	17,520	17,520	19,380	19,380				
September	18,300	23,160	18,300	18,300	20,730	20,730				
October	18,420	16,980	14,880	14,880	15,930	15,930				
November	17,520	17,580	15,000	15,000	16,290	16,290				
December	17,760	17,880		17,880	17,820	17,820				
Annual				209,520	216,270	216,270				

	Dollars									
				Most	Average of					
				Recent 12	Last Two	В	aseline			
Month	2015	2016	2017	Months	Years	S	elected			
January	\$1,344	\$1,777	\$1,828	\$1,828	\$1,802	\$	1,802			
February	\$1,229	\$1,488	\$1,572	\$1,572	\$1,530	\$	1,530			
March	\$1,198	\$1,557	\$1,642	\$1,642	\$1,599	\$	1,599			
April	\$1,486	\$1,571	\$1,769	\$1,769	\$1,670	\$	1,670			
May	\$1,604	\$1,453	\$1,439	\$1,439	\$1,446	\$	1,446			
June	\$1,827	\$1,617	\$1,633	\$1,633	\$1,625	\$	1,625			
July	\$2,141	\$2,015	\$1,883	\$1,883	\$1,949	\$	1,949			
August	\$2,251	\$1,892	\$1,731	\$1,731	\$1,811	\$	1,811			
September	\$1,881	\$1,998	\$1,753	\$1,753	\$1,875	\$	1,875			
October	\$1,749	\$1,487	\$1,576	\$1,576	\$1,531	\$	1,531			
November	\$1,698	\$1,552	\$1,376	\$1,376	\$1,464	\$	1,464			
December	\$1,746	\$1,590		\$1,590	\$1,668	\$	1,668			
Annual				\$19,791	\$19,971	\$	19,971			

Account:

Meter: Rate:

CILC-1D

Baseline:Average of Last Two Years

			On-Peak D	emand (kW)		
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January		878	893	893	886	886
February		913	862	862	888	888
March		939	862	862	901	901
April		895	886	886	891	891
May		990	1,000	1,000	995	995
June		1,039	1,004	1,004	1,022	1,022
July		882	997	997	940	940
August		973	1,039	1,039	1,006	1,006
September		998	1,039	1,039	1,019	1,019
October	989	881	1,039	1,039	960	960
November	917	949	1,039	1,039	994	994
December	972	917		917	945	945
Annual			-	11,577	11,443	11,443

	On-Peak Consumption (kWh)							Off-Peak Consumption (kWh)					
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		116,001	121,055	121,055	118,528	118,528	January		373,959	385,465	385,465	379,712	379,712
February		121,086	111,621	111,621	116,354	116,354	February		366,954	346,059	346,059	356,507	356,507
March		133,290	123,780	123,780	128,535	128,535	March		427,590	397,740	397,740	412,665	412,665
April		139,849	135,275	135,275	137,562	137,562	April		355,511	346,045	346,045	350,778	350,778
May		147,875	154,022	154,022	150,949	150,949	May		358,525	361,978	361,978	360,252	360,252
June		151,666	154,274	154,274	152,970	152,970	June		381,374	406,126	406,126	393,750	393,750
July		149,646	140,534	140,534	145,090	145,090	July		412,074	363,946	363,946	388,010	388,010
August		167,319	161,517	161,517	164,418	164,418	August		390,681	383,763	383,763	387,222	387,222
September		148,145	152,681	152,681	150,413	150,413	September		407,935	423,799	423,799	415,867	415,867
October	151,867	145,047	159,621	159,621	152,334	152,334	October	400,373	353,553	378,339	378,339	365,946	365,946
November	129,389	119,390	121,481	121,481	120,436	120,436	November	381,931	354,490	405,799	405,799	380,145	380,145
December	136,999	133,266		133,266	135,133	135,133	December	466,241	464,334		464,334	465,288	465,288
Annual				1,669,127	1,672,720	1,672,720	Annual				4,663,393	4,656,140	4,656,140

		Т	otal Consu	mption (kWł	ו)			Dollars					
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January	0	489,960	506,520	506,520	498,240	498,240	January		\$28,057	\$30,521	\$30,521	\$29,289	\$ 29,289
February	0	488,040	457,680	457,680	472,860	472,860	February		\$28,347	\$28,130	\$28,130	\$28,238	\$ 28,238
March	0	560,880	521,520	521,520	541,200	541,200	March		\$31,110	\$31,873	\$31,873	\$31,492	\$ 31,492
April	0	495,360	481,320	481,320	488,340	488,340	April		\$27,225	\$30,528	\$30,528	\$28,877	\$ 28,877
May	0	506,400	516,000	516,000	511,200	511,200	May		\$28,225	\$32,448	\$32,448	\$30,337	\$ 30,337
June	0	533,040	560,400	560,400	546,720	546,720	June		\$28,922	\$34,570	\$34,570	\$31,746	\$ 31,746
July	0	561,720	504,480	504,480	533,100	533,100	July		\$29,708	\$31,629	\$31,629	\$30,668	\$ 30,668
August	0	558,000	545,280	545,280	551,640	551,640	August		\$29,952	\$33 <i>,</i> 562	\$33 <i>,</i> 562	\$31,757	\$ 31,757
September	0	556,080	576,480	576,480	566,280	566,280	September		\$30,022	\$35,047	\$35,047	\$32,535	\$ 32,535
October	552,240	498,600	537,960	537,960	518,280	518,280	October	\$33,014	\$27,416	\$33,395	\$33,395	\$30,406	\$ 30,406
November	511,320	473,880	527,280	527,280	500,580	500,580	November	\$30,553	\$26,610	\$32,248	\$32,248	\$29,429	\$ 29,429
December	603,240	597,600	0	597,600	600,420	600,420	December	\$34,112	\$30,869		\$30,869	\$32,491	\$ 32,491
Annual				6,332,520	6,328,860	6,328,860	Annual				\$384,822	\$367,264	\$ 367,264

Account:

Meter: Rate:

GSDT-1

Baseline:Average of Last Two Years

		On-Peak Demand (kW)										
				Most	Average of							
				Recent 12	Last Two	Baseline						
Month	2015	2016	2017	Months	Years	Selected						
January		90	88	88	89	89						
February		91	100	100	96	96						
March		97	102	102	100	100						
April		97	98	98	98	98						
May		99	109	109	104	104						
June		103	111	111	107	107						
July		111	115	115	113	113						
August		112	120	120	116	116						
September		108	115	115	112	112						
October	110	102	107	107	105	105						
November	105	98	88	88	93	93						
December	98	98		98	98	98						
Annual		-	-	1,251	1,229	1,229						

		On	-Peak Cons	umption (kV	Vh)			Off-Peak Consumption (kWh)					
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		8,838	10,168	10,168	9,503	9,503	January		30,822	35,012	35,012	32,917	32,917
February		9,692	9,536	9,536	9,614	9,614	February		30,028	31,384	31,384	30,706	30,706
March		11,567	10,550	10,550	11,059	11,059	March		38,773	36,370	36,370	37,572	37,572
April		13,551	14,512	14,512	14,032	14,032	April		33,009	36,248	36,248	34,629	34,629
May		15,372	18,599	18,599	16,986	16,986	May		36,288	42,001	42,001	39,145	39,145
June		16,545	18,903	18,903	17,724	17,724	June		42,135	50,817	50,817	46,476	46,476
July		17,935	17,977	17,977	17,956	17,956	July		49,265	47,123	47,123	48,194	48,194
August		19,873	20,055	20,055	19,964	19,964	August		45,947	47,625	47,625	46,786	46,786
September		17,049	15,781	15,781	16,415	16,415	September		46,671	43,139	43,139	44,905	44,905
October	17,333	15,814	17,600	17,600	16,707	16,707	October	43,567	37,106	42,400	42,400	39,753	39,753
November	13,895	11,037	11,915	11,915	11,476	11,476	November	40,885	34,083	40,525	40,525	37,304	37,304
December	13,364	12,034		12,034	12,699	12,699	December	47,476	44,006		44,006	45,741	45,741
Annual				177,630	174,134	174,134	Annual				496,650	484,127	484,127

		Т	otal Consu	mption (kWł	n)			Dollars						
				Most	Average of						Most	Average of		
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Ва	seline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Se	lected
January	0	39,660	45,180	45,180	42,420	42,420	January		\$2,962	\$3,337	\$3,337	\$3,150	\$	3,150
February	0	39,720	40,920	40,920	40,320	40,320	February		\$2,995	\$3,139	\$3,139	\$3,067	\$	3,067
March	0	50,340	46,920	46,920	48,630	48,630	March		\$3,595	\$3,563	\$3,563	\$3,579	\$	3,579
April	0	46,560	50,760	50,760	48,660	48,660	April		\$3,465	\$4,002	\$4,002	\$3,734	\$	3,734
May	0	51,660	60,600	60,600	56,130	56,130	May		\$3,761	\$4,731	\$4,731	\$4,246	\$	4,246
June	0	58,680	69,720	69,720	64,200	64,200	June		\$4,127	\$5,184	\$5,184	\$4,656	\$	4,656
July	0	67,200	65,100	65,100	66,150	66,150	July		\$4,600	\$4,983	\$4,983	\$4,791	\$	4,791
August	0	65,820	67,680	67,680	66,750	66,750	August		\$4,645	\$5,237	\$5,237	\$4,941	\$	4,941
September	0	63,720	58,920	58,920	61,320	61,320	September		\$4,384	\$4,616	\$4,616	\$4,500	\$	4,500
October	60,900	52 <i>,</i> 920	60,000	60,000	56,460	56,460	October	\$4,617	\$3,856	\$4,645	\$4,645	\$4,250	\$	4,250
November	54,780	45,120	52,440	52,440	48,780	48,780	November	\$4,088	\$3,272	\$3 <i>,</i> 868	\$3,868	\$3,570	\$	3,570
December	60,840	56,040	0	56,040	58,440	58,440	December	\$4,195	\$3,639		\$3,639	\$3,917	\$	3,917
Annual				674,280	658,260	658,260	Annual				\$50,943	\$48,401	\$	48,401

Account:

Meter:

Rate:

GSD-1 Baseline: Average of Last Two Years

	Demand (kW)										
				Most	Average of						
				Recent 12	Last Two	Baseline					
Month	2015	2016	2017	Months	Years	Selected					
January		47	52	52	50	50					
February		58	49	49	54	54					
March		63	61	61	62	62					
April		62	62	62	62	62					
May		70	62	62	66	66					
June		72	67	67	70	70					
July		73	68	68	71	71					
August		70	73	73	72	72					
September		69	71	71	70	70					
October	64	67	65	65	66	66					
November	67	56	54	54	55	55					
December	62	66		66	64	64					
Annual				750	760	760					

		Т	otal Consu	mption (kWh	ı)	
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January		16,740	15,900	15,900	16,320	16,320
February		16,920	15,420	15,420	16,170	16,170
March		24,120	19,320	19,320	21,720	21,720
April		22,560	19,260	19,260	20,910	20,910
May		24,660	23,280	23,280	23,970	23,970
June		29,340	28,380	28,380	28,860	28,860
July		34,920	25,740	25,740	30,330	30,330
August		33,120	28,320	28,320	30,720	30,720
September		32,760	23,580	23,580	28,170	28,170
October	25,920	24,840	27,000	27,000	25,920	25,920
November	22,920	18,240	19,860	19,860	19,050	19,050
December	24,900	21,060		21,060	22,980	22,980
Annual				267,120	285,120	285,120

	Dollars								
				Most	Average of	f			
				Recent 12	Last Two	В	aseline		
Month	2015	2016	2017	Months	Years	Se	elected		
January		\$1,431	\$1,486	\$1,486	\$1,458	\$	1,458		
February		\$1,559	\$1,425	\$1,425	\$1,492	\$	1,492		
March		\$2,007	\$1,821	\$1,821	\$1,914	\$	1,914		
April		\$1,853	\$1,829	\$1,829	\$1,841	\$	1,841		
May		\$2,048	\$2,059	\$2,059	\$2,054	\$	2,054		
June		\$2,309	\$2,409	\$2,409	\$2 <i>,</i> 359	\$	2,359		
July		\$2,603	\$2,269	\$2,269	\$2,436	\$	2,436		
August		\$2,479	\$2,473	\$2,473	\$2,476	\$	2,476		
September		\$2,444	\$2,179	\$2,179	\$2,311	\$	2,311		
October	\$2,191	\$2,021	\$2,307	\$2,307	\$2,164	\$	2,164		
November	\$2,056	\$1,565	\$1,774	\$1,774	\$1,670	\$	1,670		
December	\$2,110	\$1,819		\$1,819	\$1,964	\$	1,964		
Annual				\$23,851	\$24,139	\$	24,139		

Account:

Meter:

Rate: SDTR-1A

Baseline:	Average of La	st Two Years												
			High De	mand (kW)				On-Peak Demand (kW)						
				Most	Average of						Most	Average of		
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline	
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected	
January				0	#DIV/0!	#DIV/0!	January		14	16	16	15	15	
February				0	#DIV/0!	#DIV/0!	February		13	16	16	15	15	
March				0	#DIV/0!	#DIV/0!	March		19	15	15	17	17	
April				0	#DIV/0!	#DIV/0!	April		20	14	14	17	17	
May				0	#DIV/0!	#DIV/0!	May		20	14	14	17	17	
June				0	#DIV/0!	#DIV/0!	June		22	13	13	18	18	
July				0	#DIV/0!	#DIV/0!	July		22	16	16	19	19	
August				0	#DIV/0!	#DIV/0!	August		23	22	22	23	23	
September				0	#DIV/0!	#DIV/0!	September		21	22	22	22	22	
October				0	#DIV/0!	#DIV/0!	October	22	16	22	22	19	19	
November				0	#DIV/0!	#DIV/0!	November	18	15	17	17	16	16	
December				0	#DIV/0!	#DIV/0!	December	20	16		16	18	18	
Annual		-	•	0	#DIV/0!	#DIV/0!	Annual		-		203	214	214	

		On	-Peak Cons	umption (kV	Vh)				Of	f-Peak Cons	umption (kW	Vh)	
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		0	0	0	0	0	January		6,360	8,640	8,640	7,500	7,500
February		0	0	0	0	0	February		5,460	7,620	7,620	6,540	6,540
March		0	0	0	0	0	March		8,100	8,520	8,520	8,310	8,310
April		0	0	0	0	0	April		9,060	7,680	7,680	8,370	8,370
May		0	0	0	0	0	May		9,720	8,220	8,220	8,970	8,970
June		840	660	660	750	750	June		10,080	8,520	8,520	9,300	9,300
July		1,140	840	840	990	990	July		11,160	9,300	9,300	10,230	10,230
August		1,140	1,260	1,260	1,200	1,200	August		9,720	12,180	12,180	10,950	10,950
September		900	1,320	1,320	1,110	1,110	September		9,480	14,400	14,400	11,940	11,940
October	180	120	240	240	180	180	October	9,900	8,400	12,780	12,780	10,590	10,590
November	0	0	0	0	0	0	November	9,180	7,680	8,100	8,100	7,890	7,890
December	0	0		0	0	0	December	10,200	9,840		9,840	10,020	10,020
Annual				4,320	4,230	4,230	Annual				115,800	110,610	110,610

		Т	otal Consu	mption (kWł	ו)			Dollars						
				Most	Average of						Most	Average of		
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Ba	seline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Sel	ected
January	0	6,360	8,640	8,640	7,500	7,500	January		\$517	\$676	\$676	\$596	\$	596
February	0	5,460	7,620	7,620	6,540	6,540	February		\$458	\$620	\$620	\$539	\$	539
March	0	8,100	8,520	8,520	8,310	8,310	March		\$665	\$679	\$679	\$672	\$	672
April	0	9,060	7,680	7,680	8,370	8,370	April		\$702	\$620	\$620	\$661	\$	661
May	0	9,720	8,220	8,220	8,970	8,970	May		\$736	\$651	\$651	\$693	\$	693
June	0	10,920	9,180	9,180	10,050	10,050	June		\$835	\$696	\$696	\$766	\$	766
July	0	12,300	10,140	10,140	11,220	11,220	July		\$919	\$796	\$796	\$858	\$	858
August	0	10,860	13,440	13,440	12,150	12,150	August		\$859	\$1,068	\$1,068	\$964	\$	964
September	0	10,380	15,720	15,720	13,050	13,050	September		\$803	\$1,186	\$1,186	\$995	\$	995
October	10,080	8,520	13,020	13,020	10,770	10,770	October	\$831	\$631	\$1,014	\$1,014	\$822	\$	822
November	9,180	7,680	8,100	8,100	7,890	7,890	November	\$737	\$578	\$677	\$677	\$628	\$	628
December	10,200	9,840	0	9,840	10,020	10,020	December	\$815	\$698		\$698	\$757	\$	757
Annual				120,120	114,840	114,840	Annual				\$9,381	\$8,950	\$	8,950

Account: 6588856242 Meter: RV850V0 Rate: GSLD-1 Baseline: Average of Last Two Years			Domond (1/)A/)
Account: 6588856242 Meter: RV850V0 Rate: GSLD-1	Baseline:	Average of Last Two Years	
Account: 6588856242 Meter: RV850V0	Rate:	GSLD-1	
Account: 6588856242	Meter:	RV850V0	
	Account:	6588856242	

		Demand (kw)											
				Most	Average of								
				Recent 12	Last Two	Baseline							
Month	2015	2016	2017	Months	Years	Selected							
January		392	386	386	389	389							
February		494	401	401	448	448							
March		382	400	400	391	391							
April		387	399	399	393	393							
May		396	402	402	399	399							
June		414	407	407	411	411							
July	420	415	518	518	467	467							
August	416	422	437	437	430	430							
September	463	466	426	426	446	446							
October	460	409	420	420	415	415							
November	411	414	404	404	409	409							
December	428	392		392	410	410							
Annual				4,992	5,006	5,006							

		т	otal Consu	mption (kWh	ı)	
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January		216,400	196,800	196,800	206,600	206,600
February		182,000	184,400	184,400	183,200	183,200
March		191,600	181,600	181,600	186,600	186,600
April		209,200	197,200	197,200	203,200	203,200
May		191,600	200,400	200,400	196,000	196,000
June		208,800	222,000	222,000	215,400	215,400
July	225,600	225,200	217,600	217,600	221,400	221,400
August	211,200	216,400	216,000	216,000	216,200	216,200
September	218,400	235,200	222,400	222,400	228,800	228,800
October	228,000	199,200	203,600	203,600	201,400	201,400
November	203,200	189,200	200,000	200,000	194,600	194,600
December	200,800	188,800		188,800	194,800	194,800
Annual				2,430,800	2,448,200	2,448,200

			Do	llars		
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January		\$16,248	\$15,484	\$15,484	\$15,866	\$ 15,866
February		\$15,475	\$14,963	\$14,963	\$15,219	\$ 15,219
March		\$14,814	\$15,249	\$15,249	\$15,031	\$ 15,031
April		\$15,216	\$16,141	\$16,141	\$15,679	\$ 15,679
May		\$14,409	\$16,363	\$16,363	\$15,386	\$ 15,386
June		\$15,517	\$17,692	\$17,692	\$16,604	\$ 16,604
July	\$17,772	\$16,377	\$18,828	\$18,828	\$17,603	\$ 17,603
August	\$16,902	\$16,001	\$17,636	\$17,636	\$16,819	\$ 16,819
September	\$17,782	\$17,429	17827 24	17827 24	\$17,429	\$ 17,429
October	\$18,294	\$14,927	\$16,737	\$16,737	\$15,832	\$ 15,832
November	\$16,318	\$14,468	\$16,325	\$16,325	\$15,397	\$ 15,397
December	\$16,378	\$14,198		\$14,198	\$15,288	\$ 15,288
Annual				\$179,615	\$192,152	\$ 192,152

Site Name:Government Center WestService Address:1 N UNIVERSITY DR PLANTATION FLSquare Feet:184,820

Account:	2516236441
Meter:	RV755V0
Rate:	GSLDT-1
Baseline:	Average of Last Two Years

		On-Peak Demand (kW)										
				Most	Average of							
				Recent 12	Last Two	Baseline						
Month	2015	2016	2017	Months	Years	Selected						
January		551	558	558	555	555						
February		594	547	547	571	571						
March		539	578	578	559	559						
April		558	607	607	583	583						
May		575	574	574	575	575						
June		584	582	582	583	583						
July		673	575	575	624	624						
August		638	590	590	614	614						
September		683	614	614	649	649						
October	627	589	619	619	604	604						
November	563	563	591	591	577	577						
December	556	542		542	549	549						
Annual		-	-	6,977	7,040	7,040						

		On	-Peak Cons	umption (kV	Vh)			Off-Peak Consumption (kWh)					
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		74,764	63,923	63,923	69,344	69,344	January		244,916	196,957	196,957	220,937	220,937
February		62,675	61,577	61,577	62,126	62,126	February		185,005	179,623	179,623	182,314	182,314
March		67,583	60,922	60,922	64,253	64,253	March		207,217	195,398	195,398	201,308	201,308
April		83,467	77,614	77,614	80,541	80,541	April		193,493	185,426	185,426	189,460	189,460
May		90,246	91,455	91,455	90,851	90,851	May		186,234	182,625	182,625	184,430	184,430
June		93,159	96,969	96,969	95,064	95,064	June		218,601	199,431	199,431	209,016	209,016
July		98,714	93,956	93,956	96,335	96,335	July		210,406	197,404	197,404	203,905	203,905
August		99,621	94,180	94,180	96,901	96,901	August		220,779	206,780	206,780	213,780	213,780
September		95,871	88,861	88,861	92,366	92,366	September		203,889	194,579	194,579	199,234	199,234
October	93,830	88,997	94,625	94,625	91,811	91,811	October	185,290	189,163	207,535	207,535	198,349	198,349
November	76,983	72,234	80,847	80,847	76,541	76,541	November	190,857	188,406	211,953	211,953	200,180	200,180
December	67,571	64,272		64,272	65,922	65,922	December	200,989	208,368		208,368	204,679	204,679
Annual				969,201	982,052	982,052	Annual				2,366,079	2,407,589	2,407,589

		Т	otal Consu	mption (kWł	า)			Dollars					
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January	0	319,680	260,880	260,880	290,280	290,280	January		\$18,632	\$17,369	\$17 <i>,</i> 369	\$18,001	\$ 18,001
February	0	247,680	241,200	241,200	244,440	244,440	February		\$16,173	\$16,268	\$16,268	\$16,221	\$ 16,221
March	0	274,800	256,320	256,320	265,560	265,560	March		\$16,875	\$18,205	\$18,205	\$17,540	\$ 17,540
April	0	276,960	263,040	263,040	270,000	270,000	April		\$16,171	\$18,836	\$18,836	\$17,504	\$ 17,504
May	0	276,480	274,080	274,080	275,280	275,280	May		\$16,215	\$18,601	\$18,601	\$17,408	\$ 17,408
June	0	311,760	296,400	296,400	304,080	304,080	June		\$17,606	\$19,662	\$19,662	\$18,634	\$ 18,634
July	0	309,120	291,360	291,360	300,240	300,240	July		\$18,718	\$19,237	\$19,237	\$18,977	\$ 18,977
August	0	320,400	300,960	300,960	310,680	310,680	August		\$18,721	\$19,908	\$19 <i>,</i> 908	\$19,314	\$ 19,314
September	0	299,760	283,440	283,440	291,600	291,600	September		\$18,289	\$19,612	\$19,612	\$18,950	\$ 18,950
October	279,120	278,160	302,160	302,160	290,160	290,160	October	\$18,447	\$16,489	\$20,376	\$20,376	\$18,433	\$ 18,433
November	267,840	260,640	292,800	292,800	276,720	276,720	November	\$17,285	\$15,420	\$19,680	\$19,680	\$17,550	\$ 17,550
December	268,560	272,640	0	272,640	270,600	270,600	December	\$17,257	\$15,760		\$15,760	\$16,509	\$ 16,509
Annual				3,335,280	3,389,640	3,389,640	Annual				\$223,514	\$215,041	\$ 215,041

Site Name: Traffic Engineering Admin North (Continued)

Account:	7389896072
Meter:	MV54711
Rate:	GSDT-1

Baseline: Average of Last Two Years

		0	n-Peak Der	mand (kW)					То	tal On-Pea	k Demand (kW)	
					Average							Average	
				Most	of Last						Most	of Last	
				Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		235	217	217	226	226	January		308	299	299	304	304
February		217	212	212	215	215	February		303	301	301	302	302
March		223	218	218	221	221	March		314	289	289	302	302
April		244	238	238	241	241	April		336	351	351	344	344
May		257	263	263	260	260	May		351	370	370	361	361
June		288	250	250	269	269	June		401	356	356	379	379
July		282	259	259	271	271	July		396	369	369	383	383
August		318	260	260	289	289	August		427	351	351	389	389
September		254	259	259	257	257	September		355	342	342	349	349
October		257	239	239	248	248	October		366	312	312	339	339
November		233	220	220	227	227	November		321	297	297	309	309
December	248	260		260	254	254	December	339	351		351	345	345
Annual				2,895	2,976	2,976	Annual				3,988	4,103	4,103

		On-P	eak Consu	mption (kW	/h)				Of	-Peak Cons	sumption (k	(Wh)				Тс	otal Consur	nption (kW	h)	
					Average							Average							Average	
				Most	of Last						Most	of Last						Most	of Last	
				Recent 12	Two	Baseline					Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		31,560	30,840	30,840	31,200	31,200	January		106,200	106,200	106,200	106,200	106,200	January		172,980	177,540	177,540	175,260	175,260
February		33,000	28,920	28,920	30,960	30,960	February		111,720	111,720	111,720	111,720	111,720	February		182,220	178,200	178,200	180,210	180,210
March		37,200	33,960	33,960	35,580	35,580	March		111,960	111,960	111,960	111,960	111,960	March		194,820	172,860	172,860	183,840	183,840
April		39,480	35,640	35,640	37,560	37,560	April		100,440	100,440	100,440	100,440	100,440	April		184,620	165,780	165,780	175,200	175,200
May		41,520	41,760	41,760	41,640	41,640	May		116,400	116,400	116,400	116,400	116,400	May		211,740	218,160	218,160	214,950	214,950
June		45,840	42,240	42,240	44,040	44,040	June		113,400	113,400	113,400	113,400	113,400	June		218,040	210,120	210,120	214,080	214,080
July		47,880	39,240	39,240	43,560	43,560	July		123,720	123,720	123,720	123,720	123,720	July		236,100	217,680	217,680	226,890	226,890
August		50,280	45,720	45,720	48,000	48,000	August		128,880	128,880	128,880	128,880	128,880	August		246,600	217,320	217,320	231,960	231,960
September		41,400	38,400	38,400	39,900	39,900	September		106,800	106,800	106,800	106,800	106,800	September	-	205,080	178,440	178,440	191,760	191,760
October		40,560	41,160	41,160	40,860	40,860	October		110,520	110,520	110,520	110,520	110,520	October		204,360	183,540	183,540	193,950	193,950
November		33,480	33,120	33,120	33,300	33,300	November		107,640	107,640	107,640	107,640	107,640	November		184,260	171,840	171,840	178,050	178,050
December	38,880	33,480		33,480	36,180	36,180	December	124,080	108,120		108,120	116,100	116,100	December	211,140	185,880		185,880	198,510	198,510
Annual				444,480	462,780	462,780	Annual				1,345,800	1,353,780	1,353,780	Annual				2,277,360	2,364,660	2,364,660

			Dolla	irs						Total	Dollars		
					Average							Average	
				Most	of Last						Most	of Last	
				Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		\$9 <i>,</i> 899	\$10,010	\$10,010	\$9,954	\$ 9,95	January		\$12,645	\$13,223	\$13,223	\$12,934	\$ 12,934
February		\$9 <i>,</i> 925	\$9,122	\$9,122	\$9,524	\$ 9,52	February		\$12,935	\$12,250	\$12,250	\$12 <i>,</i> 592	\$ 12,592
March		\$10,365	\$10,213	\$10,213	\$10,289	\$ 10,28	March		\$13,887	\$12,612	\$12,612	\$13,249	\$ 13,249
April		\$9 <i>,</i> 888	\$10,108	\$10,108	\$9,998	\$ 9,99	April		\$13,237	\$13,140	\$13,140	\$13,189	\$ 13,189
May		\$10,819	\$11,829	\$11,829	\$11,324	\$ 11,32	May		\$14,661	\$16,566	\$16,566	\$15,613	\$ 15,613
June		\$11,516	\$11,222	\$11,222	\$11,369	\$ 11,36	June		\$15,996	\$15,791	\$15,791	\$15 <i>,</i> 893	\$ 15,893
July		\$11 <i>,</i> 859	\$11,566	\$11,566	\$11,712	\$ 11,71	July		\$16,649	\$16,181	\$16,181	\$16,415	\$ 16,415
August		\$12 <i>,</i> 843	\$11,897	\$11,897	\$12 <i>,</i> 370	\$ 12,37	August		\$17,717	\$15,609	\$15,609	\$16,663	\$ 16,663
September		\$10,380	\$11,021	\$11,021	\$10,700	\$ 10,70	September		\$14,609	\$14,075	\$14,075	\$14,342	\$ 14,342
October		\$10,521	\$11,339	\$11,339	\$10,930	\$ 10,93	October		\$14,494	\$14,049	\$14,049	\$14,272	\$ 14,272
November		\$9,653	\$10,364	\$10,364	\$10,008	\$ 10,00	November		\$12,874	\$13,073	\$13,073	\$12,973	\$ 12,973
December	\$11,645	\$10,079		\$10,079	\$10,862	\$ 10,86	December	\$15,432	\$13,392		\$13,392	\$14,412	\$ 14,412
Annual				\$128,769	\$129,041	\$ 129,04	Annual				\$169,961	\$172,549	\$ 172,549

Account:	1176649273						Account:	1172640276					
Meter:	KU33665						Meter:	KU33593					
Rate:	GSD-1						Rate:	GSD-1					
Baseline:	Average of Last Two	Years					Baseline:	Average of La	st Two Years				
			Der	nand (kW)						[Demand (kW)		
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected	Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January		25	25	25	25	25	January		24	22	22	23	23
February		19	23	23	21	21	February		25	23	23	24	24
March		23	20	20	22	22	March		26	26	26	26	26
April		20	25	25	23	23	April		26	29	29	28	28
May		21	22	22	22	22	May		26	29	29	28	28
June		22	22	22	22	22	June		30	29	29	30	30
July		28	28	28	28	28	July		31	31	31	31	31
August	28	28	28	28	28	28	August	31	30	31	31	31	31
September	28	22	31	31	27	27	September	32	28	29	29	29	29
October	20	26	22	22	24	24	October	26	28	30	30	29	29
November	21	26	19	19	23	23	November	26	24	28	28	26	26
December	18	27		27	23	23	December	28	26		26	27	27
Annual				292	285	285	Annual				333	330	330

			Consu	mption (kWh)						Con	sumption (kWl	h)	
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected	Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January		3,420	13,200	13,200	8,310	8,310	January		6,720	6,900	6,900	6,810	6,810
February		3,240	11,820	11,820	7,530	7,530	February		7,020	6,600	6,600	6,810	6,810
March		3,540	12,960	12,960	8,250	8,250	March		8,400	7,860	7,860	8,130	8,130
April		3,480	10,320	10,320	6,900	6,900	April		8,160	7,440	7,440	7,800	7,800
May		4,800	14,640	14,640	9,720	9,720	May		9,300	9,960	9,960	9,630	9,630
June		6,360	13,740	13,740	10,050	10,050	June		10,320	9,000	9,000	9,660	9,660
July		9,420	13,140	13,140	11,280	11,280	July		10,740	10,140	10,140	10,440	10,440
August	6,360	13,800	14,160	14,160	13,980	13,980	August	11,100	11,340	10,980	10,980	11,160	11,160
September	5,460	12,660	12,780	12,780	12,720	12,720	September	9,900	9,360	8,400	8,400	8,880	8,880
October	5,460	13,980	13,920	13,920	13,950	13,950	October	8,580	9,660	9,960	9,960	9,810	9,810
November	4,500	13,020	11,940	11,940	12,480	12,480	November	8,640	8,100	7,980	7,980	8,040	8,040
December	3,840	12,900		12,900	8,370	8,370	December	8,280	8,040		8,040	8,160	8,160
Annual				155,520	123,540	123,540	Annual				103,260	105,330	105,330

				Dollars			Ine Month 2015 2016 2017 Most Recent 12 Months Average of Last Two Years Baseline Selected 769 January \$655 \$667 \$661 \$662 681 February \$683 \$661 \$661 \$672 \$677 742 March \$771 \$786 \$786 \$779 \$77 673 April \$738 \$796 \$796 \$767 \$673 822 May \$797 \$943 \$943 \$870 \$872									
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseli Select	ine ted	Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Ba Se	aseline elected	
January		\$484	\$1,054	\$1,054	\$769	\$	769	January		\$655	\$667	\$667	\$661	\$	661	
February		\$408	\$953	\$953	\$681	\$	681	February		\$683	\$661	\$661	\$672	\$	672	
March		\$470	\$1,015	\$1,015	\$742	\$	742	March		\$771	\$786	\$786	\$779	\$	779	
April		\$428	\$918	\$918	\$673	\$	673	April		\$738	\$796	\$796	\$767	\$	767	
May		\$508	\$1,136	\$1,136	\$822	\$	822	May		\$797	\$943	\$943	\$870	\$	870	
June		\$600	\$1,084	\$1,084	\$842	\$	842	June		\$896	\$888	\$888	\$892	\$	892	
July		\$827	\$1,118	\$1,118	\$972	\$	972	July		\$929	\$977	\$977	\$953	\$	953	
August	\$708	\$1,053	\$1,178	\$1,178	\$1,116	\$	1,116	August	\$1,014	\$949	\$1 <i>,</i> 027	\$1,027	\$988	\$	988	
September	\$655	\$924	\$1,132	\$1,132	\$1,028	\$	1,028	September	\$953	\$822	\$852	\$852	\$837	\$	837	
October	\$562	\$1,037	\$1 <i>,</i> 094	\$1,094	\$1,066	\$	1,066	October	\$809	\$837	\$955	\$955	\$896	\$	896	
November	\$519	\$988	\$944	\$944	\$966	\$	966	November	\$812	\$712	\$816	\$816	\$764	\$	764	
December	\$447	\$993		\$993	\$720	\$	720	December	\$815	\$731		\$731	\$773	\$	773	
Annual				\$12,620	\$10,398	\$ 1	0,398	Annual				\$10,100	\$9,852	\$	9,852	

Site Name: Park Administration Complex

(Continued)

Account:	1178643225
Meter:	KU53643
Rate:	GSD-1

Baseline: Average of Last Two Years

			Demand (kW)						Total Den	nand (kW)		
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected	Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January		20	22	22	21	21	January		69	69	69	69	69
February		22	24	24	23	23	February		66	70	70	68	68
March		24	24	24	24	24	March		73	70	70	72	72
April		24	25	25	25	25	April		70	79	79	75	75
May		25	26	26	26	26	May		72	77	77	75	75
June		26	26	26	26	26	June		78	77	77	78	78
July		26	28	28	27	27	July		85	87	87	86	86
August	26	28	28	28	28	28	August	85	86	87	87	87	87
September	26	26	29	29	28	28	September	86	76	89	89	83	83
October	25	26	28	28	27	27	October	71	80	80	80	80	80
November	25	24	24	24	24	24	November	72	74	71	71	73	73
December	24	24		24	24	24	December	70	77		77	74	74
Annual				308	302	302	Annual				933	916	916

		Co	nsumption	(kWh)					Т	otal Consun	nption (kW	h)	
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected	Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January		5,040	6,120	6,120	5 <i>,</i> 580	5,580	January		15,180	26,220	26,220	20,700	20,700
February		5,160	6,600	6,600	5,880	5,880	February		15,420	25,020	25,020	20,220	20,220
March		6,720	8,040	8,040	7,380	7,380	March		18,660	28,860	28,860	23,760	23,760
April		7,320	8,400	8,400	7,860	7,860	April		18,960	26,160	26,160	22,560	22,560
May		8,280	10,680	10,680	9,480	9,480	May		22,380	35,280	35,280	28,830	28,830
June		8,160	9,240	9,240	8,700	8,700	June		24,840	31,980	31,980	28,410	28,410
July		9,480	9,960	9,960	9,720	9,720	July		29,640	33,240	33,240	31,440	31,440
August	9,600	10,080	10,320	10,320	10,200	10,200	August	27,060	35,220	35,460	35,460	35,340	35,340
September	8,400	8,880	8,040	8,040	8,460	8,460	September	23,760	30,900	29,220	29,220	30,060	30,060
October	7,680	9,720	9,120	9,120	9,420	9,420	October	21,720	33,360	33,000	33,000	33,180	33,180
November	7,440	7,200	6,840	6,840	7,020	7,020	November	20,580	28,320	26,760	26,760	27,540	27,540
December	6,840	7,080		7,080	6,960	6,960	December	18,960	28,020		28,020	23,490	23,490
Annual				100,440	96,660	96,660	Annual				359,220	325,530	325,530

			Dollars	S							Do	lars		
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Bas Sele	seline ected	Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January		\$519	\$623	\$623	\$571	\$	571	January		\$1,658	\$2,343	\$2,343	\$2,001	\$ 2,001
February		\$547	\$673	\$673	\$610	\$	610	February		\$1,638	\$2,288	\$2,288	\$1,963	\$ 1,963
March		\$657	\$774	\$774	\$715	\$	715	March		\$1,898	\$2,575	\$2,575	\$2,236	\$ 2,236
April		\$672	\$806	\$806	\$739	\$	739	April		\$1,839	\$2,521	\$2,521	\$2,180	\$ 2,180
May		\$733	\$951	\$951	\$842	\$	842	May		\$2,038	\$3,031	\$3,031	\$2 <i>,</i> 534	\$ 2,534
June		\$739	\$867	\$867	\$803	\$	803	June		\$2,235	\$2,839	\$2,839	\$2 <i>,</i> 537	\$ 2,537
July		\$807	\$932	\$932	\$870	\$	870	July		\$2 <i>,</i> 563	\$3,028	\$3,028	\$2,795	\$ 2,795
August	\$870	\$861	\$953	\$953	\$907	\$	907	August	\$2,592	\$2 <i>,</i> 863	\$3,158	\$3,158	\$3,010	\$ 3,010
September	\$799	\$774	\$831	\$831	\$803	\$	803	September	\$2,407	\$2,520	\$2,815	\$2,815	\$2 <i>,</i> 668	\$ 2,668
October	\$746	\$818	\$883	\$883	\$850	\$	850	October	\$2,118	\$2,692	\$2 <i>,</i> 933	\$2,933	\$2,813	\$ 2,813
November	\$733	\$665	\$704	\$704	\$684	\$	684	November	\$2,064	\$2 , 365	\$2,464	\$2,464	\$2,414	\$ 2,414
December	\$687	\$659		\$659	\$673	\$	673	December	\$1,949	\$2 , 383		\$2,383	\$2,166	\$ 2,166
Annual				\$9,656	\$9,067	\$	9,067	Annual				\$32,377	\$29,317	\$ 29,317

17,847

Site Name:

Square Feet:

Account:	8985734287					
Meter:	MNL8190					
Rate:	GSDT-1					
Baseline:	Average of Last T	wo Years				
			Demano	d (kW)		
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January		92	98	98	95	95
February		92	96	96	94	94
March		93	97	97	95	95
April		86	94	94	90	90
May		86	91	91	89	89
June		95	83	83	89	89
July		93	81	81	87	87
August		110	80	80	95	95
September		96	78	78	87	87
October		94	75	75	85	85
November		91	74	74	83	83
December	93	92		92	93	93
Annual				1,039	1,080	1,080

		On-F	Peak Consur	mption (kWh	ı)				Of	f-Peak Cons	umption (kW	/h)	
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		12,631	15,232	15,232	13,932	13,932	January		42,950	54,339	54,339	48,645	48,645
February		11,155	13,630	13,630	12,393	12,393	February		35,865	43,834	43,834	39,850	39,850
March		13,015	14,082	14,082	13,549	13,549	March		36,502	44,255	44,255	40,379	40,379
April		13,618	14,739	14,739	14,179	14,179	April		38,452	47,466	47,466	42,959	42,959
May		14,208	14,979	14,979	14,594	14,594	May		32,843	42,291	42,291	37,567	37,567
June		14,008	14,140	14,140	14,074	14,074	June		38,551	44,318	44,318	41,435	41,435
July		15,489	13,112	13,112	14,301	14,301	July		47,572	37,502	37,502	42,537	42,537
August		15,781	12,871	12,871	14,326	14,326	August		42,477	34,418	34,418	38,448	38,448
September		15,049	12,803	12,803	13,926	13,926	September		47,187	38,698	38,698	42,943	42,943
October		14,917	12,339	12,339	13,628	13,628	October		41,193	33,155	33,155	37,174	37,174
November		13,875	11,726	11,726	12,801	12,801	November		39,780	33,822	33,822	36,801	36,801
December	11,762	13,381		13,381	12,572	12,572	December	35,479	43,734		43,734	39,607	39,607
Annual				163,034	164,271	164,271	Annual				497,832	488,342	488,342

			Dolla	ars			
				Most	Average of		
				Recent 12	Last Two	В	aseline
Month	2015	2016	2017	Months	Years	S	elected
January		\$3,922	\$4,814	\$4,814	\$4,368	\$	4,368
February		\$3,502	\$4,194	\$4,194	\$3,848	\$	3,848
March		\$3,717	\$4,407	\$4,407	\$4,062	\$	4,062
April		\$3,626	\$4,578	\$4,578	\$4,102	\$	4,102
May		\$3 <i>,</i> 460	\$4,324	\$4,324	\$3,892	\$	3,892
June		\$3,769	\$4,256	\$4,256	\$4,012	\$	4,012
July		\$4,218	\$3,828	\$3,828	\$4,023	\$	4,023
August		\$4,239	\$3,652	\$3,652	\$3,946	\$	3,946
September		\$4,189	\$3,822	\$3,822	\$4,005	\$	4,005
October		\$3,925	\$3,489	\$3,489	\$3,707	\$	3,707
November		\$3,750	\$3,457	\$3,457	\$3,603	\$	3,603
December	\$3,669	\$3,871		\$3,871	\$3,770	\$	3,770
Annual		-	•	\$48,693	\$47,339	\$	47,339

Site Name: Integ Waste South Landfill (Continued)

Account:	3279652519
Meter:	KJ87663
Rate:	GS-1
Baseline	Average of Last Two Yes

Baseline:	Average of Last Two Years									
			Demand	(kW)						
Month	2015	2016 2017		Most Recent 12 Months	Average of Last Two Years	Baseline Selected				
January				0	0	0				
February				0	0	0				
March				0	0	0				
April				0	0	0				
May		NOT		0	0	0				
June		APPLICABLE		0	0	0				
July				0	0	0				
August				0	0	0				
September				0	0	0				
October				0	0	0				
November				0	0	0				
December				0	0	0				
Annual				0	0	0				

		C	onsumptio	ո (kWh)		
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January		353	254	254	304	304
February		673	201	201	437	437
March		382	215	215	299	299
April		205	192	192	199	199
May		194	222	222	208	208
June		437	769	769	603	603
July		200	501	501	351	351
August		215	394	394	305	305
September		653	649	649	651	651
October		484	689	689	587	587
November		347	568	568	458	458
December	629	301		301	465	465
Annual				4,955	4,864	4,864

		Dollars										
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Bas Sele	Baseline Selected					
January		\$42	\$35	\$35	\$39	\$	39					
February		\$73	\$30	\$30	\$51	\$	51					
March		\$45	\$32	\$32	\$38	\$	38					
April		\$28	\$30	\$30	\$29	\$	29					
May		\$27	\$33	\$33	\$30	\$	30					
June		\$50	\$87	\$87	\$68	\$	68					
July		\$27	\$60	\$60	\$44	\$	44					
August		\$29	\$50	\$50	\$39	\$	39					
September		\$70	\$75	\$75	\$73	\$	73					
October		\$54	\$79	\$79	\$67	\$	67					
November		\$41	\$67	\$67	\$54	\$	54					
December	\$71	\$37		\$37	\$54	\$	54					
Annual				\$615	\$585	\$	585					

Site Name: Integ Waste South Landfill (Continued)

Account:	3285657577
Meter:	KJ87662
Rate:	GS-1
Baseline:	Average of Last Two Years

			Demand	l (kW)		
Month	2015	2016 2017		Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January				0	0	0
February				0	0	0
March				0	0	0
April				0	0	0
May		NOT		0	0	0
June		APPLICABLE	Ξ	0	0	0
July				0	0	0
August				0	0	0
September				0	0	0
October				0	0	0
November				0	0	0
December				0	0	0
Annual				0	0	0

			Consumptio	on (kWh)		
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January		424	155	155	290	290
February		363	107	107	235	235
March		52	177	177	115	115
April		158	105	105	132	132
May		241	134	134	188	188
June		222	459	459	341	341
July		125	425	425	275	275
August		131	384	384	258	258
September		692	562	562	627	627
October		697	543	543	620	620
November		227	499	499	363	363
December	713	112		112	413	413
Annual				3,662	3,854	3,854

			Doll	ars					
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Bas Sel	eline		
January		\$49	\$26	\$26	\$37	\$	37		
February		\$43	\$21	\$21	\$32	\$	32		
March		\$13	\$28	\$28	\$21	\$	21		
April		\$23	\$21	\$21	\$22	\$	22		
May		\$31	\$24	\$24	\$28	\$	28		
June		\$29	\$56	\$56	\$43	\$	43		
July		\$20	\$53	\$53	\$37	\$	37		
August		\$21	\$49	\$49	\$35	\$	35		
September		\$74	\$66	\$66	\$70	\$	70		
October		\$74	\$65	\$65	\$69	\$	69		
November		\$30	\$60	\$60	\$45	\$	45		
December	\$79	\$19		\$19	\$49	\$	49		
Annual				\$488	\$487	\$	487		

Account:	3280650544
Meter:	MJ5365A
Rate:	SDTR-1A

Baseline: Average of Last Two Years

			High Dema	nd (kW)				On-Peak Demand (kW)					
				Most	Average of Last						Most	Average of Last	
				Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		22	19	19	21	21	January		0	0	0	0	0
February		27	21	21	24	24	February		0	0	0	0	0
March		21	19	19	20	20	March		0	0	0	0	0
April		21	18	18	20	20	April		0	0	0	0	0
May		22	19	19	21	21	May		0	0	0	0	0
June		6	0	0	3	3	June		6	0	0	3	3
July		11	11	11	11	11	July		11	11	11	11	11
August		9	4	4	7	7	August		9	4	4	7	7
September		17	18	18	18	18	September		17	18	18	18	18
October		14	13	13	14	14	October		0	1	1	1	1
November		14	15	15	15	15	November		0	0	0	0	0
December	0	17		17	9	9	December	0	0		0	0	0
Annual				174	179	179	Annual				34	39	39

		On-Pe	eak Consum	nption (kWh	ı)			Off-Peak Consumption (kWh)					
					Average							Average	
				Most	of Last						Most	of Last	
				Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		0	0	0	0	0	January		70	120	120	95	95
February		0	0	0	0	0	February		128	153	153	141	141
March		0	0	0	0	0	March		329	173	173	251	251
April		0	0	0	0	0	April		260	190	190	225	225
May		0	0	0	0	0	May		150	191	191	171	171
June		6	0	0	3	3	June		66	80	80	73	73
July		6	8	8	7	7	July		106	84	84	95	95
August		9	10	10	10	10	August		82	74	74	78	78
September		10	42	42	26	26	September		24	129	129	77	77
October		0	0	0	0	0	October		91	128	128	110	110
November		0	0	0	0	0	November		209	90	90	150	150
December	0	0		0	0	0	December	0	118		118	59	59
Annual				60	46	46	Annual				1,530	1,523	1,523

			Dolla	rs			
					Average		
				Most	of Last		
				Recent 12	Two	Ba	seline
Month	2015	2016	2017	Months	Years	Se	lected
January		\$261	\$242	\$242	\$251	\$	251
February		\$316	\$265	\$265	\$291	\$	291
March		\$264	\$245	\$245	\$255	\$	255
April		\$267	\$235	\$235	\$251	\$	251
May		\$273	\$246	\$246	\$259	\$	259
June		\$107	\$31	\$31	\$69	\$	69
July		\$172	\$167	\$167	\$169	\$	169
August		\$146	\$81	\$81	\$113	\$	113
September		\$244	\$259	\$259	\$252	\$	252
October		\$184	\$177	\$177	\$180	\$	180
November		\$190	\$196	\$196	\$193	\$	193
December	\$28	\$217		\$217	\$122	\$	122
Annual				\$2,360	\$2,406	\$	2,406

Site Name: Integ Waste South Landfill (Continued)

Account:	9839231363						Account:	868010835	7					Account:	3292658550					
Meter:	KJ87664						Meter:	AC16781						Meter:	MV3710A					
Rate:	GS-1						Rate:	GS-1						Rate:	SDTR-1A					
Baseline:	Average of Las	st Two Years					Baseline:	Average of Las	st Two Years					Baseline:	Average of Last	Two Years				
			Dema	nd (kW)						Demand	(kW)						High Dema	ind (kW)		
				Most								Average							Average	
				Recent	Average of						Most	of Last						Most	of Last	
				12	Last Two	Baseline					Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January				0	0	0	January				0	0	0	January		64	62	62	63	63
February				0	0	0	February				0	0	0	February		59	59	59	59	59
March				0	0	0	March				0	0	0	March		64	63	63	64	64
April				0	0	0	April				0	0	0	April		61	63	63	62	62
May		NOT		0	0	0	May		NOT		0	0	0	May		67	70	70	69	69
June		APPLICABLE	Ξ	0	0	0	June		APPLICABLE	E	0	0	0	June		51	49	49	50	50
July				0	0	0	July				0	0	0	July		51	52	52	52	52
August				0	0	0	August				0	0	0	August		55	56	56	56	56
September				0	0	0	September				0	0	0	September		56	53	53	55	55
October				0	0	0	October				0	0	0	October		71	70	70	71	71
November				0	0	0	November				0	0	0	November		66	64	64	65	65
December				0	0	0	December				0	0	0	December	66	65		65	66	66
Annual				0	0	0	Annual				0	0	0	Annual				726	729	729

			Consump	tion (kWh)					(Consumptio	on (kWh)					On-P	eak Consu	mption (kW	h)	
				Most								Average							Average	
				Recent	Average of						Most	of Last						Most	of Last	
				12	Last Two	Baseline					Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		1,929	1,537	1,537	1,733	1,733	January		111	123	123	117	117	January		0	0	0	0	0
February		2,303	733	733	1,518	1,518	February		111	106	106	109	109	February		0	0	0	0	0
March		2,661	373	373	1,517	1,517	March		125	115	115	120	120	March		0	0	0	0	0
April		2,292	111	111	1,202	1,202	April		110	110	110	110	110	April		0	0	0	0	0
May		1,498	1,338	1,338	1,418	1,418	May		109	125	125	117	117	May		0	0	0	0	0
June		2,427	2,288	2,288	2,358	2,358	June		121	114	114	118	118	June		2,400	2,460	2,460	2,430	2,430
July		712	1,788	1,788	1,250	1,250	July		113	110	110	112	112	July		2,640	2,520	2,520	2,580	2,580
August		2,488	2,141	2,141	2,315	2,315	August		124	121	121	123	123	August		3,000	2,880	2,880	2,940	2,940
September		1,740	2,151	2,151	1,946	1,946	September		113	114	114	114	114	September		2,820	2,700	2,700	2,760	2,760
October		1,807	1,261	1,261	1,534	1,534	October		110	121	121	116	116	October		240	240	240	240	240
November		1,427	1,263	1,263	1,345	1,345	November		122	115	115	119	119	November		0	0	0	0	0
December	2,627	1,132		1,132	1,880	1,880	December	132	114		114	123	123	December	0	0		0	0	0
Annual				16,116	20,014	20,014	Annual				1,388	1,395	1,395	Annual				10,800	10,950	10,950

			Do	ollars							Dolla	ars							Dolla	ars		
				Most									Average								Average	
				Recent	Average of							Most	of Last							Most	of Last	
				12	Last Two	Ba	seline					Recent 12	Two	Ва	seline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Se	lected	Month	2015	2016	2017	Months	Years	Se	ected	Month	2015	2016	2017	Months	Years	Selected
January		\$194	\$158	\$158	\$176	\$	176	January		\$19	\$22	\$22	\$21	\$	21	January		\$1,705	\$1,954	\$1,954	\$1,830	\$ 1,830
February		\$231	\$81	\$81	\$156	\$	156	February		\$19	\$21	\$21	\$20	\$	20	February		\$1,721	\$1,769	\$1,769	\$1,745	\$ 1,745
March		\$266	\$48	\$48	\$157	\$	157	March		\$20	\$22	\$22	\$21	\$	21	March		\$2,028	\$1,961	\$1,961	\$1,995	\$ 1,995
April		\$226	\$22	\$22	\$124	\$	124	April		\$19	\$22	\$22	\$20	\$	20	April		\$1,833	\$2,006	\$2,006	\$1,919	\$ 1,919
May		\$150	\$143	\$143	\$147	\$	147	May		\$19	\$23	\$23	\$21	\$	21	May		\$2,034	\$2,457	\$2,457	\$2,246	\$ 2,246
June		\$239	\$238	\$238	\$238	\$	238	June		\$20	\$22	\$22	\$21	\$	21	June		\$2,158	\$2,220	\$2,220	\$2,189	\$ 2,189
July		\$76	\$188	\$188	\$132	\$	132	July		\$19	\$22	\$22	\$20	\$	20	July		\$2,140	\$2,297	\$2,297	\$2,218	\$ 2,218
August		\$244	\$223	\$223	\$234	\$	234	August		\$20	\$23	\$23	\$21	\$	21	August		\$2,357	\$2,534	\$2,534	\$2,446	\$ 2,446
September		\$173	\$224	\$224	\$199	\$	199	September		\$19	\$22	\$22	\$20	\$	20	September		\$2,278	\$2,354	\$2,354	\$2,316	\$ 2,316
October		\$179	\$136	\$136	\$158	\$	158	October		\$19	\$23	\$23	\$21	\$	21	October		\$2,186	\$2,423	\$2,423	\$2,305	\$ 2,305
November		\$143	\$136	\$136	\$140	\$	140	November		\$20	\$22	\$22	\$21	\$	21	November		\$2,002	\$2,021	\$2,021	\$2,012	\$ 2,012
December	\$270	\$115		\$115	\$193	\$	193	December	\$21	\$19		\$19	\$20	\$	20	December	\$2,503	\$1,967		\$1,967	\$2,235	\$ 2,235
Annual		-	-	\$1,713	\$2,052	\$	2,052	Annual		-	-	\$262	\$247	\$	247	Annual		-	-	\$25,964	\$25,455	\$ 25,455

Site Name: Integ Waste South Landfill (Continued)

			On-Peak De	emand (kW))					Total Den	nand (kW)		
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected	Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January		0	0	0	0	0	January		178	179	179	179	179
February		0	0	0	0	0	February		178	176	176	177	177
March		0	0	0	0	0	March		178	179	179	179	179
April		0	0	0	0	0	April		168	175	175	172	172
May		0	0	0	0	0	May		175	180	180	178	178
June		51	49	49	50	50	June		152	132	132	142	142
July		51	52	52	52	52	July		155	144	144	150	150
August		55	56	56	56	56	August		174	140	140	157	157
September		56	53	53	55	55	September		169	149	149	159	159
October		49	52	52	51	51	October		179	158	158	169	169
November		0	0	0	0	0	November		171	153	153	162	162
December	0	0		0	0	0	December	159	174		174	167	167
Annual				262	262	262	Annual				1,939	1,988	1,988

		Off	-Peak Cons	umption (k)	Nh)				Т	otal Consur	nption (kW	h)	
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected	Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January		18,720	22,740	22,740	20,730	20,730	January		77,188	94,500	94,500	85,844	85,844
February		19,980	19,980	19,980	19,980	19,980	February		70,578	78,744	78,744	74,661	74,661
March		24,600	21,720	21,720	23,160	23,160	March		77,666	81,110	81,110	79,388	79,388
April		22,680	22,500	22,500	22,590	22,590	April		77,775	85,413	85,413	81,594	81,594
May		25,380	29,040	29,040	27,210	27,210	May		74,623	88,320	88,320	81,472	81,472
June		28,200	25,500	25,500	26,850	26,850	June		86,438	90,128	90,128	88,283	88,283
July		27,000	26,160	26,160	26,580	26,580	July		93,963	82,210	82,210	88,087	88,087
August		29,880	28,980	28,980	29,430	29,430	August		94,187	82,273	82,273	88,230	88,230
September		28,380	26,580	26,580	27,480	27,480	September		96,668	84,428	84,428	90,548	90,548
October		27,360	28,200	28,200	27,780	27,780	October		86,899	76,676	76,676	81,788	81,788
November		25,020	22,560	22,560	23,790	23,790	November		81,007	70,643	70,643	75,825	75,825
December	31,440	24,540		24,540	27,990	27,990	December	82,782	83,432		83,432	83,107	83,107
Annual				298,500	303,570	303,570	Annual				997,877	998,826	998,826

			Total I	Dollars		
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January		\$6,193	\$7,251	\$7,251	\$6,722	\$ 6,722
February		\$5,904	\$6,381	\$6,381	\$6,142	\$ 6,142
March		\$6,354	\$6,743	\$6,743	\$6,549	\$ 6,549
April		\$6,022	\$6,913	\$6,913	\$6,467	\$ 6,467
May		\$5 <i>,</i> 993	\$7,250	\$7,250	\$6,621	\$ 6,621
June		\$6,372	\$6,910	\$6,910	\$6,641	\$ 6,641
July		\$6,672	\$6,615	\$6,615	\$6 <i>,</i> 643	\$ 6,643
August		\$7,056	\$6,612	\$6,612	\$6,834	\$ 6,834
September		\$7,046	\$6,822	\$6,822	\$6,934	\$ 6,934
October		\$6,622	\$6,392	\$6,392	\$6 <i>,</i> 507	\$ 6,507
November		\$6,176	\$5,959	\$5 <i>,</i> 959	\$6 <i>,</i> 067	\$ 6,067
December	\$6,640	\$6,246		\$6,246	\$6,443	\$ 6,443
Annual				\$80,094	\$78,571	\$ 78,571

Site Name:Booher BuildingService Address:3275 NW 99TH WAYSquare Feet:53,060

Electric History

Account:	1789736053
Meter:	DV37593
Rate:	GSDT-1
	_

 Baseline:
 Average of Last Two Years

			On-Peak D	emand (kW)	1	
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January		230	242	242	236	236
February		224	241	241	233	233
March		222	250	250	236	236
April		248	256	256	252	252
May		293	265	265	279	279
June		278	272	272	275	275
July	285	287	284	284	286	286
August	298	301	285	285	293	293
September	296	260	285	285	273	273
October	293	278	265	265	272	272
November	262	248	227	227	238	238
December	233	246		246	240	240
Annual		-	•	3,118	3,110	3,110

		On	-Peak Cons	umption (kV	Vh)				Of	f-Peak Cons	umption (kW	/h)	
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		23,040	26,580	26,580	24,810	24,810	January		78,780	93,540	93,540	86,160	86,160
February		25,140	25,800	25,800	25,470	25,470	February		75,120	85,320	85,320	80,220	80,220
March		29,460	29,280	29,280	29,370	29,370	March		95,760	89,400	89,400	92,580	92,580
April		35,580	37,740	37,740	36,660	36,660	April		83,280	91,200	91,200	87,240	87,240
May		40,260	42,420	42,420	41,340	41,340	May		93,360	112,380	112,380	102,870	102,870
June		42,720	42,960	42,960	42,840	42,840	June		118,260	105,360	105,360	111,810	111,810
July	43,440	45,480	43,560	43,560	44,520	44,520	July	104,280	115,140	114,840	114,840	114,990	114,990
August	47,520	48,780	49,260	49,260	49,020	49,020	August	107,280	124,200	129,900	129,900	127,050	127,050
September	44,580	43,080	47,040	47,040	45,060	45,060	September	118,500	109,260	117,780	117,780	113,520	113,520
October	41,400	41,340	44,160	44,160	42,750	42,750	October	94,980	95,580	115,860	115,860	105,720	105,720
November	32,820	29,700	31,320	31,320	30,510	30,510	November	99,180	103,260	101,340	101,340	102,300	102,300
December	34,200	31,320		31,320	32,760	32,760	December	118,620	103,380		103,380	111,000	111,000
Annual				451,440	445,110	445,110	Annual				1,260,300	1,235,460	1,235,460

		Т	otal Consu	mption (kWł	า)					Dol	lars		
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January	0	101,820	120,120	120,120	110,970	110,970	January		\$7,833	\$9,143	\$9,143	\$8,488	\$ 8,488
February	0	100,260	111,120	111,120	105,690	105,690	February		\$7,808	\$8,704	\$8,704	\$8,256	\$ 8,256
March	0	125,220	118,680	118,680	121,950	121,950	March		\$9,040	\$9,574	\$9 <i>,</i> 574	\$9,307	\$ 9,307
April	0	118,860	128,940	128,940	123,900	123,900	April		\$9,029	\$10,446	\$10,446	\$9,737	\$ 9,737
May	0	133,620	154,800	154,800	144,210	144,210	May		\$10,319	\$11,935	\$11,935	\$11,127	\$ 11,127
June	0	160,980	148,320	148,320	154,650	154,650	June		\$11,327	\$11,742	\$11,742	\$11,534	\$ 11,534
July	147,720	160,620	158,400	158,400	159,510	159,510	July	\$11,698	\$11,540	\$12,372	\$12,372	\$11,956	\$ 11,956
August	154,800	172,980	179,160	179,160	176,070	176,070	August	\$12,341	\$12,325	\$13,573	\$13,573	\$12,949	\$ 12,949
September	163,080	152,340	164,820	164,820	158,580	158,580	September	\$12,488	\$10,778	\$12,815	\$12,815	\$11,796	\$ 11,796
October	136,380	136,920	160,020	160,020	148,470	148,470	October	\$11,160	\$10,310	\$12,249	\$12,249	\$11,280	\$ 11,280
November	132,000	132,960	132,660	132,660	132,810	132,810	November	\$10,107	\$9,291	\$10,037	\$10,037	\$9,664	\$ 9,664
December	152,820	134,700	0	134,700	143,760	143,760	December	\$10,846	\$9,408		\$9,408	\$10,127	\$ 10,127
Annual				1,711,740	1,680,570	1,680,570	Annual				\$131,997	\$126,221	\$ 126,221

Account:	5656364956						Account:	5657362983					
Meter:	KJ39709						Meter:	KJ39744					
Rate:	GSD-1						Rate:	GSD-1					
Baseline:	Average of Last Tv	vo Years					Baseline:	Average of Last Tw	o Years				
			Dema	and (kW)						Demano	d (kW)		
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		21	0	0	11	11	January		23	23	23	23	23
February		19	0	0	10	10	February		22	20	20	21	21
March		18	0	0	9	9	March		22	21	21	22	22
April		19	0	0	10	10	April		23	22	22	23	23
May		17	0	0	9	9	May		23	23	23	23	23
June		18	0	0	9	9	June		26	24	24	25	25
July		18	0	0	9	9	July		25	24	24	25	25
August		17	0	0	9	9	August		25	25	25	25	25
September		17	0	0	9	9	September		25	25	25	25	25
October		16	0	0	8	8	October		25	25	25	25	25
November		17	0	0	9	9	November		23	25	25	24	24
December	21	17		17	19	19	December	24	24		24	24	24
Annual				17	118	118	Annual				281	284	284

			Consum	ption (kWh)						Consumpti	on (kWh)		
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		7,967	6,208	6,208	7,088	7,088	January		7,002	7,117	7,117	7,060	7,060
February		5,627	5,277	5,277	5,452	5,452	February		5,264	6,070	6,070	5,667	5,667
March		5,712	5,136	5,136	5,424	5,424	March		5,767	6,757	6,757	6,262	6,262
April		6,058	4,488	4,488	5,273	5,273	April		7,113	7,245	7,245	7,179	7,179
May		5,240	4,482	4,482	4,861	4,861	May		6,530	7,269	7,269	6,900	6,900
June		6,861	5,308	5,308	6,085	6,085	June		7,701	7,592	7,592	7,647	7,647
July		8,284	6,581	6,581	7,433	7,433	July		9,325	8,989	8,989	9,157	9,157
August		7,574	6,154	6,154	6,864	6,864	August		8,525	8,149	8,149	8,337	8,337
September		8,422	5,860	5,860	7,141	7,141	September		9,592	8,195	8,195	8,894	8,894
October		7,140	4,416	4,416	5,778	5,778	October		8,564	7,325	7,325	7,945	7,945
November		6,174	4,845	4,845	5,510	5,510	November		7,835	7,237	7,237	7,536	7,536
December	6,989	5,757		5,757	6,373	6,373	December	6,725	7,405		7,405	7,065	7,065
Annual		•	-	64,512	73,280	73,280	Annual		-	•	89,350	89,647	89,647

			D	ollars					Dollars						
				Most	Average of							Most	Average of		
				Recent 12	Last Two	Basel	line					Recent 12	Last Two	Ba	aseline
Month	2015	2016	2017	Months	Years	Select	ted	Month	2015	2016	2017	Months	Years	Se	elected
January		\$691	\$619	\$619	\$655	\$	655 J	January		\$660	\$690	\$690	\$675	\$	675
February		\$540	\$528	\$528	\$534	\$	534	February		\$553	\$597	\$597	\$575	\$	575
March		\$535	\$531	\$531	\$533	\$	533	March		\$582	\$664	\$664	\$623	\$	623
April		\$550	\$465	\$465	\$508	\$	508	April		\$650	\$704	\$704	\$677	\$	677
May		\$485	\$465	\$465	\$475	\$	475	May		\$620	\$717	\$717	\$668	\$	668
June		\$581	\$549	\$549	\$565	\$	565 J	June		\$715	\$747	\$747	\$731	\$	731
July		\$655	\$678	\$678	\$666	\$	666 J	July		\$788	\$829	\$829	\$808	\$	808
August		\$607	\$635	\$635	\$621	\$	621	August		\$746	\$791	\$791	\$769	\$	769
September		\$649	\$604	\$604	\$627	\$	627	September		\$800	\$794	\$794	\$797	\$	797
October		\$571	\$458	\$458	\$515	\$	515	October		\$747	\$743	\$743	\$745	\$	745
November		\$533	\$502	\$502	\$517	\$	517	November		\$687	\$738	\$738	\$712	\$	712
December	\$661	\$511		\$511	\$586	\$	586	December	\$680	\$676		\$676	\$678	\$	678
Annual				\$6,545	\$6,801	\$	6,801	Annual				\$8,690	\$8,459	\$	8,459

Site Name: Family Success Center, North (Continued)

Account: Meter: Rate: Baseline:	5662367902 KJ39745 GS-1 Average of Last	Two Years					Account: Meter: Rate: Baseline:	5663365939 KJ39743 GS-1					
			Demand	(kW)						Demand	(kW)		
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected	Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January				0	0	0	January		1		0	0	0
February				0	0	0	February				0	0	0
March				0	0	0	March				0	0	0
April		-		0	0	0	April				0	0	0
May		NOT		0	0	0	May		NOT		0	0	0
June		APPLICABLE	-	0	0	0	June		APPLICABLE		0	0	0
July				0	0	0	July				0	0	0
August				0	0	0	August				0	0	0
September				0	0	0	September				0	0	0
October				0	0	0	October				0	0	0
November				0	0	0	November				0	0	0
December				0	0	0	December				0	0	0
Annual				0	0	0	Annual				0	0	0

			Consumptio	on (kWh)					(Consumptio	on (kWh)		
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected	Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Baseline Selected
January		2,055	1,364	1,364	1,710	1,710	January		2,176	1,849	1,849	2,013	2,013
February		2,608	1,760	1,760	2,184	2,184	February		1,408	1,446	1,446	1,427	1,427
March		2,435	1,681	1,681	2,058	2,058	March		1,526	1,603	1,603	1,565	1,565
April		2,884	1,719	1,719	2,302	2,302	April		2,044	1,800	1,800	1,922	1,922
May		1,960	1,364	1,364	1,662	1,662	May		2,093	2,052	2,052	2,073	2,073
June		1,950	1,102	1,102	1,526	1,526	June		2,658	2,504	2,504	2,581	2,581
July		1,522	1,113	1,113	1,318	1,318	July		3,359	2,988	2,988	3,174	3,174
August		1,217	943	943	1,080	1,080	August		3,096	2 <i>,</i> 850	2,850	2,973	2,973
September		945	894	894	920	920	September		3,125	2,913	2,913	3,019	3,019
October		1,024	1,206	1,206	1,115	1,115	October		2,594	2,381	2,381	2,488	2,488
November		1,022	1,273	1,273	1,148	1,148	November		2,090	2,173	2,173	2,132	2,132
December	1,462	1,128		1,128	1,295	1,295	December	1,916	1,849		1,849	1,883	1,883
Annual				15,547	18,316	18,316	Annual				26,408	27,247	27,247

	Dollars										Dolla	irs			
Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Ba: Sel	seline ected	Month	2015	2016	2017	Most Recent 12 Months	Average of Last Two Years	Ba: Sel	seline lected
January		\$219	\$140	\$140	\$180	\$	180	January		\$223	\$192	\$192	\$207	\$	207
February		\$275	\$178	\$178	\$227	\$	227	February		\$147	\$152	\$152	\$150	\$	150
March		\$258	\$171	\$171	\$214	\$	214	March		\$159	\$173	\$173	\$166	\$	166
April		\$303	\$175	\$175	\$239	\$	239	April		\$206	\$193	\$193	\$200	\$	200
May		\$209	\$141	\$141	\$175	\$	175	May		\$211	\$219	\$219	\$215	\$	215
June		\$208	\$115	\$115	\$162	\$	162	June		\$266	\$265	\$265	\$265	\$	265
July		\$165	\$116	\$116	\$141	\$	141	July		\$334	\$314	\$314	\$324	\$	324
August		\$134	\$101	\$101	\$118	\$	118	August		\$308	\$300	\$300	\$304	\$	304
September		\$103	\$96	\$96	\$100	\$	100	September		\$310	\$306	\$306	\$308	\$	308
October		\$111	\$127	\$127	\$119	\$	119	October		\$259	\$252	\$252	\$256	\$	256
November		\$107	\$137	\$137	\$122	\$	122	November		\$210	\$231	\$231	\$221	\$	221
December	\$159	\$117		\$117	\$138	\$	138	December	\$203	\$187		\$187	\$195	\$	195
Annual				\$1,616	\$1,934	\$	1,934	Annual				\$2,784	\$2,810	\$	2,810

Site Name: Family Success Center, North

(Continued)

 Account:
 5664363966

 Meter:
 KJ39746

 Rate:
 GS-1

Baseline:

Demand (kW)										Total Den	nand (kW)		
					Average							Average	
				Most	of Last						Most	of Last	
				Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January				0	0	0	January	0	44	23	23	34	34
February				0	0	0	February	0	41	20	20	31	31
March				0	0	0	March	0	40	21	21	31	31
April				0	0	0	April	0	42	22	22	32	32
May		NOT		0	0	0	May	0	40	23	23	32	32
June		APPLICABLE		0	0	0	June	0	44	24	24	34	34
July	1			0	0	0	July	0	43	24	24	34	34
August	1			0	0	0	August	0	42	25	25	34	34
September				0	0	0	September	0	42	25	25	34	34
October				0	0	0	October	0	41	25	25	33	33
November				0	0	0	November	0	40	25	25	33	33
December				0	0	0	December	45	41	0	41	43	43
Annual		· · · · · · · · · · · · · · · · · · ·		0	0	0	Annual				298	401	401

		C	onsumptio	n (kWh)					Тс	otal Consur	nption (kW	h)	
					Average							Average	
				Most	of Last						Most	of Last	
				Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		2,735	2,278	2,278	2,507	2,507	January	0	21,935	18,816	18,816	20,376	20,376
February		1,585	2,030	2,030	1,808	1,808	February	0	16,492	16,583	16,583	16,538	16,538
March		1,876	2,015	2,015	1,946	1,946	March	0	17,316	17,192	17,192	17,254	17,254
April		2,768	2,130	2,130	2,449	2,449	April	0	20,867	17,382	17,382	19,125	19,125
May		2,837	2,585	2,585	2,711	2,711	May	0	18,660	17,752	17,752	18,206	18,206
June		3,802	3,298	3,298	3,550	3,550	June	0	22,972	19,804	19,804	21,388	21,388
July		4,618	4,084	4,084	4,351	4,351	July	0	27,108	23,755	23,755	25,432	25,432
August		4,523	3,506	3,506	4,015	4,015	August	0	24,935	21,602	21,602	23,269	23,269
September		4,715	3,497	3,497	4,106	4,106	September	0	26,799	21,359	21,359	24,079	24,079
October		3,639	2,870	2,870	3,255	3,255	October	0	22,961	18,198	18,198	20,580	20,580
November		2,909	2,253	2,253	2,581	2,581	November	0	20,030	17,781	17,781	18,906	18,906
December	2,838	2,271		2,271	2,555	2,555	December	19,930	18,410	0	18,410	19,170	19,170
Annual				32,817	35,831	35,831	Annual				228,634	244,320	244,320

		Dollars									Total	Dollars		
					Average								Average	
				Most	of Last							Most	of Last	
				Recent 12	Two	Base	eline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Sele	ected	Month	2015	2016	2017	Months	Years	Selected
January		\$278	\$234	\$234	\$256	\$	256	January	\$0	\$2,070	\$1,876	\$1,876	\$1,973	\$ 1,973
February		\$164	\$210	\$210	\$187	\$	187	February	\$0	\$1,679	\$1,665	\$1,665	\$1,672	\$ 1,672
March		\$194	\$215	\$215	\$204	\$	204	March	\$0	\$1,727	\$1,754	\$1,754	\$1,741	\$ 1,741
April		\$276	\$227	\$227	\$251	\$	251	April	\$0	\$1,986	\$1,764	\$1,764	\$1,875	\$ 1,875
May		\$283	\$273	\$273	\$278	\$	278	May	\$0	\$1,809	\$1,813	\$1,813	\$1,811	\$ 1,811
June		\$377	\$345	\$345	\$361	\$	361	June	\$0	\$2,147	\$2,021	\$2,021	\$2 <i>,</i> 084	\$ 2,084
July		\$456	\$425	\$425	\$440	\$	440	July	\$0	\$2,397	\$2,361	\$2,361	\$2,379	\$ 2,379
August		\$447	\$366	\$366	\$406	\$	406	August	\$0	\$2,242	\$2,193	\$2,193	\$2,218	\$ 2,218
September		\$464	\$365	\$365	\$414	\$	414	September	\$0	\$2,326	\$2,166	\$2,166	\$2,246	\$ 2,246
October		\$360	\$302	\$302	\$331	\$	331	October	\$0	\$2 <i>,</i> 048	\$1,882	\$1,882	\$1,965	\$ 1,965
November		\$289	\$239	\$239	\$264	\$	264	November	\$0	\$1,826	\$1,847	\$1,847	\$1,837	\$ 1,837
December	\$297	\$228		\$228	\$262	\$	262	December	\$2,000	\$1,719	\$0	\$1,719	\$1,859	\$ 1,859
Annual				\$3,427	\$3,656	\$ 3	8,656	Annual				\$23,062	\$23,660	\$ 23,660

L

		Demand (kW)
Baseline:	Average of Last Two Years	
Rate:	GSD-1	
Meter:	KU35317	
Account:	8203046332	

	Demand (kw)								
				Most	Average of				
				Recent 12	Last Two	Baseline			
Month	2015	2016	2017	Months	Years	Selected			
January		43	41	41	42	42			
February	32	37	32	32	35	35			
March	35	37	44	44	41	41			
April	37	40	45	45	43	43			
May	36	44	46	46	45	45			
June	40	47	50	50	49	49			
July	37	50	52	52	51	51			
August	43	45	52	52	49	49			
September	47	47	51	51	49	49			
October	41	49	44	44	47	47			
November	40	44	41	41	43	43			
December	38	44		44	41	41			
Annual				542	532	532			

٦

	Total Consumption (kWh)										
				Most	Average of						
				Recent 12	Last Two	Baseline					
Month	2015	2016	2017	Months	Years	Selected					
January		16,080	13,680	13,680	14,880	14,880					
February	10,860	9,540	11,760	11,760	10,650	10,650					
March	9,840	11,100	12,480	12,480	11,790	11,790					
April	13,260	12,780	13,620	13,620	13,200	13,200					
May	13,080	13,860	15,120	15,120	14,490	14,490					
June	14,100	17,040	16,560	16,560	16,800	16,800					
July	14,100	18,300	19,860	19,860	19,080	19,080					
August	14,100	19,020	18,540	18,540	18,780	18,780					
September	19,860	18,960	17,760	17,760	18,360	18,360					
October	15,420	16,860	14,700	14,700	15,780	15,780					
November	14,760	15,120	14,700	14,700	14,910	14,910					
December	14,820	13,200		13,200	14,010	14,010					
Annual				181,980	182,730	182,730					

	Dollars									
				Most	Average of					
				Recent 12	Last Two	В	aseline			
Month	2015	2016	2017	Months	Years	Se	elected			
January		\$1,380	\$1,266	\$1,266	\$1,323	\$	1,323			
February	\$1,042	\$954	\$1,055	\$1,055	\$1,004	\$	1,004			
March	\$1,019	\$1,042	\$1,265	\$1,265	\$1,154	\$	1,154			
April	\$1,248	\$1,136	\$1,343	\$1,343	\$1,240	\$	1,240			
May	\$1,185	\$1,237	\$1,443	\$1,443	\$1,340	\$	1,340			
June	\$1,290	\$1,437	\$1,574	\$1,574	\$1,505	\$	1,505			
July	\$1,256	\$1,536	\$1,790	\$1,790	\$1,663	\$	1,663			
August	\$1,325	\$1,517	\$1,713	\$1,713	\$1,615	\$	1,615			
September	\$1,694	\$1,533	\$1,655	\$1,655	\$1,594	\$	1,594			
October	\$1,372	\$1,447	\$1,395	\$1,395	\$1,421	\$	1,421			
November	\$1,323	\$1,301	\$1,361	\$1,361	\$1,331	\$	1,331			
December	\$1,303	\$1,202		\$1,202	\$1,253	\$	1,253			
Annual				\$17,061	\$16,442	\$	16,442			
Account:	3194057505									
----------	------------	--								
Meter:	MU5747A									
Rate:	SDTR-1A									

Baseline: Average of Last Two Years **On-Peak Demand (kW)** High Demand (kW) Average of Most Average of Baseline Baseline Recent 12 **Most Recent** Last Two Last Two Month 12 Months Month Months Selected Years Selected Years January January February February March March April April May May June June July July August August September September October October November November December December 1,812 1,812 Annual 1,838 Annual

		О	n-Peak Con	sumption (kW	'n)				Of	f-Peak Cons	umption (kW	/h)	
					Average of						Most	Average of	
				Most Recent	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	12 Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		0	0	0	0	0	January		78,720	94,920	94,920	86,820	86,820
February		0	0	0	0	0	February		60,960	78,960	78,960	69,960	69,960
March		0	0	0	0	0	March		67,680	80,640	80,640	74,160	74,160
April		0	0	0	0	0	April		64,560	87,480	87,480	76,020	76,020
May		0	0	0	0	0	May		59,280	84,360	84,360	71,820	71,820
June		3,720	6,360	6,360	5,040	5,040	June		67,080	99,360	99,360	83,220	83,220
July		6,720	7,920	7,920	7,320	7,320	July		64,440	83,280	83,280	73,860	73,860
August		10,080	4,680	4,680	7,380	7,380	August		103,200	45,960	45,960	74,580	74,580
September		10,080	4,200	4,200	7,140	7,140	September		99,960	41,280	41,280	70,620	70,620
October		3,360	2,280	2,280	2,820	2,820	October		100,320	85,560	85,560	92,940	92,940
November		0	0	0	0	0	November		90,000	93,240	93,240	91,620	91,620
December	0	0		0	0	0	December	83,400	99,840		99,840	91,620	91,620
Annual				25,440	29,700	29,700	Annual				974,880	957,240	957,240

		-	Total Consu	umption (kWh)				Dollars						
					Average of						Most	Average of		
				Most Recent	Last Two	Baseline					Recent 12	Last Two	Ва	seline
Month	2015	2016	2017	12 Months	Years	Selected	Month	2015	2016	2017	Months	Years	Se	lected
January	0	78,720	94,920	94,920	86,820	86,820	January		\$5,842	\$7 <i>,</i> 083	\$7 <i>,</i> 083	\$6,463	\$	6,463
February	0	60,960	78,960	78,960	69,960	69,960	February		\$4 <i>,</i> 896	\$6,213	\$6,213	\$5 <i>,</i> 554	\$	5,554
March	0	67,680	80,640	80,640	74,160	74,160	March		\$5 <i>,</i> 068	\$6,498	\$6,498	\$5,783	\$	5,783
April	0	64,560	87,480	87,480	76,020	76,020	April		\$4,812	\$6,796	\$6,796	\$5,804	\$	5,804
May	0	59,280	84,360	84,360	71,820	71,820	May		\$4,473	\$6,513	\$6,513	\$5,493	\$	5,493
June	0	70,800	105,720	105,720	88,260	88,260	June		\$4,942	\$7,932	\$7,932	\$6,437	\$	6,437
July	0	71,160	91,200	91,200	81,180	81,180	July		\$5,177	\$7,322	\$7,322	\$6,250	\$	6,250
August	0	113,280	50,640	50,640	81,960	81,960	August		\$8 <i>,</i> 158	\$4,342	\$4,342	\$6,250	\$	6,250
September	0	110,040	45,480	45,480	77,760	77,760	September		\$7,974	\$4,351	\$4,351	\$6,162	\$	6,162
October	0	103,680	87,840	87,840	95,760	95,760	October		\$7,534	\$6,954	\$6,954	\$7,244	\$	7,244
November	0	90,000	93,240	93,240	91,620	91,620	November		\$6,599	\$7 <i>,</i> 583	\$7 <i>,</i> 583	\$7,091	\$	7,091
December	83,400	99,840	0	99,840	91,620	91,620	December	\$6,336	\$7,041		\$7 <i>,</i> 041	\$6,688	\$	6,688
Annual				1,000,320	986,940	986,940	Annual				\$78,628	\$75,219	\$	75,219

Site Name:EAP Our HouseService Address:408 NE 4TH ST FORT LAUDERDALE FL, 33301Square Feet:1,127

Electric History

Account:	8673629534
Meter:	AC41715
Rate:	GS-1
Baseline:	Average of Last Two Years

		Т	otal Consu	mption (kWh	ı)	
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January		832	1,181	1,181	1,007	1,007
February		652	875	875	764	764
March		938	923	923	931	931
April		1,258	972	972	1,115	1,115
May		1,343	1,151	1,151	1,247	1,247
June		1,565	1,361	1,361	1,463	1,463
July		1,758	1,685	1,685	1,722	1,722
August		1,895	1,550	1,550	1,723	1,723
September		1,811	1,695	1,695	1,753	1,753
October		1,615	1,446	1,446	1,531	1,531
November		1,454	1,321	1,321	1,388	1,388
December	814	1,257		1,257	1,036	1,036
Annual				15,417	15,676	15,676

	Dollars Most Average of 2015 2016 2017 Months Years B 2015 2016 2017 Months Years S 2015 \$90 \$127 \$127 \$108 \$ 2015 \$72 \$97 \$97 \$85 \$													
				Most	Average of									
				Recent 12	Last Two	Ва	iseline							
Month	2015	2016	2017	Months	Years	Se	lected							
January		\$90	\$127	\$127	\$108	\$	108							
February		\$72	\$97	\$97	\$85	\$	85							
March		\$101	\$105	\$105	\$103	\$	103							
April		\$130	\$110	\$110	\$120	\$	120							
May		\$138	\$128	\$128	\$133	\$	133							
June		\$160	\$149	\$149	\$155	\$	155							
July		\$179	\$182	\$182	\$180	\$	180							
August		\$192	\$168	\$168	\$180	\$	180							
September		\$183	\$183	\$183	\$183	\$	183							
October		\$164	\$158	\$158	\$161	\$	161							
November		\$149	\$145	\$145	\$147	\$	147							
December	\$91	\$130		\$130	\$110	\$	110							
Annual				\$1,680	\$1,665	\$	1,665							

Site Name:MASS TRAN, North MaintenanceService Address:3201 W COPANS RD POMPANO BEACH FL, 33069Square Feet:195,189

Electric History

Account:	689855393
Meter:	MV87032
Rate:	GSDT-1
- "	-

 Baseline:
 Average of Last Two Years

			On-Peak D	emand (kW)		
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January		388	384	384	386	386
February		348	352	352	350	350
March		344	360	360	352	352
April		372	368	368	370	370
May		388	400	400	394	394
June		392	408	408	400	400
July		408	400	400	404	404
August		412	408	408	410	410
September		412	436	436	424	424
October		436	444	444	440	440
November		368	404	404	386	386
December	396	360		360	378	378
Annual		-	•	4,724	4,694	4,694

		On	-Peak Cons	umption (kV	Vh)				Of	f-Peak Cons	umption (kW	/h)	
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		56,800	56,000	56,000	56,400	56,400	January		195,200	189,200	189,200	192,200	192,200
February		48,400	49,200	49,200	48,800	48,800	February		146,800	145,200	145,200	146,000	146,000
March		53,200	50,000	50,000	51,600	51,600	March		157,600	147,600	147,600	152,600	152,600
April		58,800	56,400	56,400	57,600	57,600	April		176,800	170,000	170,000	173,400	173,400
May		57,200	62,000	62,000	59,600	59,600	May		153,200	160,000	160,000	156,600	156,600
June		62,000	64,400	64,400	63,200	63,200	June		170,000	186,000	186,000	178,000	178,000
July		66,400	62,400	62,400	64,400	64,400	July		195,600	172,800	172,800	184,200	184,200
August		69,600	64,400	64,400	67,000	67,000	August		182,000	168,000	168,000	175,000	175,000
September		65,200	68,400	68,400	66,800	66,800	September		193,600	196,400	196,400	195,000	195,000
October		66,000	68,000	68,000	67,000	67,000	October		174,800	174,400	174,400	174,600	174,600
November		56,000	58,400	58,400	57,200	57,200	November		158,800	162,400	162,400	160,600	160,600
December	55,600	53,600		53,600	54,600	54,600	December	172,400	166,800		166,800	169,600	169,600
Annual				713,200	714,200	714,200	Annual				2,038,800	2,057,800	2,057,800

			Do	llars		
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January		\$17,340	\$17,435	\$17,435	\$17,388	\$ 17,388
February		\$14,179	\$14,557	\$14,557	\$14,368	\$ 14,368
March		\$15,052	\$15,315	\$15,315	\$15,184	\$ 15,184
April		\$15,982	\$16,997	\$16,997	\$16,489	\$ 16,489
May		\$15,120	\$17,379	\$17,379	\$16,250	\$ 16,250
June		\$16,232	\$18,897	\$18,897	\$17,565	\$ 17,565
July		\$17,771	\$18,019	\$18,019	\$17,895	\$ 17,895
August		\$17,560	\$18,059	\$18,059	\$17,809	\$ 17,809
September		\$17,590	\$20,040	\$20,040	\$18,815	\$ 18,815
October		\$17,207	\$19,074	\$19,074	\$18,141	\$ 18,141
November		\$14,985	\$17,234	\$17,234	\$16,109	\$ 16,109
December	\$16,935	\$15,001		\$15,001	\$15,968	\$ 15,968
Annual				\$208,007	\$201,980	\$ 201,980

Site Name: MASS TRAN, North Maintenance (Continued)

 Account:
 8985734287

 Meter:
 MNL8190

 Rate:
 GSDT-1

Baseline: Average of Last Two Years

		0	n-Peak Den	nand (kW)					То	tal On-Pea	k Demand (kW)	
					Average							Average	
				Most	of Last						Most	of Last	
				Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		92	98	98	95	95	January		480	482	482	481	481
February		92	96	96	94	94	February		440	448	448	444	444
March		93	97	97	95	95	March		437	457	457	447	447
April		86	94	94	90	90	April		458	462	462	460	460
May		86	91	91	89	89	May		474	491	491	483	483
June		95	83	83	89	89	June		487	491	491	489	489
July		93	81	81	87	87	July		501	481	481	491	491
August		110	80	80	95	95	August		522	488	488	505	505
September		96	78	78	87	87	September		508	514	514	511	511
October		94	75	75	85	85	October		530	519	519	525	525
November		91	74	74	83	83	November		459	478	478	469	469
December	93	92		92	93	93	December	489	452		452	471	471
Annual				1,039	1,080	1,080	Annual				5,763	5,774	5,774

		On-P	eak Consu	mption (kW	h)			Off-Peak Consumption				umption (kWh)			Total Consumption			nption (kWl	ion (kWh)		
					Average							Average							Average		
				Most	of Last						Most	of Last						Most	of Last		
				Recent 12	Two	Baseline					Recent 12	Two	Baseline					Recent 12	Two	Baseline	
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected	
January		12,631	15,232	15,232	13,932	13,932	January		42,950	54,339	54,339	48,645	48,645	January		307,581	314,771	314,771	311,176	311,176	
February		11,155	13,630	13,630	12,393	12,393	February		35,865	43,834	43,834	39,850	39,850	February		242,220	251,864	251,864	247,042	247,042	
March		13,015	14,082	14,082	13,549	13,549	March		36,502	44,255	44,255	40,379	40,379	March		260,317	255,937	255,937	258,127	258,127	
April		13,618	14,739	14,739	14,179	14,179	April		38,452	47,466	47,466	42,959	42,959	April		287,670	288,605	288,605	288,138	288,138	
May		14,208	14,979	14,979	14,594	14,594	May		32,843	42,291	42,291	37,567	37,567	May		257,451	279,270	279,270	268,361	268,361	
June		14,008	14,140	14,140	14,074	14,074	June		38,551	44,318	44,318	41,435	41,435	June		284,559	308,858	308,858	296,709	296,709	
July		15,489	13,112	13,112	14,301	14,301	July		47,572	37,502	37,502	42,537	42,537	July		325,061	285,814	285,814	305,438	305,438	
August		15,781	12,871	12,871	14,326	14,326	August		42,477	34,418	34,418	38,448	38,448	August		309,858	279,689	279,689	294,774	294,774	
September		15,049	12,803	12,803	13,926	13,926	September		47,187	38,698	38,698	42,943	42,943	September	-	321,036	316,301	316,301	318,669	318,669	
October		14,917	12,339	12,339	13,628	13,628	October		41,193	33,155	33,155	37,174	37,174	October		296,910	287,894	287,894	292,402	292,402	
November		13,875	11,726	11,726	12,801	12,801	November		39,780	33,822	33,822	36,801	36,801	November		268,455	266,348	266,348	267,402	267,402	
December	11,762	13,381		13,381	12,572	12,572	December	35,479	43,734		43,734	39,607	39,607	December	275,241	277,515		277,515	276,378	276,378	
Annual	nnual 163,034 164,271 164,271					164,271	Annual				497,832	488,342	488,342	Annual				3,412,866	3,424,613	3,424,613	

			Dolla	rs						Total	Dollars		
					Average							Average	
				Most	of Last						Most	of Last	
				Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		\$3,922	\$4,814	\$4,814	\$4,368	\$ 4,368	January		\$21,263	\$22,249	\$22,249	\$21,756	\$ 21,756
February		\$3,502	\$4,194	\$4,194	\$3,848	\$ 3,848	February		\$17,681	\$18,751	\$18,751	\$18,216	\$ 18,216
March		\$3,717	\$4,407	\$4,407	\$4,062	\$ 4,062	March		\$18,770	\$19,722	\$19,722	\$19,246	\$ 19,246
April		\$3,626	\$4,578	\$4,578	\$4,102	\$ 4,102	April		\$19,608	\$21,575	\$21,575	\$20,591	\$ 20,591
May		\$3,460	\$4,324	\$4,324	\$3,892	\$ 3,892	May		\$18,580	\$21,703	\$21,703	\$20,141	\$ 20,141
June		\$3,769	\$4,256	\$4,256	\$4,012	\$ 4,012	June		\$20,001	\$23,153	\$23,153	\$21,577	\$ 21,577
July		\$4,218	\$3,828	\$3 <i>,</i> 828	\$4,023	\$ 4,023	July		\$21,989	\$21,847	\$21,847	\$21,918	\$ 21,918
August		\$4,239	\$3 <i>,</i> 652	\$3,652	\$3,946	\$ 3,946	August		\$21,798	\$21,711	\$21,711	\$21,755	\$ 21,755
September		\$4,189	\$3,822	\$3,822	\$4,005	\$ 4,005	September		\$21,779	\$23,862	\$23,862	\$22,820	\$ 22,820
October		\$3,925	\$3,489	\$3,489	\$3,707	\$ 3,707	October		\$21,132	\$22,564	\$22,564	\$21,848	\$ 21,848
November		\$3,750	\$3,457	\$3 <i>,</i> 457	\$3,603	\$ 3,603	November		\$18,735	\$20,690	\$20,690	\$19,712	\$ 19,712
December	\$3,669	\$3,871		\$3,871	\$3,770	\$ 3,770	December	\$20,603	\$18,872		\$18,872	\$19,738	\$ 19,738
Annual				\$48,693	\$47,339	\$ 47,339	Annual				\$256,700	\$249,319	\$ 249,319

Site Name: MASS TRAN, North Maintenance (Continued)

Account: Meter: Rate:	670063593 KT38452 GSD-1				
Baseline:	Average of Las	t Two Years	Dema	nd (kW)	
			Dema	Most	Average of
				Recent 12	Last Two
Month	2015	2016	2017	Months	Years
January		40	37	37	39
February		41	40	40	41
March		41	37	37	39
April		43	41	41	42
May		41	41	41	41
luno		11	40	40	12

May		41	41	41	41	41
June		44	40	40	42	42
July		43	41	41	42	42
August		44	42	42	43	43
September		41	41	41	41	41
October		41	41	41	41	41
November		34	38	38	36	36
December	40	38		38	39	39
Annual				477	485	485

	Total Consumption (kWh)										
				Most	Average of						
			Recent 1		Last Two	Baseline					
Month	2015	2016	2017	Months	Years	Selected					
January		16,740	17,580	17,580	17,160	17,160					
February		18,480	15,960	15,960	17,220	17,220					
March		21,060	17,640	17,640	19,350	19,350					
April		19,740	16,320	16,320	18,030	18,030					
May		22,320	18,720	18,720	20,520	20,520					
June		21,720	19,860	19,860	20,790	20,790					
July		22,560	21,300	21,300	21,930	21,930					
August		25,140	23,040	23,040	24,090	24,090					
September		22,500	11,760	11,760	17,130	17,130					
October		20,220	21,180	21,180	20,700	20,700					
November		16,860	16,800	16,800	16,830	16,830					
December	20,520	18,300		18,300	19,410	19,410					
Annual				218,460	233,160	233,160					

	Dollars									
				Most	Average of					
				Recent 12	Last Two	В	aseline			
Month	2015	2016	2017	Months	Years	S	elected			
January		\$1,383	\$1,437	\$1,437	\$1,410	\$	1,410			
February		\$1,490	\$1,381	\$1,381	\$1,435	\$	1,435			
March		\$1,636	\$1,484	\$1,484	\$1,560	\$	1,560			
April		\$1,529	\$1,453	\$1,453	\$1,491	\$	1,491			
May		\$1,640	\$1,594	\$1,594	\$1,617	\$	1,617			
June		\$1,644	\$1,650	\$1,650	\$1,647	\$	1,647			
July		\$1,677	\$1,745	\$1,745	\$1,711	\$	1,711			
August		\$1,821	\$1,859	\$1,859	\$1,840	\$	1,840			
September		\$1,647	\$1,187	\$1,187	\$1,417	\$	1,417			
October		\$1,529	\$1,738	\$1,738	\$1,633	\$	1,633			
November		\$1,277	\$1,447	\$1,447	\$1,362	\$	1,362			
December	\$1,650	\$1,396		\$1,396	\$1,523	\$	1,523			
Annual				\$18,371	\$18,646	\$	18,646			

Site Name:Broward County Justice Center GarageService Address:612 S ANDREWS AVE #GARAGE FORT LAUDERDALE FL, 33301Square Feet:14,397

Electric History

Account:	9691881024						Account:	470263435					
Meter:	KNL7786						Meter:	KV52580					
Rate:	GSD-1						Rate:	GSD-1					
Baseline:	Most Recent 1	2 Months					Baseline:	Most Recent	12 Months				
			Dema	nd (kW)						Demar	nd (kW)		
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January			48	48	48	48	January		0	0	0	0	0
February			48	48	48	48	February		0	0	0	0	0
March			48	48	48	48	March		0	0	0	0	0
April			48	48	48	48	April		0	79	79	40	79
May			48	48	48	48	May		0	79	79	40	79
June			47	47	47	47	June		0	76	76	38	76
July			49	49	49	49	July		0	73	73	37	73
August			53	53	53	53	August		0	74	74	37	74
September			46	46	46	46	September		0	74	74	37	74
October			47	47	47	47	October		0	77	77	39	77
November			47	47	47	47	November		0	77	77	39	77
December		48		48	48	48	December	0	0		0	0	0
Annual				578	578	578	Annual				609	305	609
							-	-					
			Consump	tion (kWh)						Consump	tion (kWh)		
				Most	Average of						Most	Average of	
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January			22,282	22,282	22,282	22,282	January		77,760	75,360	75,360	76,560	75,360
February			22,282	22,282	22,282	22,282	February		68,040	72,960	72,960	70,500	72,960
March			22,282	22,282	22,282	22,282	March		77,760	67,440	67,440	72,600	67,440
April			22,282	22,282	22,282	22,282	April		72,960	46,680	46,680	59,820	46,680
May			22,282	22,282	22,282	22,282	May		70,560	48,840	48,840	59,700	48,840
June			20,037	20,037	20,037	20,037	June		77,760	44,520	44,520	61,140	44,520
July			25,562	25,562	25,562	25,562	July		75,360	48,600	48,600	61,980	48,600
August			22,289	22,289	22,289	22,289	August		75,360	43,080	43,080	59,220	43,080
September			23,206	23,206	23,206	23,206	September		75,360	45,000	45,000	60,180	45,000
October				10 500	18 583	18,583	October		70,560	40,920	40,920	55,740	40,920
			18,583	18,583	10,505								
November			18,583 24,015	18,583 24,015	24,015	24,015	November		75,360	47,760	47,760	61,560	47,760
November December		22,282	18,583 24,015	24,015 22,282	24,015	24,015 22,282	November December	75,360	75,360 72,960	47,760	47,760 72,960	61,560 74,160	47,760 72,960
November December Annual		22,282	18,583 24,015	24,015 22,282 267,384	24,015 22,282 267,384	24,015 22,282 267,384	November December Annual	75,360	75,360 72,960	47,760	47,760 72,960 654,120	61,560 74,160 773,160	47,760 72,960 654,120
November December Annual		22,282	18,583 24,015	18,583 24,015 22,282 267,384	24,015 22,282 267,384	24,015 22,282 267,384	November December Annual	75,360	75,360 72,960	47,760	47,760 72,960 654,120	61,560 74,160 773,160	47,760 72,960 654,120
November December Annual		22,282	18,583 24,015 Do	18,583 24,015 22,282 267,384	24,015 22,282 267,384	24,015 22,282 267,384	November December Annual	75,360	75,360 72,960	47,760 Do	47,760 72,960 654,120	61,560 74,160 773,160	47,760 72,960 654,120

			-												
				Most	Average of							Most	Average of		
				Recent 12	Last Two	Baseli	ine					Recent 12	Last Two	Ва	seline
Month	2015	2016	2017	Months	Years	Select	ted N	/lonth	2015	2016	2017	Months	Years	Se	lected
January			\$1,862	\$1,862	\$1,862	\$ 1,8	. 862 Ja	anuary		\$5,417	\$5,412	\$5,412	\$5,414	\$	5,412
February			\$1,86 <mark>2</mark>	\$1,862	\$1,862	\$ 1,8	. 862 Fe	ebruary		\$4,881	\$5,277	\$5,277	\$5,079	\$	5,277
March			\$1,86 <mark>2</mark>	\$1,862	\$1,862	\$ 1,8	. 862 N	/larch		\$5,434	\$5 <i>,</i> 092	\$5,092	\$5,263	\$	5,092
April			\$1,86 <mark>2</mark>	\$1,862	\$1,862	\$ 1,8	862 A	pril		\$4,939	\$3 <i>,</i> 670	\$3,670	\$4,304	\$	3,670
May			\$1,86 <mark>2</mark>	\$1,862	\$1,862	\$ 1,8	. 862 N	Лау		\$4,815	\$3,796	\$3,796	\$4,305	\$	3,796
June			\$1,591	\$1,591	\$1,591	\$ 1,5	591 Ju	une		\$5,193	\$3,511	\$3,511	\$4,352	\$	3,511
July			\$2,089	\$2,089	\$2,089	\$ 2,0	089 Ju	uly		\$5,068	\$3,715	\$3,715	\$4,392	\$	3,715
August			\$1,944	\$1,944	\$1,944	\$ 1,9	944 A	ugust		\$5,068	\$3,403	\$3,403	\$4,236	\$	3,403
September			\$1,916	\$1,916	\$1,916	\$ 1,9	916 Se	eptember		\$5,054	\$3,515	\$3,515	\$4,285	\$	3,515
October			\$1,657	\$1,657	\$1,657	\$ 1,6	657 O	October		\$4,807	\$3,311	\$3,311	\$4,059	\$	3,311
November			\$1,975	\$1,975	\$1,975	\$ 1,9	. 975 N	lovember		\$5,057	\$3,711	\$3,711	\$4,384	\$	3,711
December		\$1,862		\$1,862	\$1,862	\$ 1,8	862 D	ecember	\$5,475	\$4,933		\$4,933	\$5,204	\$	4,933
Annual				\$22,344	\$22,344	\$ 22,3	.344 A	nnual				\$49,344	\$55,275	\$	49,344

Site Name: Broward County Justice Center Garage (Continued)

 Account:
 6941462357

 Meter:
 KNL7428

 Rate:
 GSD-1

Baseline: Most Recent 12 Months

			Demand	(kW)						Total Den	nand (kW)		
					Average							Average	
				Most	of Last						Most	of Last	
				Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		13	0	0	7	0	January		13	48	48	31	48
February		13	22	22	18	22	February		13	70	70	42	70
March		13	12	12	13	12	March		13	60	60	37	60
April		13	12	12	13	12	April		13	139	139	76	139
May		13	12	12	13	12	May		13	139	139	76	139
June		13	12	12	13	12	June		13	135	135	74	135
July		12	19	19	16	19	July		12	141	141	77	141
August		1	12	12	7	12	August	0	1	139	139	70	139
September		12	12	12	12	12	September	0	12	132	132	72	132
October		26	12	12	19	12	October	0	26	136	136	81	136
November		29	12	12	21	12	November	0	29	136	136	83	136
December	12	0		0	6	0	December	12	48		48	30	48
Annual				137	154	137	Annual				1,324	747	1,324

		(Consumptio	on (kWh)					Тс	otal Consur	nption (kWl	h)	
					Average							Average	
				Most	of Last						Most	of Last	
				Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January		25	7	7	16	7	January		77,785	97,649	97,649	87,717	97,649
February		17	28	28	23	28	February		68,057	95,270	95,270	81,664	95,270
March		32	11	11	22	11	March		77,792	89,733	89,733	83,763	89,733
April		12	23	23	18	23	April		72,972	68,985	68,985	70,979	68,985
May		11	18	18	15	18	May		70,571	71,140	71,140	70,856	71,140
June		18	12	12	15	12	June		77,778	64,569	64,569	71,174	64,569
July		13	38	38	26	38	July		75,373	74,200	74,200	74,787	74,200
August		7	21	21	14	21	August	0	75,367	65,390	65,390	70,379	65,390
September		14	14	14	14	14	September	0	75,374	68,220	68,220	71,797	68,220
October		157	12	12	85	12	October	0	70,717	59,515	59,515	65,116	59,515
November		192	24	24	108	24	November	0	75,552	71,799	71,799	73,676	71,799
December	20	5		5	13	5	December	75,380	95,247		95,247	85,314	95,247
Annual				213	366	213	Annual				921,717	907,218	921,717

			Dolla	rs							Dol	lars		
					Average								Average	
				Most	of Last							Most	of Last	
				Recent 12	Two	Bas	eline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Sele	ected	Month	2015	2016	2017	Months	Years	Selected
January		\$166	\$28	\$28	\$97	\$	28	January		\$5 <i>,</i> 582	\$7,301	\$7,301	\$6,442	\$ 7,301
February		\$165	\$283	\$283	\$224	\$	283	February		\$5,046	\$7,422	\$7,422	\$6,234	\$ 7,422
March		\$166	\$166	\$166	\$166	\$	166	March		\$5 <i>,</i> 599	\$7,120	\$7,120	\$6,360	\$ 7,120
April		\$170	\$167	\$167	\$168	\$	167	April		\$5,109	\$5 <i>,</i> 699	\$5,699	\$5,404	\$ 5,699
May		\$170	\$167	\$167	\$168	\$	167	May		\$4,984	\$5 <i>,</i> 825	\$5,825	\$5,405	\$ 5,825
June		\$170	\$166	\$166	\$168	\$	166	June		\$5 <i>,</i> 363	\$5,268	\$5,268	\$5,315	\$ 5,268
July		\$159	\$249	\$249	\$204	\$	249	July		\$5,227	\$6 <i>,</i> 053	\$6,053	\$5,640	\$ 6,053
August		\$34	\$167	\$167	\$100	\$	167	August	\$0	\$5,102	\$5,514	\$5,514	\$5,308	\$ 5,514
September		\$159	\$166	\$166	\$163	\$	166	September	\$0	\$5,213	\$5 <i>,</i> 597	\$5,597	\$5,405	\$ 5,597
October		\$325	\$166	\$166	\$246	\$	166	October	\$0	\$5,132	\$5,134	\$5,134	\$5,133	\$ 5,134
November		\$361	\$167	\$167	\$264	\$	167	November	\$0	\$5,418	\$5 <i>,</i> 853	\$5,853	\$5,635	\$ 5,853
December	\$161	\$22		\$22	\$92	\$	22	December	\$5 <i>,</i> 635	\$6,817		\$6,817	\$6,226	\$ 6,817
Annual				\$1,914	\$2,059	\$:	1,914	Annual				\$73,602	\$68,506	\$ 73,602

		Demand (kW)
Baseline:	Average of Last Two Years	
Rate:	GSD-1	
Meter:	KJ66140	
Account:	7872455758	

		Demand (KW)									
				Most	Average of						
				Recent 12	Last Two	Baseline					
Month	2015	2016	2017	Months	Years	Selected					
January	22	18	21	21	20	20					
February	17	18	23	23	21	21					
March	18	22	21	21	22	22					
April	20	18	24	24	21	21					
May	23	21	25	25	23	23					
June	24	20	25	25	23	23					
July	24	22	30	30	26	26					
August	24	27	32	32	30	30					
September	22	26	30	30	28	28					
October	24	24	28	28	26	26					
November	24	24	24	24	24	24					
December	18	24		24	21	21					
Annual				307	283	283					

		Т	otal Consu	mption (kWł	ı)	
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January	6,722	6,330	8,520	8,520	7,425	7,425
February	6,379	5,800	6,615	6,615	6,208	6,208
March	6,508	6,640	7,172	7,172	6,906	6,906
April	7,171	7,021	7,674	7,674	7,348	7,348
May	7,661	7,596	10,183	10,183	8,890	8,890
June	8,617	8,206	11,327	11,327	9,767	9,767
July	8,918	9,487	13,452	13,452	11,470	11,470
August	8,947	10,976	12,985	12,985	11,981	11,981
September	8,474	12,251	11,739	11,739	11,995	11,995
October	8,352	11,233	10,731	10,731	10,982	10,982
November	7,613	8,501	8,753	8,753	8,627	8,627
December	7,079	7,822		7,822	7,451	7,451
Annual				116,973	109,047	109,047

		Dollars							
				Most	Average of				
				Recent 12	Last Two	Ва	seline		
Month	2015	2016	2017	Months	Years	Se	lected		
January	\$677	\$568	\$746	\$746	\$657	\$	657		
February	\$599	\$539	\$663	\$663	\$601	\$	601		
March	\$620	\$630	\$689	\$689	\$660	\$	660		
April	\$683	\$589	\$753	\$753	\$671	\$	671		
May	\$723	\$653	\$911	\$911	\$782	\$	782		
June	\$790	\$674	\$978	\$978	\$826	\$	826		
July	\$808	\$763	\$1,160	\$1,160	\$961	\$	961		
August	\$810	\$896	\$1,156	\$1,156	\$1,026	\$	1,026		
September	\$757	\$949	\$1,060	\$1,060	\$1,004	\$	1,004		
October	\$773	\$874	\$978	\$978	\$926	\$	926		
November	\$731	\$733	\$816	\$816	\$774	\$	774		
December	\$632	\$698		\$698	\$665	\$	665		
Annual				\$10,605	\$9,552	\$	9,552		

Account:	703725325						Account:	Account: 8435159	9408					
Meter:	KLL5443						Meter:	Meter: KLL543654	136					
Rate:	GS-1						Rate:	Rate: GS-1						
Baseline:	Average of Las	t Two Years					Baseline:	Baseline: Average of last Two Years						
			Consump	tion (kWh)					Cons	sumption (k	Wh)			
				Most	Average of						Most	Average of		
				Recent 12	Last Two	Baseline					Recent 12	Last Two	Baseline	
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected	
January	3,208	4,739	3,854	3,854	4,297	4,297	January	2,022	1,866	548	548	1,207	1,207	
February	2,767	3,760	2,881	2,881	3,321	3,321	February	1,746	912	539	539	726	726	
March	2,912	4,117	3,075	3,075	3,596	3,596	March	1,692	691	549	549	620	620	
April	3,515	5,007	3,670	3,670	4,339	4,339	April	1,232	1,676	585	585	1,131	1,131	
May	4,082	4,426	3,828	3,828	4,127	4,127	May	1,590	1,892	568	568	1,230	1,230	
June	4,432	4,750	4,583	4,583	4,667	4,667	June	2,083	1,372	978	978	1,175	1,175	
July	4,907	5,664	4,440	4,440	5,052	5,052	July	2,123	1,810	734	734	1,272	1,272	
August	5,012	5,222	4,400	4,400	4,811	4,811	August	2,065	1,758	875	875	1,317	1,317	
September	4,972	5,081	4,714	4,714	4,898	4,898	September	1,781	985	779	779	882	882	
October	4,908	4,588	4,027	4,027	4,308	4,308	October	1,626	570	861	861	716	716	
November	5,753	3,631	4,488	4,488	4,060	4,060	November	1,722	524	1,171	1,171	848	848	
December	4,856	4,106		4,106	4,481	4,481	December	1,466	720		720	1,093	1,093	
Annual				48,066	51,954	51,954	Annual				8,907	12,215	12,215	

			Do	llars					Dollars						
				Most	Average of							Most	Average of		
				Recent 12	Last Two	Ва	seline					Recent 12	Last Two	Ва	seline
Month	2015	2016	2017	Months	Years	Se	lected	Month	2015	2016	2017	Months	Years	Se	lected
January	\$344	\$476	\$388	\$388	\$432	\$	432	January	\$220	\$192	\$65	\$65	\$128	\$	128
February	\$298	\$379	\$293	\$293	\$336	\$	336	February	\$191	\$98	\$64	\$64	\$81	\$	81
March	\$314	\$416	\$322	\$322	\$369	\$	369	March	\$186	\$76	\$67	\$67	\$71	\$	71
April	\$378	\$493	\$383	\$383	\$438	\$	438	April	\$138	\$171	\$70	\$70	\$120	\$	120
May	\$424	\$437	\$399	\$399	\$418	\$	418	May	\$170	\$192	\$68	\$68	\$130	\$	130
June	\$461	\$469	\$476	\$476	\$472	\$	472	June	\$221	\$141	\$110	\$110	\$126	\$	126
July	\$509	\$557	\$461	\$461	\$509	\$	509	July	\$225	\$184	\$85	\$85	\$135	\$	135
August	\$520	\$514	\$457	\$457	\$486	\$	486	August	\$219	\$179	\$100	\$100	\$139	\$	139
September	\$513	\$499	\$489	\$489	\$494	\$	494	September	\$189	\$104	\$90	\$90	\$97	\$	97
October	\$507	\$452	\$419	\$419	\$435	\$	435	October	\$173	\$63	\$98	\$98	\$81	\$	81
November	\$593	\$359	\$466	\$466	\$412	\$	412	November	\$183	\$59	\$130	\$130	\$94	\$	94
December	\$502	\$405		\$405	\$453	\$	453	December	\$157	\$78		\$78	\$118	\$	118
Annual				\$4,957	\$5,254	\$	5,254	Annual				\$1,024	\$1,320	\$	1,320

Site Name: South Maintenance Shop (Continued)

Account: 8851792385 Meter: ACD2572

Rate: GS-1

Baseline: Average of Last Two Years

			Consumption	on (kWh)					Т	otal Consur	nption (kW	h)	
					Average							Average	
				Most	of Last						Most	of Last	
				Recent 12	Two	Baseline					Recent 12	Two	Baseline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Selected
January	215	774	438	438	606	606	January	5,445	7,379	4,840	4,840	6,110	6,110
February	114	383	385	385	384	384	February	4,627	5,055	3 <i>,</i> 805	3,805	4,430	4,430
March	388	442	465	465	454	454	March	4,992	5,250	4,089	4,089	4,670	4,670
April	715	726	571	571	649	649	April	5,462	7,409	4,826	4,826	6,118	6,118
May	902	958	1,087	1,087	1,023	1,023	May	6,574	7,276	5,483	5,483	6,380	6,380
June	1,204	1,235	1,509	1,509	1,372	1,372	June	7,719	7,357	7,070	7,070	7,214	7,214
July	1,489	1,667	1,536	1,536	1,602	1,602	July	8,519	9,141	6,710	6,710	7,926	7,926
August	1,422	1,564	1,499	1,499	1,532	1,532	August	8,499	8,544	6,774	6,774	7,659	7,659
September	1,317	1,472	1,444	1,444	1,458	1,458	September	8,070	7,538	6,937	6,937	7,238	7,238
October	1,230	1,040	1,252	1,252	1,146	1,146	October	7,764	6,198	6,140	6,140	6,169	6,169
November	1,395	569	652	652	611	611	November	8,870	4,724	6,311	6,311	5,518	5,518
December	838	500		500	669	669	December	7,160	5,326		5,326	6,243	6,243
Annual				11,338	11,503	11,503	Annual				68,311	75,671	75,671

			Dolla	ars						Total	Dollars			
					Average							Average		
				Most	of Last						Most	of Last		
				Recent 12	Two	Baseline					Recent 12	Two	Bas	seline
Month	2015	2016	2017	Months	Years	Selected	Month	2015	2016	2017	Months	Years	Sel	ected
January	\$31	\$84	\$54	\$54	\$69	\$ 69	January	\$594	\$752	\$507	\$507	\$630	\$	630
February	\$20	\$46	\$49	\$49	\$47	\$ 47	February	\$508	\$523	\$405	\$405	\$464	\$	464
March	\$49	\$52	\$58	\$58	\$55	\$ 55	March	\$549	\$544	\$447	\$447	\$495	\$	495
April	\$83	\$79	\$69	\$69	\$74	\$ 74	April	\$599	\$742	\$522	\$522	\$632	\$	632
May	\$100	\$101	\$121	\$121	\$111	\$ 111	May	\$695	\$729	\$588	\$588	\$659	\$	659
June	\$131	\$128	\$164	\$164	\$146	\$ 146	June	\$812	\$738	\$749	\$749	\$744	\$	744
July	\$160	\$170	\$167	\$167	\$168	\$ 168	July	\$894	\$911	\$713	\$713	\$812	\$	812
August	\$153	\$160	\$163	\$163	\$161	\$ 161	August	\$892	\$853	\$719	\$719	\$786	\$	786
September	\$142	\$151	\$157	\$157	\$154	\$ 154	September	\$844	\$753	\$736	\$736	\$744	\$	744
October	\$133	\$109	\$138	\$138	\$123	\$ 123	October	\$813	\$624	\$655	\$655	\$639	\$	639
November	\$150	\$63	\$77	\$77	\$70	\$ 70	November	\$926	\$482	\$672	\$672	\$577	\$	577
December	\$93	\$57		\$57	\$75	\$75	December	\$752	\$540		\$540	\$646	\$	646
Annual				\$1,272	\$1,254	\$ 1,254	Annual				\$7,253	\$7,828	\$	7,828

Baseline:	Average of Last Two Years	
Rate:	GSD-1	
Meter:	KU35890	
Account:	4362132062	

				Most	Average of						
				Recent 12	Last Two	Baseline					
Month	2015	2016	2017	Months	Years	Selected					
January		23	23	23	23	23					
February		19	21	21	20	20					
March		20	23	23	22	22					
April		19	21	21	20	20					
May		20	20	20	20	20					
June		21	22	22	22	22					
July		23	23	23	23	23					
August		25	23	23	24	24					
September		25	22	22	24	24					
October		24	25	25	25	25					
November		23	22	22	23	23					
December	23	22		22	23	23					
Annual				267	266	266					

		Т	otal Consu	nption (kWh	ı)	
				Most	Average of	
				Recent 12	Last Two	Baseline
Month	2015	2016	2017	Months	Years	Selected
January		10,320	10,200	10,200	10,260	10,260
February		7,980	8,340	8,340	8,160	8,160
March		8,340	8,460	8,460	8,400	8,400
April		9,360	9,420	9,420	9,390	9,390
May		8,100	8,640	8,640	8,370	8,370
June		9,240	9 <i>,</i> 060	9,060	9,150	9,150
July		10,920	10,200	10,200	10,560	10,560
August		9,720	9,180	9,180	9,450	9,450
September		11,400	9,720	9,720	10,560	10,560
October		10,020	8 <i>,</i> 580	8,580	9,300	9,300
November		8,940	8,340	8,340	8,640	8,640
December	9,360	8,760		8,760	9,060	9,060
Annual				108,900	111,300	111,300

			Do	llars						
				Most	Average of					
				Recent 12	Last Two	Ва	seline			
Month	2015	2016	2017	Months	Years	Se	lected			
January		\$842	\$863	\$863	\$853	\$	853			
February		\$670	\$735	\$735	\$702	\$	702			
March		\$702	\$786	\$786	\$744	\$	744			
April		\$721	\$819	\$819	\$770	\$	770			
May		\$667	\$762	\$762	\$715	\$	715			
June		\$738	\$810	\$810	\$774	\$	774			
July		\$848	\$888	\$888	\$868	\$	868			
August		\$808	\$829	\$829	\$818	\$	818			
September		\$893	\$849	\$849	\$871	\$	871			
October		\$811	\$816	\$816	\$814	\$	814			
November		\$744	\$768	\$768	\$756	\$	756			
December	\$819	\$723		\$723	\$771	\$	771			
Annual				\$9,649	\$9,455	\$	9,455			

BP03-Easterlin Park

BP05-Long Key Nature Center

Account #:			506605200)2		Account #:			380891				
Acct Name:			Easterlin Pa	ark		Acct Name:		Broward Cou	nty Parks an	d Rec. Divisio	on		
Site Address:	100 NW	38th St., Oak	land Park, FL	_ 33309 - (10 ⁻	th and 38th)	Site Address:		2501 SW 13	0th Ave., Da	avie, FL 33330			
Water Utility:		Cit	y of Oakland	d Park		Water Utility:		City of Sunrise					
Meter #						Meter #			203948				
	water		Sewer				water		Sewer				
Read Date	Cons. (kGal)	Water Cost (\$)	Cons. (kGal)	Sewer Cost (\$)	Total Bill Amount (\$)	Read Date	Cons. (kGal)	Water Cost (\$)	Cons. (kGal)	Sewer Cost (\$)	Total Bill Amount (\$)		
9/28/2017	82	\$766.89	82	\$718.92	\$1,485.81	9/21/2017	4	\$63.29	4	\$76.04	\$139.33		
8/28/2017	143	\$1,158.00	143	\$1,041.00	\$2,199.00	8/11/2017	2	\$53.19	2	\$66.32	\$119.51		
7/27/2017	133	\$1,093.80	133	\$988.20	\$2,082.00	7/19/2017	1	\$48.14	1	\$61.46	\$109.60		
6/26/2017	121	\$1,061.88	121	\$924.84	\$1,986.72	6/21/2017	2	\$53.19	2	\$66.32	\$119.51		
5/26/2017	163	\$1,286.10	163	\$1,146.60	\$2,432.70	5/18/2017	2	\$53.19	2	\$66.32	\$119.51		
4/26/2017	109	\$939.96	109	\$861.48	\$1,801.44	4/19/2017	3	\$58.24	3	\$71.18	\$129.42		
3/28/2017	96	\$866.63	96	\$792.84	\$1,659.47	3/20/2017	2	\$68.34	2	\$80.90	\$149.24		
2/27/2017	75	\$722.02	75	\$681.96	\$1,403.98	2/22/2017	2	\$68.34	2	\$80.90	\$149.24		
1/27/2017	162	\$1,279.69	162	\$1,141.32	\$2,421.01	1/20/2017	7	\$78.44	7	\$90.62	\$169.06		
12/28/2016	51	\$568.18	51	\$555.24	\$1,123.42	12/15/2016	2	\$53.19	2	\$66.32	\$119.51		
11/28/2016	32	\$446.39	32	\$454.92	\$901.31	11/16/2016	2	\$53.19	2	\$66.32	\$119.51		
10/26/2016	45	\$529.72	45	\$523.56	\$1,053.28	10/21/2016	5	\$68.34	5	\$80.90	\$149.24		
9/26/2016	75	\$702.79	75	\$670.89	\$1,373.68	9/20/2016	3	\$56.03	3	\$68.31	\$124.34		
8/26/2016	45	\$517.99	45	\$516.69	\$1,034.68	8/17/2016	3	\$56.03	3	\$68.31	\$124.34		
7/27/2016	27	\$407.11	27	\$424.17	\$831.28	7/15/2016	2	\$51.20	2	\$63.67	\$114.87		
6/28/2016	135	\$1,021.39	135	\$1,021.39	\$2,042.78	6/15/2016	3	\$56.03	3	\$68.31	\$124.34		
5/26/2016	11	\$308.55	11	\$341.93	\$650.48	5/13/2016	1	\$46.37	1	\$59.03	\$105.40		
4/27/2016	17	\$345.51	17	\$373.77	\$719.28	4/14/2016	2	\$51.20	2	\$63.67	\$114.87		
3/28/2016	21	\$370.15	21	\$393.33	\$763.48	3/15/2016	2	\$51.20	2	\$63.67	\$114.87		
2/29/2016	15	\$339.18	15	\$362.49	\$701.67	2/16/2016	1	\$46.37	1	\$59.03	\$105.40		
1/27/2016	16	\$339.35	16	\$367.63	\$706.98	1/19/2016	2	\$51.20	2	\$63.67	\$114.87		
12/28/2015	18	\$351.67	18	\$377.91	\$729.58	12/17/2015	1	\$46.37	1	\$59.03	\$105.40		
11/24/2015	14	\$327.03	14	\$357.34	\$684.37	11/16/2015	2	\$51.20	2	\$54.39	\$105.59		
10/26/2015	18	\$351.67	18	\$377.91	\$729.58	10/19/2015	0	\$41.54	0	\$54.39	\$95.93		

City of Oakland Park rates effective 10/1/17

\$6.68 per kgal, volume cost of water

\$5.34 per kgal, volume cost of sewer

\$12.02 per kgal, total

City of Sunrise rates effective 10/1/17

\$4.18 per kgal, volume cost of water\$4.03 per kgal, volume cost of sewer\$8.21 per kgal, total

BP04-TREE TOPS PARK

Account #:	50598		50600		50602		50604		50606		50608			
Acct Name:	Guard House		Canoe Rentals		Playground		Administration		Welcome Center		Maintenance			
Site Address:	3900 SW 100 AVE		3900 SW 100 AVE		3900 SW 100 AVE		3900 SW 100 AVE		3900 SW 100 AV		3900 SW 100 AV	E	TOT	ALS
Water Utility:	Davie		Davie		Davie		Davie		Davie		Davie			
Meter #	783968		809883		963294		60404183		7021332		786175			
	W&S Cons.	Total Bill	W&S Cons.	Total Bill	W&S Cons.	Total Bill	W&S Cons.	Total Bill	W&S Cons.	Total Bill	W&S Cons.	Total Bill	W&S Cons.	Total Bill
Read Date	(kGal)	Amount (\$)	(kGal)	Amount (\$)	(kGal)	Amount (\$)	(kGal)	Amount (\$)	(kGal)	Amount (\$)	(kGal)	Amount (\$)	(kGal)	Amount (\$)
1/10/2018	0	\$146.64	0	\$469.22	2	\$494.38	6	\$544.70	5	\$532.12	3	\$506.96	16	\$2,694.02
12/6/2017	0	\$146.64	0	\$469.22	3	\$506.96	9	\$582.44	9	\$582.44	5	\$532.12	26	\$2,819.82
11/1/2017	0	\$146.20	0	\$467.82	2	\$492.90	5	\$530.53	4	\$3,517.99	5	\$530.53	16	\$5,685.97
10/4/2017	0	\$142.65	0	\$456.44	6	\$529.88	2	\$480.92	2	\$480.92	3	\$493.16	13	\$2,583.97
9/6/2017	0	\$142.65	0	\$456.44	9	\$566.60	16	\$652.28	5	\$517.64	6	\$529.88	36	\$2,865.49
8/9/2017	0	\$142.65	0	\$456.44	10	\$578.84	14	\$627.80	3	\$493.16	3	\$493.16	30	\$2,792.05
7/5/2017	0	\$142.65	0	\$456.44	12	\$603.32	15	\$640.04	6	\$529.88	0	\$456.44	33	\$2,828.77
6/7/2017	0	\$142.65	0	\$456.44	14	\$503.29	8	\$554.36	7	\$542.12	0	\$456.44	29	\$2,655.30
5/3/2017	0	\$142.65	0	\$456.44	13	\$615.56	8	\$554.36	5	\$517.64	0	\$456.44	26	\$2,743.09
4/5/2017	0	\$5,717.04	0	\$18,062.07	17	\$20,310.90	11	\$22,134.75	5	\$19,294.55	0	\$19,675.38	33	\$105,194.69
3/8/2017	0	\$142.65	1	\$468.68	12	\$603.32	9	\$566.60	6	\$529.88	3	\$574.70	31	\$2,885.83
2/1/2017	0	\$104.61	0	\$333.80	7	\$420.40	5	\$395.92	3	\$371.44	3	\$371.44	18	\$1,997.61
1/4/2017	0	\$175.94	0	\$562.94	8	\$660.86	7	\$648.62	1	\$575.18	5	\$624.14	21	\$3,247.68
11/30/2016	0	\$142.65	1	\$468.68	7	\$542.12	8	\$554.36	0	\$163.53	4	\$505.40	20	\$2,376.74
11/2/2016	0	\$51.05	1	\$168.98	5	\$191.51	5	\$191.51	0	\$163.35	4	\$185.89	15	\$952.29
10/5/2016	1	\$55.96	0	\$161.27	6	\$194.63	9	\$211.31	0	\$161.27	5	\$189.07	21	\$973.51
9/7/2016	0	\$50.40	0	\$161.27	4	\$183.51	13	\$233.55	0	\$161.27	4	\$183.51	21	\$973.51
8/3/2016	0	\$50.40	0	\$161.27	5	\$189.07	16	\$250.23	0	\$161.27	4	\$183.51	25	\$995.75
7/6/2016	0	\$50.40	1	\$166.83	4	\$183.51	15	\$244.67	0	\$161.27	5	\$189.07	25	\$995.75
6/8/2016	0	\$50.40	0	\$161.27	0	\$161.27	9	\$211.31	4	\$0.00	4	\$183.51	17	\$767.76
5/4/2016	0	\$50.40	0	\$161.27	0	\$161.27	11	\$222.43	2	\$172.39	5	\$189.07	18	\$956.83
4/6/2016	0	\$50.40	0	\$161.27	0	\$161.27	19	\$266.91	4	\$183.51	5	\$189.07	28	\$1,012.43
3/9/2016	0	\$50.40	1	\$166.83	2	\$172.39	11	\$222.43	1	\$166.83	5	\$189.07	20	\$967.95
2/3/2016	0	\$50.40	0	\$161.27	2	\$172.39	7	\$200.19	0	\$161.27	12	\$227.99	21	\$973.51

Note: Sewer charges added beginning Nov-16; catchup billing for previous unbilled sewer in Apr-17

Town of Davie rates effective 10/1/16

\$5.64 per kgal, volume cost of water

\$6.60 per kgal, volume cost of sewer

\$12.24 per kgal, total

BP11-Hollywood North Beach Park (BB)

Hollywood North Park Beach (BBB)

Account #:		:	151397-217	532		151399-217534						
Acct Name:		South	Broward Pa	rk District		South Broward Park District						
Site Address:		3601 N. Ocea	an Dr., Holly	wood, FL 333	30	3601 N. Ocean Dr., Hollywood, FL 33330						
Water Utility:		С	ity of Hollyw	/ood			Ci	ty of Hollyw	ood			
Meter #		6022462	1 (Sheridar	n & A1A BB)		80202997 (Sheridan & A1A BBB)						
	Water		Sewer		Tatal Dill	Water		Sewer	C	Tetel Dill		
Read Date	(kGal)	(\$)	(kGal)	(\$)	Amount (\$)	(kGal)	(\$)	(kGal)	(\$)	Amount (\$)		
9/17/2017	27	\$207.29	27	\$289.77	\$497.06	2	\$21.22	2	\$27.93	\$49.15		
8/18/2017	48	\$342.50	48	\$490.17	\$832.67	1	\$16.40	1	\$20.78	\$37.18		
7/19/2017	52	\$366.35	52	\$525.72	\$892.07	1	\$16.40	1	\$20.78	\$37.18		
6/19/2017	40	\$294.05	40	\$418.47	\$712.52	4	\$30.86	4	\$42.23	\$73.09		
5/20/2017	42	\$303.69	42	\$440.17	\$743.86	7	\$50.14	7	\$70.83	\$120.97		
4/20/2017	55	\$309.45	55	\$561.47	\$870.92	1	\$16.40	1	\$20.78	\$37.18		
3/21/2017	268	\$1,759.33	268	\$889.41	\$2,648.74	0.7	\$11.58	0.7	\$13.63	\$25.21		
2/19/2017	55	\$390.45	55	\$561.47	\$951.92	0.7	\$11.58	0.7	\$13.63	\$25.21		
1/20/2017	49	\$347.07	49	\$517.12	\$864.19	0.7	\$11.58	0.7	\$13.63	\$25.21		
12/21/2016	28	\$216.93	28	\$304.07	\$521.00	0.7	\$11.58	0.7	\$13.63	\$25.21		
11/21/2016	29	\$221.75	29	\$311.22	\$532.97	0.7	\$11.58	0.7	\$13.63	\$25.21		
10/22/2016	24	\$188.01	24	\$261.17	\$449.18	0.7	\$11.58	0.7	\$13.63	\$25.21		
9/22/2016	28	\$216.93	28	\$304.07	\$521.00	0.7	\$11.58	0.7	\$13.63	\$25.21		
8/23/2016	39	\$284.41	39	\$404.17	\$688.58	0.7	\$11.58	0.7	\$13.63	\$25.21		
7/24/2016	56	\$385.27	56	\$570.62	\$955.89	0.7	\$11.58	0.7	\$13.63	\$25.21		
6/24/2016	48	\$342.25	48	\$489.97	\$832.22	0.7	\$11.58	0.7	\$13.63	\$25.21		
5/25/2016	44	\$318.15	44	\$454.22	\$772.37	0.7	\$11.58	0.7	\$13.63	\$25.21		
4/25/2016	67	\$462.75	67	\$868.72	\$1,331.47	0.7	\$11.58	0.7	\$13.63	\$25.21		
3/26/2016	74	\$510.95	74	\$830.23	\$1,341.18	0.7	\$11.58	0.7	\$13.63	\$25.21		
2/25/2016	54	\$380.81	54	\$547.17	\$927.98	0.7	\$11.58	0.7	\$13.63	\$25.21		
1/26/2016	49	\$351.89	49	\$504.27	\$856.16	0	\$6.76	0	\$6.48	\$13.24		
12/27/2015	31	\$231.59	31	\$325.52	\$557.11	0.7	\$11.58	0.7	\$13.63	\$25.21		
11/27/2015	25	\$197.65	25	\$275.47	\$473.12	0.7	\$11.58	0.7	\$13.63	\$25.21		
10/28/2015	30	\$226.57	30	\$318.37	\$544.94	0.7	\$11.58	0.7	\$13.63	\$25.21		

City of Hollywood rates effective 11/1/13

\$6.43 per kgal, volume cost of water (Block 1)

\$9.53 per kgal, volume cost of sewer

\$15.96 per kgal, total

BL22-Margate Catherine Young Library

BL23-Hallandale Library

Customer#			29161			Account #:	838708						
Acct Name:		Cath	erine Young	Library		Acct Name:		Н	allandale Lik	orary			
Site Address:		5810	Park Dr., Ma	rgate, FL		Site Address:	300) S. Federal H	wy., Halland	ale Beach, FL	33009		
Water Utility:			City of Marg	ate		Water Utility:		City	of Hallandal	e Beach			
Location			226414			Meter #							
			Sewer				water						
Read Date	(kGal)	water Cost (\$)	Cons. (kGal)	Sewer Cost (\$)	Total Bill Amount (\$)	Read Date	(kGal)	Water Cost (\$)	Cons. (kGal)	Sewer Cost (\$)	Total Bill Amount (\$)		
	(1.001)	(Y)	42	(Y)	\$750.60		((F)	0	¢F0.14	\$80.26		
9/20/2017	42	\$329.15 \$261.55	42	\$421.54 \$461.50	\$750.09	9/29/2017	9	\$30.22 \$20.16	12	\$50.14 \$67.65	\$80.30		
8/21/2017	49	\$301.33 \$260.02	49 50	\$401.59 \$470.21	\$820.24	8/29/2017	13	\$39.10	13	\$07.05 \$62.09	\$106.81		
7/20/2017	52	\$309.03 \$349.50	52	\$470.31 \$445.57	\$839.34	6/20/2017	12	\$30.09 \$32.54	12	\$03.08 ¢57.25	\$99.77		
7/20/2017 6/20/2017	40	\$348.39 \$376.67	40 50	\$445.57 \$490.29	\$794.10	6/29/2017 5/20/2017	11	\$33.34 ¢27.14	11	\$57.25 \$62.01	\$90.79 \$101.0F		
6/20/2017		\$370.07	23	\$480.28	\$850.95	5/30/2017	13	\$37.14	13	\$03.91 ¢c7.24	\$101.05		
5/18/2017	37	\$307.55 ¢251.20	37	\$394.84 ¢251.20	\$702.39	4/28/2017	13	\$38.94 ¢27.50	13	\$07.24	\$106.18		
4/19/2017	24	\$251.39	24	\$251.39	\$502.78	3/29/2017	13	\$37.59	13	\$04.74	\$102.33		
3/20/2017	42	\$329.15	42	\$329.15	\$658.30	2/28/2017	15	\$42.99 ¢27.50	15	\$74.73	\$117.72		
2/21/2017	47	\$352.91	47	\$450.91	\$803.82	1/30/2017	13	\$37.59	13	\$64.74	\$102.33		
1/19/2017	38	\$311.87	38	\$400.18	\$/12.05	12/30/2016	11	\$34.44	11	\$58.92	\$93.36		
12/20/2016	46	\$348.59	46	\$447.57	\$796.16	11/30/2016	13	\$37.81	13	\$65.16	\$102.97		
11/21/2016	58	\$400.43	58	\$509.65	\$910.08	10/31/2016	13	\$38.26	13	\$65.99	\$104.25		
10/20/2016	60	\$320.40	60	\$520.33 ·	\$840.73	9/30/2016	14	\$40.06	14	\$69.32	\$109.38		
9/20/2016	55	\$379.68	55	\$483.46	\$863.14	8/30/2016	12	\$36.24	12	\$62.25	\$98.49		
8/18/2016	62	\$409.50	62	\$520.28	\$929.78	7/29/2016	10	\$32.19	10	\$54.76	\$86.95		
6/20/2016	64	\$420.15	64	\$533.43	\$953.58	6/30/2016	10	\$31.96	10	\$54.34	\$86.30		
5/19/2016	47	\$347.73	47	\$444.01	\$791.74	5/30/2016	10	\$31.22	10	\$52.76	\$83.98		
4/20/2016	56	\$383.94	56	\$488.72	\$872.66	4/29/2016	10	\$30.80	10	\$51.64	\$82.44		
3/21/2016	51	\$365.62	51	\$466.10	\$831.72	3/30/2016	9	\$30.37	9	\$50.51	\$80.88		
2/18/2016	65	\$424.84	65	\$539.22	\$964.06	2/29/2016	11	\$33.54	11	\$57.25	\$90.79		
1/20/2016	69	\$440.17	69	\$558.15	\$998.32	1/29/2016	9	\$29.08	9	\$49.76	\$78.84		
12/21/2015	53	\$373.29	53	\$475.57	\$848.86	12/30/2015	12	\$35.79	12	\$61.41	\$97.20		
11/19/2015	73	\$458.92	73	\$581.33	\$1,040.25	11/28/2015	12	\$36.69	12	\$63.08	\$99.77		
10/21/2015	58	\$394.59	58	\$501.87	\$896.46	10/31/2015	55	\$138.52	55	\$247.17	\$385.69		

City of Margate rates

\$4.41 per kgal, volume cost of water

\$5.45 per kgal, volume cost of sewer

\$9.86 per kgal, total

BL24-Century Plaza Library

BL26-Carver Ranches Library

Account #:	174971					Account #:	3013138						
Acct Name:	Century Pla	za Library - Ce	ntury Plaza	Assoc.		Acct Name:	Carver Ranches Library						
Site Address:	1856 W Hill	sboro Blvd - A	L.			Site Address:	4733 SW 18	Sth St, Hollywo	bod				
Water Utility:	City of Deer	field Beach				Water Utility:	Broward Co	unty WWS					
Meter #	154105					Meter #	63427734						
	water		Sewer				water		Sewer				
	Cons.	Water Cost	Cons.	Sewer Cost	Total Bill		Cons.	Water Cost	Cons.	Sewer Cost	Total Bill		
Read Date	(KGal)	(\$)	(KGal)	(\$)	Amount (\$)	Read Date	(KGal)	(\$)	(KGal)	(\$)	Amount (\$)		
12/21/2017	1	\$18.67	1	\$13.69	\$32.36	3/20/2017	8	\$78.97	8	\$97.77	\$176.74		
11/21/2017	1	\$18.67	1	\$13.69	\$32.36	2/16/2017	7	\$71.40	7	\$93.91	\$165.31		
10/24/2017	1	\$18.67	1	\$13.69	\$32.36	1/19/2017	8	\$78.97	8	\$97.77	\$176.74		
9/26/2017	2	\$22.34	2	\$16.40	\$38.74	12/16/2016	8	\$78.97	8	\$97.77	\$176.74		
8/24/2017	1	\$18.67	1	\$13.69	\$32.36	11/17/2016	9	\$86.54	9	\$101.63	\$188.17		
7/24/2017	4	\$29.68	4	\$16.40	\$46.08	10/18/2016	7	\$70.61	7	\$93.55	\$164.16		
6/23/2017	2	\$22.34	2	\$16.40	\$38.74	9/19/2016	9	\$84.10	9	\$100.44	\$184.54		
5/23/2017	2	\$22.34	2	\$16.40	\$38.74	8/16/2016	8	\$76.65	8	\$96.70	\$173.35		
4/24/2017	1	\$18.67	1	\$13.69	\$32.36	7/19/2016	9	\$84.10	9	\$100.44	\$184.54		
3/23/2017	1	\$18.67	1	\$13.69	\$32.36	6/16/2016	10	\$91.35	10	\$104.18	\$195.53		
2/23/2017	1	\$18.67	1	\$13.69	\$32.36	5/17/2016	10	\$91.35	10	\$104.18	\$195.53		
1/24/2017	1	\$18.67	1	\$13.69	\$32.36	4/18/2016	11	\$98.70	11	\$107.92	\$206.62		
12/20/2016	1	\$18.67	1	\$13.69	\$32.36	3/16/2016	8	\$76.65	8	\$96.70	\$173.35		
11/21/2016	26	\$115.46	26	\$81.44	\$196.90	2/17/2016	9	\$84.10	9	\$100.44	\$184.54		
10/24/2016	47	\$200.09	47	\$138.35	\$338.44	1/19/2016	9	\$84.10	9	\$100.44	\$184.54		
9/26/2016	4	\$171.88	4	\$119.38	\$291.26	12/16/2015	8	\$76.65	8	\$96.70	\$173.35		
8/25/2016	22	\$99.34	22	\$70.60	\$169.94	11/17/2015	8	\$76.65	8	\$96.70	\$173.35		
7/25/2016	4	\$29.68	4	\$21.82	\$51.50	10/15/2015	9	\$81.64	9	\$99.47	\$181.11		
6/23/2016	1	\$18.67	1	\$13.69	\$32.36	9/18/2015	10	\$85.12	10	\$101.59	\$186.71		
5/23/2016	1	\$18.67	1	\$13.69	\$32.36	8/18/2015	8	\$70.70	8	\$94.27	\$164.97		
4/25/2016	2	\$22.34	2	\$16.40	\$38.74	7/20/2015	9	\$77.91	9	\$97.93	\$175.84		
1/25/2016	1	\$18.67	1	\$13.69	\$32.36	6/17/2015	8	\$70.70	8	\$94.27	\$164.97		
12/22/2015	1	\$18.67	1	\$13.69	\$32.36	5/18/2015	9	\$77.91	9	\$97.93	\$175.84		
11/19/2015	1	\$18.67	1	\$13.69	\$32.36	4/17/2015	8	\$70.70	8	\$94.27	\$164.97		

Broward County Water & Wastewater Services rates effective 10/1/17

\$4.90 per kgal, volume cost of water

\$3.98 per kgal, volume cost of sewer

\$8.88 per kgal, total

BO28-Public Safety Complex (Broward Co Board)

Public Safety Complex (Broward Cty S/C)

BO29-North Regional Courthouse

Account #:			2041788					204231	2		Account #:	4070				
Acct Name:	Pu	blic Safety Co	mplex - Bro	ward Cty Boa	ard	Pu	blic Safety Co	mplex - Bro	oward Cty Pub	olic S/C	Acct Name:		North	Regional Co	ourthouse	
Site Address:	2601 \	Nest Broward	Blvd, Ft. L	auderdale, FL	33312	2603	1 West Browa	rd Blvd, Ft.	. Lauderdale,	FL 33312	Site Address:	160	0 W Hillsboro	Blvd., Deer	field Beach, F	L 33309
Water Utility:		City c	of Ft. Laude	rdale			Cit	y of Ft. Lau	derdale		Water Utility:		City	of Deerfiel	d Beach	
Meter #		(Brov	vard Cty. Bo	oard)			(Bro	ward Cty Pu	ublic S/C)		Meter #					
	Water	Matan Cast	Sewer	Course Coot	I otal Bill	Water Sewer Cost Cons Sewer Cost Total Bill					Water	Water Coat	Sewer	Course Coast	Total Dill	
Read Date	(kGal)	(\$)	(kGal)	(\$)	(\$)	(kGal)	(\$)	(kGal)	(\$)	Amount (\$)	Read Date	(kGal)	(\$)	(kGal)	(\$)	Amount (\$)
11/20/2017	15	\$152.50	15	\$221.76	\$374.26	1,078	\$3,272.76	1,078	\$4,951.83	\$8,224.59	10/13/2015	201	\$1,187.72	201	\$874.19	\$2,061.91
10/23/2017	13	\$137.67	13	\$201.21	\$338.88	1,318	\$4,259.63	1,318	\$5,897.46	\$10,157.09	11/12/2015	139	\$706.17	139	\$960.18	\$1,666.35
9/21/2017	13	\$133.22	13	\$194.77	\$327.99	1,678	\$5,201.04	1,678	\$7,195.72	\$12,396.76	12/10/2015	114	\$868.43	114	\$638.42	\$1,506.85
8/22/2017	13	\$133.22	13	\$194.77	\$327.99	1,176	\$3,695.51	1,176	\$5,123.56	\$8,819.07	1/11/2016	92	\$787.69	92	\$578.80	\$1,366.49
7/21/2017	12	\$127.22	12	\$186.52	\$313.74	1,202	\$3,773.49	1,202	\$5,230.89	\$9,004.38	2/11/2016	111	\$857.42	111	\$630.29	\$1,487.71
6/22/2017	27	\$217.19	27	\$310.35	\$527.54	1,206	\$3,785.48	1,206	\$5,247.40	\$9,032.88	3/10/2016	122	\$897.79	122	\$660.10	\$1,557.89
5/22/2017	13	\$133.22	13	\$194.77	\$327.99	1,154	\$3,629.53	1,154	\$5,032.75	\$8,662.28	4/11/2016	151	\$1,004.22	151	\$738.69	\$1,742.91
4/20/2017	14	\$139.21	14	\$203.03	\$342.24	944	\$2,999.73	944	\$4,165.91	\$7,165.64	5/11/2016	166	\$1,059.27	166	\$779.34	\$1,838.61
3/22/2017	22	\$187.20	22	\$269.07	\$456.27	928	\$2,951.75	928	\$4,099.87	\$7,051.62	6/13/2016	207	\$1,209.74	207	\$890.45	\$2,100.19
2/20/2017	18	\$163.21	18	\$236.05	\$399.26	830	\$2,657.84	830	\$3,695.34	\$6,353.18	7/12/2016	863	\$3,819.94	863	\$2,668.21	\$6,488.15
1/23/2017	35	\$265.17	35	\$376.40	\$641.57	842	\$2,693.83	842	\$3,744.88	\$6,438.71	8/11/2016	213	\$1,231.76	213	\$906.71	\$2,138.47
12/21/2016	30	\$235.18	30	\$335.12	\$570.30	1,010	\$3,197.67	1,010	\$4,438.35	\$7,636.02	9/12/2016	234	\$1,308.83	234	\$963.62	\$2,272.45
11/18/2016	9	\$101.85	9	\$150.09	\$251.94	888	\$2,831.79	888	\$3,934.76	\$6,766.55	10/12/2016	206	\$1,206.07	206	\$887.74	\$2,093.81
10/24/2016	13	\$131.31	13	\$192.00	\$323.31	1,056	\$3,287.49	1,056	\$4,562.02	\$7,849.51	11/14/2016	188	\$1,059.27	188	\$779.34	\$1,838.61
9/22/2016	16	\$143.97	16	\$209.08	\$353.05	1,224	\$3,654.75	1,224	\$5,067.93	\$8,722.68	1/11/2017	159	\$1,033.58	159	\$760.37	\$1,793.95
8/22/2016	21	\$172.52	21	\$248.39	\$420.91	1,208	\$3,609.08	1,208	\$5,005.04	\$8,614.12	2/16/2017	138	\$956.51	138	\$703.46	\$1,659.97
7/21/2016	14	\$132.55	14	\$193.36	\$325.91	1,330	\$3,957.35	1,330	\$5,484.61	\$9,441.96	3/15/2017	158	\$1,029.91	158	\$757.66	\$1,787.57
6/21/2016	12	\$121.13	12	\$177.63	\$298.76	728	\$2,338.82	728	\$3,118.18	\$5,457.00	4/13/2017	178	\$1,101.31	178	\$811.86	\$1,913.17
5/19/2016	21	\$172.52	21	\$248.39	\$420.91	1,526	\$4,516.87	1,526	\$6,255.08	\$10,771.95	5/10/2017	152	\$1,007.89	152	\$741.40	\$1,749.29
4/21/2016	15	\$138.26	15	\$201.22	\$339.48	1,042	\$3,135.20	1,042	\$4,352.50	\$7,487.70	6/13/2017	199	\$1,180.38	199	\$868.77	\$2,049.15
3/22/2016	17	\$149.68	17	\$216.94	\$366.62	1,022	\$3,078.10	1,022	\$4,273.88	\$7,351.98	7/13/2017	198	\$1,176.71	198	\$866.06	\$2,042.77
2/19/2016	12	\$121.13	12	\$177.63	\$298.76	760	\$2,330.17	760	\$3,243.97	\$5,574.14	8/10/2017	216	\$1,242.77	216	\$914.84	\$2,157.61
1/22/2016	35	\$252.45	35	\$358.46	\$610.91	944	\$2,855.44	944	\$3,967.27	\$6,822.71	9/14/2017	287	\$1,503.34	287	\$1,107.25	\$2,610.59
12/22/2015	16	\$143.97	16	\$209.08	\$353.05	1,270	\$3,786.07	1,270	\$5,248.76	\$9,034.83	10/11/2017	139	\$960.18	139	\$706.17	\$1,666.35

City of Fort Lauderdale rates effective 10/1/17

\$5.04 per kgal, volume cost of water

\$6.93 per kgal, volume cost of sewer

\$11.97 per kgal, total

BO30-Govt. Center West Bldg #1

Govt. Center West Bldg. #2

Govt. Center West - Bank Drive-In

Account #:			27112-07	1				86101-07			62100-00					
Acct Name:		Browar	d County Co	ommission			Browward	d County Co	ommission			Broward	d County Co	mmission		
Site Address:	1 N	. University Dr	r., Bldg. #1,	Plantation, Fl	33317	1 N.	University Dr.	, Bldg #2, P	lantation, FL 3	33317	1 N. Ur	iversity Dr., Pl	antation, F	L 33317 (Banl	k Drive-In)	
Water Utility:		Ci	ity of Planta	ition			Cit	y of Plantat	tion		City of Plantation					
Meter #																
	Water	Water Cost	Sewer	Course Cost		Water	Water Cost	Sewer	Course Cost	Total Bill	Water	Water Cost	Sewer	Source Cost	Total Bill	
Read Date	(kGal)	(\$)	(kGal)	(\$)	Amount (\$)	(kGal)	(\$)	(kGal)	(\$)	Amount (\$)	(kGal)	(\$)	(kGal)	(\$)	Amount (\$)	
9/21/2017	309	\$1,926.26	309	\$1,538.03	\$3,464.29	30	\$145.16	30	\$254.60	\$399.76	0.1	\$13.10	0.1	\$18.94	\$32.04	
8/21/2017	309	\$1,929.94	309	\$1,539.87	\$3,469.81	33	\$149.67	33	\$275.65	\$425.32	0.1	\$13.10	0.1	\$18.94	\$32.04	
7/21/2017	332	\$2,138.55	332	\$1,639.52	\$3,778.07	35	\$150.07	35	\$274.44	\$424.51	0.1	\$13.10	0.1	\$18.94	\$32.04	
6/20/2017	252	\$1,403.35	252	\$1,275.72	\$2,679.07	32	1481	32	\$261.98	\$261.98	0.1	\$13.10	0.1	\$18.94	\$32.04	
5/18/2017	221	\$1,158.49	221	\$1,135.57	\$2,294.06	35	\$154.73	35	\$278.57	\$433.30	0.4	\$13.68	0.4	\$20.32	\$34.00	
4/17/2017	189	\$917.31	189	\$985.36	\$1,902.67	33	\$150.86	33	\$268.89	\$419.75	0.5	\$13.81	0.5	\$22.18	\$35.99	
3/17/2017	189	\$919.51	189	\$985.75	\$1,905.26	32	\$148.10	32	\$261.98	\$410.08	0.1	1`3.1	0.1	\$18.94	\$18.94	
2/16/2017	174	\$807.79	174	\$915.68	\$1,723.47	37	\$158.41	37	\$287.77	\$446.18	0.2	\$13.31	0.2	\$19.40	\$32.71	
1/18/2017	186	\$898.19	186	\$972.38	\$1,870.57	45	\$172.94	45	\$324.19	\$497.13	0.3	\$14.32	0.3	\$19.84	\$34.16	
12/14/2016	142	\$609.57	142	\$970.90	\$1,580.47	33	\$149.76	33	\$226.10	\$375.86	0	\$12.94	0	\$18.48	\$31.42	
11/18/2016	240	\$1,294.36	240	\$1,220.86	\$2,515.22	48	\$147.17	48	\$334.82	\$481.99	3	\$18.09	3	\$29.39	\$47.48	
10/18/2016	291	\$1,780.90	291	\$1,455.51	\$3,236.41	40	\$181.41	40	\$279.48	\$460.89	0.2	\$17.17	0.2	\$17.74	\$34.91	
9/19/2016	302	\$1,797.19	302	\$1,410.74	\$3,207.93	45	\$164.90	45	\$299.62	\$464.52	3.3	\$18.25	3.3	\$29.82	\$48.07	
8/18/2016	291	\$1,700.84	291	\$1,363.76	\$3,064.60	42	\$160.83	42	\$289.71	\$450.54	0	\$12.44	0	\$15.40	\$27.84	
7/19/2016	276	\$1,564.70	276	\$1,297.39	\$2,862.09	45	\$164.90	45	\$299.62	\$464.52	0	\$12.44	0	\$15.40	\$27.84	
6/20/2016	277	\$1,573.54	277	\$1,301.70	\$2,875.24	40	\$156.78	40	\$279.80	\$436.58	0	\$12.44	0	\$15.40	\$27.84	
5/19/2016	251	\$1,344.58	251	\$1,190.07	\$2,534.65	47	\$165.85	47	\$304.37	\$470.22	0	\$12.44	0	\$15.40	\$27.84	
4/19/2016	265	\$1,464.81	265	\$1,248.69	\$2,713.50	46	\$165.50	46	\$303.60	\$469.10	0.1	\$12.97	0.1	\$15.83	\$28.80	
3/18/2016	168	\$736.71	168	\$831.48	\$1,568.19	43	\$161.72	43	\$291.87	\$453.59	0.3	\$12.97	0.3	\$16.89	\$29.86	
2/19/2016	142	\$584.75	142	\$719.42	\$1,304.17	48	\$170.39	48	\$312.99	\$483.38	0.2	\$12.79	0.2	\$16.26	\$29.05	
1/19/2016	295	\$1,730.89	295	\$1,378.42	\$3,109.31	38	\$152.52	38	\$208.46	\$360.98	0	\$12.44	0	\$15.40	\$27.84	
12/17/2015	162	\$695.00	162	\$806.05	\$1,501.05	35	\$148.09	35	\$268.68	\$416.77	0.1	\$12.62	0.1	\$15.83	\$28.45	
11/19/2015	224	\$1,132.63	224	\$1,072.84	\$2,205.47	44	\$163.67	44	\$296.61	\$460.28	0.1	\$12.62	0.1	\$15.83	\$28.45	
10/19/2015	226	\$1,147.48	226	\$1,081.89	\$2,229.37	40	\$156.69	40	\$279.37	\$436.06	1	\$14.21	1	\$19.71	\$33.92	

City of Plantation rates effective 10/1/17

\$5.74 per kgal, volume cost of water (multiple-tiered based on flow)

\$4.93 per kgal, volume cost of sewer

\$10.67 per kgal, total

BO31-Traffic Engineeering Administration North

Broward Co Traffic Eng Irrigation

Account #:			2060097			2060098						
Acct Name:		Browa	ard Cty Traf	fic Eng		Broward Traffic Eng (Broward Co Comm Irrigation Meter)						
Site Address:	2300	W. Commercia	al Blvd, Ft. L	auderdale, FL	. 33309	2300 W. Commercial Blvd, Ft. Lauderdale, FL 33309						
Water Utility:		City	of Ft. Laude	rdale		City of Ft. Lauderdale						
Meter #		(Broward	Cty Traffic E	ing Meter)		(Broward Co Comm Irrigation Meter)						
	Water		Sewer		T	Water Sewer						
Read Date	(kGal)	(\$)	(kGal)	(\$)	Amount (\$)	(kGal)	(\$)	(kGal)	Sewer Cost (\$)	Amount (\$)		
11/20/2017	25	\$267.65	25	\$300 11	\$667.09	0	\$46.40	0	(17	\$46.40		
10/30/2017	25	\$276.41	23	\$111 33	\$687.74	0	\$46.18	0		\$46.18		
9/28/2017	25	\$254.90	27	\$380.42	\$635.32	31	\$724.30	0		\$224.30		
8/29/2017	32	\$288.50	32	\$426.62	\$715.12	104	\$664.67	0		\$664.67		
7/28/2017	31	\$283.70	31	\$420.02	\$703.72	35	\$247.54	0		\$247.54		
6/29/2017	33	\$293.30	33	\$433.22	\$726.52	44	\$299.83	0		\$299.83		
5/30/2017	37	\$312.50	37	\$459.62	\$772.12	46	\$311.45	0		\$311.45		
4/27/2017	70	\$490.70	70	\$677.42	\$1,168.12	43	\$294.02	0		\$294.02		
3/29/2017	35	\$302.90	35	\$446.42	\$749.32	47	\$317.26	0		\$317.26		
2/27/2017	35	\$302.90	35	\$446.42	\$749.32	53	\$352.12	0		\$352.12		
1/30/2017	31	\$283.70	31	\$420.02	\$703.72	46	\$311.45	0		\$311.45		
12/29/2016	43	\$341.30	43	\$499.22	\$840.52	59	\$386.98	0		\$386.98		
11/29/2016	26	\$258.84	26	\$385.76	\$644.60	39	\$264.89	0		\$264.89		
10/28/2016	26	\$258.84	26	\$385.76	\$644.60	51	\$339.36	0		\$339.36		
9/29/2016	28	\$256.44	28	\$381.28	\$637.72	47	\$302.00	0		\$302.00		
8/29/2016	28	\$256.44	28	\$381.28	\$637.72	53	\$335.18	0		\$335.18		
7/28/2016	29	\$261.01	29	\$387.57	\$648.58	47	\$302.00	0		\$302.00		
6/28/2016	32	\$274.72	32	\$406.44	\$681.16	50	\$318.59	0		\$318.59		
5/26/2016	28	\$256.44	28	\$381.28	\$637.72	40	\$263.29	0		\$263.29		
4/28/2016	32	\$274.72	32	\$406.44	\$681.16	45	\$290.94	0		\$290.94		
3/29/2016	35	\$288.43	35	\$425.31	\$713.74	42	\$274.35	0		\$274.35		
2/26/2016	31	\$270.15	31	\$400.15	\$670.30	38	\$252.23	0		\$252.23		
1/29/2016	32	\$274.72	32	\$406.44	\$681.16	72	\$440.25	0		\$440.25		
12/30/2015	31	\$270.15	31	\$400.15	\$670.30	86	\$517.67	0		\$517.67		

City of Fort Lauderdale rates effective 10/1/17

\$5.04 per kgal, volume cost of water

\$6.93 per kgal, volume cost of sewer

\$11.97 per kgal, total

BO32Park Admin Complex

BH40-EAP Our House

Account #:			5066055001			Account #:	2014815						
Acct Name:	6224 B	roward Count	ty - District N	Aaintenance	Utilities	Acct Name:	Broward Co FL EAP Our House						
Site Address:	9	50 NW 38th 9	Street, Pomp	oano Beach, I	FL	Site Address:	40	8 NE 4th Stre	et, Ft. Laude	erdale, FL 33	301		
Water Utility:		City	of Oakland	Park		Water Utility:		City	of Ft. Laude	rdale			
Meter #						Meter #			(5/8" meter)				
Read Date	Cons. (kGal)	Water Cost (\$)	Sewer Cons. (kGal)	Sewer Cost (\$)	Total Bill Amount (\$)	Read Date	Water Cons. (kGal)	Water Cost (\$)	Sewer Cons. (kGal)	Sewer Cost (\$)	Total Bil Amount (\$)		
9/28/2017	31	\$275.11	31	\$253.04	\$528.15	1/8/2016	2	\$15.67	2	\$22.16	\$37.83		
8/28/2017	54	\$421.54	54	\$374.48	\$796.02	11/7/2017	0	\$7.20	0	\$10.56	\$17.76		
7/27/2017	52	\$408.72	52	\$363.92	\$772.64	10/10/2017	1	\$11.83	1	\$16.89	\$28.72		
6/26/2017	45	\$363.85	45	\$326.96	\$690.81	9/12/2017	0	\$6.86	0	\$10.06	\$16.92		
5/26/2017	46	\$370.26	46	\$332.24	\$702.50	8/9/2017	1	\$11.66	1	\$16.66	\$28.32		
4/26/2017	57	\$404.77	57	\$390.32	\$795.09	7/10/2017	0	\$6.86	0	\$10.06	\$16.92		
3/28/2017	51	\$402.31	51	\$358.64	\$760.95	6/9/2017	18	\$93.26	18	\$128.86	\$222.12		
2/27/2017	44	\$357.44	44	\$321.68	\$679.12	5/10/2017	1	\$11.66	1	\$16.66	\$28.32		
1/27/2017	57	\$440.77	57	\$390.32	\$831.09	4/7/2017	0	\$6.86	0	\$10.06	\$16.92		
12/28/2016	85	\$620.35	85	\$390.32	\$1,010.67	3/9/2017	1	\$11.66	1	\$16.66	\$28.32		
11/28/2016	40	\$261.80	40	\$300.56	\$562.36	2/7/2017	0	\$6.86	0	\$10.06	\$16.92		
10/26/2016	50	\$395.90	50	\$353.36	\$749.26	1/11/2017	1	\$11.66	1	\$16.66	\$28.32		
City of Oakland I	Park rates ef	fective 10/1/1	17			12/8/2016	1	\$11.66	1	\$16.66	\$28.32		
\$6.68	per kgal, vo	lume cost of v	water			11/7/2016	1	\$10.29	1	\$14.65	\$24.94		
\$5.34	per kgal, vo	lume cost of s	sewer			10/12/2016	0	\$6.64	0	\$9.74	\$16.38		
\$12.02	per kgal, to	tal				9/9/2016	1	\$11.10	1	\$15.87	\$26.97		
						8/9/2016	1	\$11.10	1	\$15.87	\$26.97		
						7/8/2016	1	\$11.10	1	\$15.87	\$26.97		
						6/8/2016	0	\$6.53	0	\$9.58	\$16.11		
						5/6/2016	1	\$11.10	1	\$15.87	\$26.97		
						4/8/2016	1	\$11.10	1	\$15.87	\$26.97		
						3/6/2016	1	\$11.10	1	\$15.87	\$26.97		
						2/9/2016	1	\$11.10	1	\$15.87	\$26.97		
						12/10/2015	1	\$11.10	1	\$15.87	\$26.97		

City of Fort Lauderdale rates effective 10/1/17

\$5.04 per kgal, volume cost of water

\$6.93 per kgal, volume cost of sewer

\$11.97 per kgal, total

BH35-Booher Building

BH35-Broward EPD Lab

Account #:			26812			Account #:	101962-001						
Acct Name:		Broward Co	unty Barc/U	nit #60174		Acct Name:		Brow	ard CO. EPD	Lab			
Site Address:		3275 NW 99 W	ay, Coral Spr	r <mark>ings, FL 33065</mark>		Site Address:		3211 Colleg	e Ave., Davie	e, FL 33314			
Water Utility:		City	of Coral Spri	ings		Water Utility:	City of Davie						
Meter #			N70007606			Meter #							
			Sewer				Water		Sewer				
Decid Data	Water Cons.	Water Cost	Cons.	Sewer Cost	Total Bil	Decid Data	Cons.	Water Cost (\$)	Cons.	Sewer Cost	Total Bil		
Read Date	(KGal)	(२)	(KGai)	(२)	Amount (5)	Read Date	(KGai)	Water Cost (5)	(KGai)	(२)	Amount (5)		
10/4/2017	162	\$645.79	162	\$976.72	\$1,622.51	12/20/2017	3	\$172.48	3	\$208.55	\$381.03		
9/5/2017	284	\$975.19	284	\$1,475.70	\$2,450.89	11/15/2017	27	\$311.68	27	\$371.27	\$682.95		
8/3/2017	254	\$894.19	254	\$1,353.00	\$2,247.19	10/18/2017	67	\$535.39	67	\$631.98	\$1,167.37		
7/5/2017	278	\$958.99	278	\$1,451.16	\$2,410.15	9/20/2017	66	\$524.46	66	\$618.66	\$1,143.12		
6/2/2017	267	\$929.29	267	\$1,406.17	\$2,335.46	8/23/2017	124	\$851.58	124	\$1,001.48	\$1,853.06		
5/4/2017	245	\$869.89	245	\$1,316.19	\$2,186.08	7/19/2017	37	\$360.90	37	\$428.28	\$789.18		
4/5/2017	253	\$891.49	253	\$1,348.91	\$2,240.40	6/21/2017	3	\$169.14	3	\$202.88	\$372.02		
3/6/2017	279	\$961.69	279	\$1,455.25	\$2,416.94	5/17/2017	2	\$162.50	2	\$196.28	\$358.78		
2/3/2017	289	\$988.69	289	\$1,496.15	\$2,484.84	4/19/2017	2	\$163.50	2	\$196.28	\$359.78		
1/5/2017	257	\$902.29	257	\$1,365.27	\$2,267.56	3/22/2017	4	\$174.78	4	\$209.48	\$384.26		
12/6/2016	314	\$1,020.63	314	\$1,543.73	\$2,564.36	2/15/2017	3	\$169.14	3	\$202.88	\$372.02		
11/3/2016	230	\$801.39	230	\$1,211.93	\$2,013.32	1/18/2017	4	\$174.78	4	\$209.48	\$384.26		
10/5/2016	244	\$837.93	244	\$1,267.23	\$2,105.16	12/21/2016	2	\$163.50	2	\$196.28	\$359.78		
9/6/2016	210	\$749.19	210	\$1,132.93	\$1,882.12	11/16/2016	2	\$163.50	2	\$196.28	\$359.78		
8/8/2016	224	\$785.73	224	\$1,188.23	\$1,973.96	10/19/2016	2	\$162.60	2	\$194.73	\$357.33		
7/8/2016	273	\$913.62	273	\$1,381.78	\$2,295.40	9/21/2016	5	\$178.61	5	\$213.10	\$391.71		
6/9/2016	265	\$892.74	265	\$1,350.18	\$2,242.92	8/17/2016	4	\$173.05	4	\$206.59	\$379.64		
5/10/2016	266	\$895.35	266	\$1,354.13	\$2,249.48	7/20/2016	4	\$173.05	4	\$206.59	\$379.64		
4/11/2016	279	\$929.28	279	\$1,405.48	\$2,334.76	6/22/2016	4	\$173.05	4	\$206.59	\$379.64		
3/10/2016	253	\$861.42	253	\$1,302.78	\$2,164.20	5/18/2016	2	\$161.93	2	\$193.57	\$355.50		
2/9/2016	231	\$804.00	231	\$1,215.88	\$2,019.88	4/20/2016	2	\$161.93	2	\$193.57	\$355.50		
1/11/2016	240	\$827.49	240	\$1,251.43	\$2,078.92	3/23/2016	4	\$173.05	4	\$206.59	\$379.64		
12/10/2015	262	\$884.91	262	\$1,338.33	\$2,223.24	2/17/2016	2	\$161.93	2	\$193.57	\$355.50		
11/9/2015	226	\$790.95	226	\$1,196.13	\$1,987.08	1/20/2016	2	\$161.93	2	\$193.57	\$355.50		

Note: W&S consumption provided but costs are calculated

City of Coral Springs rates

\$2.70 per kgal, volume cost of water

\$4.09 per kgal, volume cost of sewer

\$6.79 per kgal, total

Town of Davie rates effective 10/1/16

\$5.64 per kgal, volume cost of water \$6.60 per kgal, volume cost of sewer \$12.24 per kgal, total