

MEMO

Date:	December 28, 2012
To:	David Deka, 13 th Floor Investments
From:	Carrol Fowler
Subject:	Sabal Palm Traffic Noise Barrier Study

As a result of our meeting with Broward County staff on December 7, 2012, KB Environmental Sciences, Inc. (KBE) performed additional traffic noise analysis for the planned residences in Sabal Palm. This Memorandum presents the results of the analysis.

Purpose of the Additional Analysis

Broward County staff agreed that the same traffic noise-related criteria should apply to the planned residences within the Sabal Palm community as the criteria that were used by Florida's Turnpike Enterprise (FTE) to evaluate the existing residences in Pompano Park, the subdivision north of Sabal Palm. The criteria used by FTE to analyze improvements to the turnpike resulted in the construction of the noise barrier that currently parallels the turnpike and reduces traffic noise within Pompano Park.

When evaluating improvements to a roadway, FTE prepares reports that document the criteria and results of their traffic noise impact evaluations. The Turnpike's analysis of the Pompano Park noise barrier is presented in a Noise Study Report (NSR) Addendum¹. The NSR documents the following:

- Impact Criteria To identify the residences within Pompano Park that would be impacted by traffic noise, the FTE based their analysis on the requirements of the Title 23, Part 772 of the Code of Federal Regulations (23 CFR 772) and the requirements of Chapter 17, Noise, of the Florida Department of Transportation (FDOT)/FTE Project Development and Environment (PD&E) Manual.² The FHWA regulations stipulate that noise abatement (i.e., reduction) measures should be considered when predicted traffic noise levels approach, meet, or exceed what are referred to as Noise Abatement Criteria (NAC). The FHWA's Noise Abatement Criteria (NAC) varies depending on a property's land use. For residential land uses, the NAC for outdoor (i.e., <u>exterior</u>) traffic noise is 67 decibels on the "A"-weighted scale (dB(A)). To comply with the FHWA's requirements to consider abatement when noise levels approach the NAC, the FDOT/FTE considered abatement when levels were predicted to be 66 dB(A) (within one dB(A) of the criteria). Of note, <u>the FHWA, FDOT, and FTE did/do not consider</u> noise abatement for indoor (i.e., interior) residential traffic noise levels.
- Benefit Criteria To be considered "benefited" by a noise abatement measure, the FTE requires that the traffic noise level at an impacted site be reduced at least five dB(A). While the NSR prepared by the FTE does not provide detailed predicted reductions for each of the impacted residences within Pompano Park, Table 11 of the NSR (see Attachment 1) documents that all of the 19 first row

¹Noise Study Report Addendum for Widening Florida's Turnpike from North of Sunrise Boulevard to Atlantic Boulevard, Broward

County, FL, Financial Project ID Number 406097-1, Florida's Turnpike Enterprise, June 2004.

² Project Development and Environment Manual, Part 2: Analysis and Documentation, FDOT/FTE,

http://www.dot.state.fl.us/emo/pubs/pdeman/Pt2ch17_052411-current.pdf

residences and all of the 14 second row residences that were predicted to be impacted by the improvements would be benefited by the noise barrier at a height of 20 feet (the height of the existing barrier). Table 11 also documents that the average predicted insertion loss (i.e., reduction in traffic noise due to the barrier) for these sites is 7.7 dB(A).

Computer Model Input/Analysis Methodology

Since the last traffic noise evaluation was performed for the Sabal Palm property, the site plan was revised. Currently, detached two-story single-family homes are planned. The analysis presented in this Memorandum assumes this revised site plan (depicted in **Figure 1**).

Figure 1 - Revised Sabal Palm Site Plan

The methodologies used to evaluate traffic noise for the Sabal Palm property were the same methodologies used by the FDOT/FTE to evaluate traffic noise for proposed roadway improvement projects. The criteria and methodologies are discussed in greater detail in the FDOT/FTE PD&E Manual. For the purpose of demonstrating that this is the case, a list of the impact and other evaluation criteria were provided to Mariano Berrios, FDOT's Environmental Programs Administrator. The list, and Mr. Berrios' confirmation, are provided in **Attachment 2** of this Memorandum.

The detailed noise study of the Sabal Palm property was performed using the latest version of FHWA's Traffic Noise Model (TNM-Version 2.5). The traffic data used in the TNM for the turnpike through lanes and ramps were the same data used by FTE to evaluate the existing Pompano Park barrier (see Attachment 1). A total of 160 receptors (i.e., locations of predicted traffic noise) were evaluated. These receptors were located downstairs in both the front yard and back yard of each planned residence and at the point of each dwelling that would be closest to the turnpike through lanes. Of note, receptors were not located upstairs because the

December 28, 2012 Page 3

dwellings are not planned to be constructed with balconies and, as previously stated, there are no NAC for interior traffic noise levels for residential land uses. The graphical output from the TNM for the Sabal Palm property is provided in **Figure 2**. This graphic depicts the locations of the existing noise barrier in Pompano Park, the turnpike through lanes and ramps, and the locations for which traffic noise was predicted. This graphic also depicts what are referred to as "building rows". This input is used by the TNM to consider the shielding effects of structures (in this case, the two-story dwellings within Sabal Palm).

Figure 2 TNM Graphical Output

Predicted Traffic Noise – Sabal Palm

The detailed results from the TNM are provided in **Attachment 3** to this Memorandum. These results predict that traffic noise levels would approach, meet, or exceed the NAC at 29 of the evaluated receptor locations (24 of the planned dwellings) if a noise barrier is not constructed between the dwellings in Sabal Palm and the turnpike. The locations of the impacted areas/lots are shown on **Figure 3**.

Figure 3 – Areas/Lots Impacted by Traffic Noise

Noise Abatement

A noise barrier was evaluated for the impacted areas/lots within Sabal Palms. The goal of the analysis was to provide the areas/lots with at least the same reduction in traffic noise as the existing noise barrier provides the residences in Pompano Park (i.e., an average reduction of 7.7 dB(A)).

For barrier heights of 11, 12, and 13 feet, **Table 1** provides the number of impacted areas/lots and the average insertion loss (i.e., reduction in traffic noise) for the residences in Sabal Palm. As shown, at a combined berm/wall height of 11 feet, a noise barrier would not reduce traffic noise levels at all of the 29 impacted areas within Sabal Palms. However, at a height of 12 feet, the barrier would reduce traffic noise levels at all of the areas and provide an average insertion loss of 8.1 dB(A)—a slightly greater reduction than the Pompano Park barrier provides. To determine if raising the barrier height would increase the benefit substantially, a berm/barrier 13 feet in height was also evaluated. As shown, increasing the barrier height to 13 feet only increases the average reduction by 0.6 dB(A). This is considered a minimal benefit. Of note, this is consistent with the FTE's analysis of the Pompano Park noise barrier because the FTE did not increase the height of that barrier from 20 to 22 feet because doing so would only have resulted in an additional 0.9 dB(A) reduction (see the FTE's NSR text in Attachment 1). As such, a berm/barrier 12 feet in height is recommended as the optimal barrier design for the impacted areas/lots in Sabal Palm. The extent of the berm/barrier is illustrated on **Figure 4**.

		Table I – Noise D	arrier Evaluation to	a Sabai I alli
	Height of	Number of		
	Berm/Wall	Impacted and	Average Insertion	
	(Top Elevation)	Benefited Areas	Loss	Notes
	11 Ft (20.3 Ft)	27	-	Would not benefit all impacted
				areas/lots
ĺ	12 Ft (21.3 Ft)	29	8.1	Provides a greater average
				reduction than the Pompano
				Park barrier
ĺ	13 Ft (22.3 Ft)	29	8.7	Provides only a minimal
				additional benefit

Table 1 – Noise Barrier Evaluation for Sabal Palm

Figure 4 – Noise Barrier Extent

Comparison - Sabal Palm and Pompano Park

As stated above, the existing Pompano Park barrier is 20 feet in height. As demonstrated through previous analysis, there was a need for the FTE to construct a barrier of this height because the turnpike roadway is elevated on the north end of the barrier. This elevated roadway reduces the acoustically effective height of the Pompano Park barrier such that the effective height averages only eight feet for the first row of homes behind the barrier and only six feet for the second row of homes. The data (e.g., top of wall elevation, elevation of the

December 28, 2012 Page 6

turnpike, and elevation of the homes) that were used to calculate the effective barrier height are provided in Attachment 4.

Presumably because there was a belief that the barrier elevations should be the same to provide the same reduction in traffic noise, Broward County staff requested that KBE compare the top elevation of the Pompano Park noise barrier to the top elevation of the Sabal Palm barrier. Using data provided by FTE and the revised site plan for Sabal Palm, the top elevations (above mean sea level) of the two barriers are:

- Pompano Park 27.4 feet
- Sabal Palm 21.3 feet

While one might think the top elevations of the barriers should be approximately the same because they provide essentially the same reduction in traffic noise, this is not the case. The greater elevation of the Pompano Park barrier is necessary because both the elevations of the residences in Pompano Park and the turnpike paralleling the barrier increase from south to north. This results in a reduction of traffic noise more than 7.7 dB(A) for the residences on the south end of the barrier and a reduction less than 7.7 dB(A) for the residences on the north end.

The effect of the elevation differences is illustrated on **Figure 5**. As shown, on the south end of the barrier (Station 5194) all of the noise sources on the turnpike (i.e., car tires on the pavement, truck engines, and truck stacks) are below the top of the barrier. At this location, the Pompano Park noise barrier provides the maximum amount of insertion loss. Moving north, as the elevation of the turnpike increases, the sources of noise rise above the top of the barrier resulting in less and less benefit to the residences. This situation is best demonstrated by the photograph provided in **Figure 6** which is a view of the existing Pompano Park barrier looking from the north end of the barrier to the south end of the barrier. It is evident by this photograph that the roadway is above the barrier on the north end and transitions to an elevation below the barrier on the south end.

Figure 5 – Pompano Park Noise Barrier

Figure 6 – Photograph of Pompano Park Noise Barrier

Summary

In a December 7, 2012 meeting with Broward County staff, it was agreed that the same impact and benefit criteria used by the FTE that resulted in the construction of the Pompano Park barrier should be applied to the Sabal Palm barrier. Using this approach, additional analysis was performed resulting in a recommendation that a 12 foot berm/wall combination noise barrier (top barrier elevation of 21.3 feet) be constructed between the planned residences in Sabal Palm and the turnpike. The barrier would benefit all of the areas/lots that would be impacted by traffic noise.

Exhibit 4 Page 8 of 38

Attachment 1 – Select Pages from FTE's NSR

NOISE STUDY REPORT

for

Widening Florida's Turnpike From North of Sunrise Boulevard to Atlantic Boulevard Broward County, FL PD&E Study

Financial Project ID Number: 406097-1

September 2003

Prepared for:

Florida's Turnpike Enterprise

Prepared by:

In Association With

2.11 NB-W4 - Pompano Park

Noise levels at 19 first-row residences and 14 second-row residences in this neighborhood are predicted to approach or exceed the NAC for the Build condition. The results of the analysis of a noise barrier for this neighborhood are provided in Table 11. At a height of 20 feet and a length of 1,300 feet, the noise barrier would provide at least a 5 dBA reduction to all 33 residences with predicted noise levels that approach or exceed the NAC. No other residences are predicted to benefit from this noise barrier. Raising the noise barrier to the maximum height of 22 feet does not benefit any additional residences identified as impacted. Additionally, raising the noise barrier to the maximum height of 22 feet would increase the average noise reduction by only 0.9 dBA. Because of the minimal amount of additional benefit that would be achieved by increasing the barrier height or length, a 20-foot high and 1,300-foot long noise barrier located outside the clear zone was determined to be the optimal barrier design for this residential area.

		NUMBER	OF BENEFITTED R	ECEIVERS	AVERAGE PREDICTED	
HEIGHT (Feet)	LENGTH (Feet)	Impacted	Not Impacted	Total	LOSS* (dBA)	ESTIMATED COST
11	1,300	5	0	5	5.6	\$357,500
12	1,300	5	0	5	6.3	\$390,000
13	1,300	11	0	11	6.3	\$422,500
14	1,300	11	0	11	7.1	\$455,000
15	1,300	11	0	11	7.6	\$487,500
16	1,300	11	0	11	8.3	\$520,000
17	1,300	11	0	11	8.8	\$552,500
18	1,300	16	0	16	8.0	\$585,000
19	1,300	30	0	30	7.6	\$617,500
20	1,300	33	0	33	7.7	\$650,000
21	1,300	33	0	33	8.2	\$682,500
22	1,300	33	0	33	8.6	\$715,000

 Table 11

 Noise Barrier Evaluation for NB-W4 (Non-Shoulder Segment)

Notes: * = Noise levels presented for benefitted receiver sites only.

										I	ane Volumes		uaauo
ROADWAY	AT TEENATIVE	NULLUN	PREDICTED PEAK	LEVEL-OF- SERVICE C VOLUME***	Truck Factor (percentage)	Autos	Medium Trucks	Heavy Trucks	Number of Lanes	Autos	Medium Trucks	Heavy Trucks	(Miles Per Hour)
SECRET		Northhound	4.813	4.820	1.86	4,723	45	45	E	1,574	51	15	65
Florida's Tumpike	Existing	Southbound	5.228	4.820	1.86	4.730	45	45		1,577	15	15	65
SR 838/West Sunrise		Northbrond	8.600	4.820	1.86	4,730	45	45	Ð	1,577	15	15	65
Boulevard to	No-Build (2030)	Southbound	9.500	4,820	1.86	4,730	45	45	3	1,577	15	15	65
Boulevard		Northbound	9.400	6,480	1.86	6,359	60	60	4	1,590	15	15	65
	Build (2030)	Southbound	10.600	6,480	1.86	6,359	60	60	4	1,590	15	15	65
		Northbound	3,691	4,820	1.86	3,622	34	34	3	1,207	11	11	65
	Existing	Southbound	4,585	4,820	1.86	4,500	43	43		1,500	14	14	5
Plorida'S Lumpike		Northbound	8.100	4,820	1.86	4,730	45	45		1,577	15	15	65
Boulevard to	No-Build (2030)	Southbound	000'6	4,820	1.86	4,730	45	45	3	1.577	15	15	65
SR 814/Atlantic Boulevard		Northbound	- 9,500	6,480	1.86	6,359	60	60	4	1,590	15	15	65
	Build (2030)	Southbound	- 10.600	6,480	1.86	6,359	60	60	4	1,590	15	15	65
		off-ramp	1 866'1	1,480	1.86	1,452	14	14	-	1,452	14	14	35
	Existing	on-ramp	. 876	1,480	1.86	860	80	80	T	860	8	8	35
Florida's Tumpike -		off-rump	2,600	1,480	1.86	1,452	14	14	1	1,452	14	14	35
SR 870/Commercial	No-Build (2030)	duran-ao	2,100	1,480	1,86	1,452	† I	14	1	1,452	14	14	35
Pourceura mercanase Northbound	(OFOC) blind	off-ramp	464(WBSP)/780/ L.356(EBSP) = 2600	2,812****	1.86	455/765/ 1,331	4/7/13	E <i>1/1</i> /4	I	45 <i>5/765/</i> 1,331	4/7/13	4/7/13	35
		durar-no	2,700	1,480	1.86	1,452	14	14	1	1,452	14	14	35
		off-ramn	. 633	1.480	1.86	~ 621	6	6	1	621	9	9	35
	Existing	our-runp	1.276	1,480	1.86	1,252	12	12	1	1,252	12	12	35
Florida's Tumpike -		off-ramp	006.1	1,480	1.86	1,452	14	14	1	1,452	14	14	35
SR 870/Commercial	No-Build (2030)	oct-ramp	2,400	1,480	1.86	1,452	. 14	14	-	1,452	14	14	35
Boulevard Interchange Southbound	Build (2030)	off-ramp	428(EBSP)/1,972 2400	1,480****	1.86	420/1,935	4/18	4/18	1	420/1,935	4/18	4/18	35
		dura1-no	1,454/946(SBSP)=2400	1480	1.86	1,426/928	6/E1	6/E1	1	1,426/928	13/9	13/9	35
		Eastbound	NA	. 1,020	1.92	1,000	0	10	5	333	3	E	45
SR 816/Oakland Park	Existing	Westbound	NA	. 1,020	1.92	1,000	10	01	3	333	3	£	45
Boulevard - East of Florida's	(UEOC) Plind VN	Eastbound	NA · L	1,020	1.92	1,000	01	9	3	333	3	m	45
Lumpike	(ACA7) BIING-ON	Westbound	NA	1,020	1.92	1,000	01	10	-	333	3	5	45
III, Two-Way Arterial)	(ULUC/ Plint	Eastbound	NA	1,020	1.92	1,000	10	10	2	333	7	6	45
	להכחל חווחם	Westbound	NA	1,020	1.92	1,000	9	01	E	333	-	6	45
		Eastbound	NA	1,020	1.92	1,000	9	10	•	555	~	-	45
SR 816/Oakland Park	BUILDER	Westbound	NA	1,020	1.92	1,000	01	01	e	133	3	n	45
Boulevard - West of Florida's Turnolke		Eastbound	NA	. 1,020	1.92	1,000	10	10	1	555	5		45
(Assumptions 6 lancs, Class	(ACAT) DING-ON	Westbound	NA	1,020	1.92	1,000	10	10	9	333	Ē	-	45
III, Two-Way Anenal)		Eastbound	NA	1,020	1.92	1,000	10	01	3	ECE	3	в	45
	(הכעז) מווחם	Westbound	NA	1.020	1.92	1,000	10	01	3	EEE .	3	3	45

28

A

Exhibit 4 Page 11 of 38

Table 5 (cont.) TNM Traffic Data Summary

ROADWAY		5	PRENICTEN DEAR	LEVEL-OF-	l						Lane Volumes		CPEED
SEGMENT **	ALTERNATIVE	DIRECTION	HOUR VOLUME *****	VOLUME***	I ruck Factor (percentage)	Autos	Medium Trucks	Heavy Trucks	Number of Lanes	Autos	Medium Trucke	Heavy Trucks	(Miles Per
Rock Island Road	Existing	Northbound	NA	1,120	•	1.109	y	4	,			TI UCA	Linur
(Assumptions 4 lanes, major		Southbound	NA	1.120	:	001 1			4	400	~	m	35•
focal road, non-state, to be	No-Build COTO	Northbound	NA	1.740	-=	LCL I	-	•	7	554	m	5	-35
Widened in the future to 6		Southbound	NA	1 TÁN		. 222	~	~	£	574	n	F	40.
Internet of Commercial		Northhound	NA	1110		1,72	6	6	e	574	9	E	40*
('DAIG	(0E02) pling	Southhound	AN AN	1,/40	•	1,723	6	6	-	574			40*
		Datibound	VNI TIL	1,/40	•	E27,1	6	6	9	574	n	-	40+
NK 8/0/Commercial	Existing	Dimonistra	NA	1,020	1.64	1,003	80	8	E	334	F	n e-	1
Florido's Tumbite		westbound	NA	1,020	1.64	1,003	8	8	-	334			<u>}</u>
Assumptions 6 lanes. Class	No-Build (2030)	Eastbound	NA	1,020	1.64	1,003	80	8		PEL	7		40
III, Two-Way Arterial)		Westbound	NA	1,020	1.64	1,003	8	8	-	PLL			40
	Build (2030)	Eastbound	NA	1,020	1.64	1,003		œ	-	PLL		n 1	45
		Westbound	NA I	1,020	1.64	1,003	~	~	-	YEE			45
SR 870/Commenciel	Existing	Eastbound	NA	1,020	1.64	1.003	æ	-	- 		,		45
Boulevard - West of		Westbound	NA	1,020	1.64	1 003	•			+00		m	45
Florida's Turnpike	No-Build (2010)	Eastbound	NA	1.020	164	EUO I		0	~	514	F	6	45
(Assumptions 6 lanes, Class		Westbound	NA	1 020	1 64	0001	•	0	-	334	6	Э	45
III, Two-Way Arterial)	WEDEN FILME	Eastbound	NA	1 020-	50.7	500.	~	80	m	334	3	3	45
8	(חרחד) הווחם	Westhound	NN.	0001	60.	1,003		8	E	334	3	£	45
		Facthornd	AN AN	1,020	1.64	1,003	8	8		334		E	44
	Existing	W/areh	VN	2,110	131	2,082	14	14	e	694	6		
SK //NW 40th Street - East		W CSIDOUND	NA	2,110	IE.I	2,082	14	14	-	694			40
Assumptions 6 lance Cless	No-Build (2030)	rastbound	NA	2,110	1.31	2,082	14	14	-	694	7 4		90
II, Two-Way Arterial)		Westbound	NA	2,110	1.31	2,082	14	4		604			40
	Build (2030)	Eastbound	NA	2,110	131	2.082	14	14	-	rus			40
		Westbound	NA	. 2,110	16.1	2,082	41	14	- - -	460	n •	2	육 :
	Existing	Eastbound	NA	2,110	131	2 087		1				n	40
SR 7/NW 40th Street - West		Westbound	NA	2,110	IEI	2.087			n -	094	5	5	40
of Florida's Tumpike	No-Build (2030)	Eastbound	NA	2,110	151	2 OR7			1.	944	2	5	40
II. Two-Way Arerial)		Westbound	NA	2.110	111	2 087		1:		694	5	2	40
	Build (2030)	Eastbound	NA	2.110	171		1	4		694	5	5	40
	(aca-)	Westbound	NA ' I'	0110	121	20012	4	14	m	694	5	5	40
	Cutation -	Eastbound	NA	0000	<u>-</u> :	7,082	14	14	9	694	5	رج ا	40
NW 31st Street - East of	Existing	Westbound	NA	071.2	-	2,693	4	14	-	898	5	2	15
Florida's Tumpike		Easthound	NA A	0717		2,693	14	14		898	2	5	35
(Assumed this is Avenue not		Wethound		7.120	•	2,693	14	14	3	898	5	1 v	35
Way Arterial)		Fasthound	- W	2,720	-	2,693	14	14	3	898			
	Build (2030)	Western		2,720	-	2,693	14	14	6	898		14	
		W CSIDOUND	AN	2,720	•	2,693	14	14		aua			2
									_	876	~	5	35

Exhibit 4 Page 12 of 38

,

TNM Traffic Data Summary Table 5 (cont.)

			-	LEVEL-OF-				0		-	Lane Volumes		SPFED
SEGMENT**	ALTERNATIVE	DIRECTION	PREDICTED PEAK HOUR VOLUME	SERVICE C	Truck Factor (nercentage)	Autos	Medium	Heavy	Number of		Medium	Heavy	(Milles Per
					Induina indi	FOIDT	TUCH	THEVE	T-BIICS	SOINS	1 FUCKS	I LICKS	HOUL)
	Existing	Eastbound	NA	2,720	:	2,693	14	14	3	898	5	2	35
S. Lyons Road - West of	,	Westbound	NA	2,720	:	2,693	14	14	3	898	5	2	35
Florida's Tumpike	No-Build (2030)	Eastbound	NA	2,720	•	2,693	14	14	3	898	2	۰ ۲	35
(Assumptions 6 lanes, Class		Westbound	NA	2,720	-	2,693	14	14	3	898	2	ر د	35
1' 1 MO- 11 al VICEITEI	Build (2030)	Eastbound	NA	2,720	•	2,693	14	14	3	898	5	2	35
		Westbound	NA	2,720	•	2,693	14	14		868	S	ر د	35
	Existine	Eastbound	NA	2,110	1.85	2,071	20	20	n	690	7	L	40
S.R. 814/Allanuc Boulevard		Westbound	NA	2,110	1.85	2,071	20	20	m	690	2	L	40
Assumptions 6 lanes. Class	No-Build (2030)	Eastbound	NA	2,110	1.85	2,071	20	20		690	6	1	40
II, Two-Way Arterial)		Westbound	NA .	2,110	1.85	2,071	20	20	m	690	1	L	40
	Build (2030)	Eastbound	NA	. 2,110	1.85	2,071	20	20	5	690	1	F	40
	(mar.)	Westbound	NA	2,110	1.85	2,071	20	20	m	690	-	1	40
	Existing	Eastbound	NA	2,110	1.85	2,071	20	20	m	690		L	04
S.R. 814/Atlantic Boulevard		Westbound	NA	2,110	1.85	2,071	20	20	m	069	7	1	40
- West of Florida's Tumpike	No-Build (2030)	Eastbound	NA	2,110	1.85	2,071	20	20	3	690	7	L	40
(Assumptions 6 lanes, Class		Westbound	NA	2,110	1.85	2,071	20	20	3	690	7	1	40
11, 1W0-WBY AUTERIAL	- (DEOC) Pline	Eastbound	NA	2,110	1.85	2,071	20	20	E	690	7	L	40
	1 (2222) 2002	Westbound	NA	2,110	1.85	2,071	20	20	m	690	7	7	40
Mater: Chadad an	more indicate date	Mar - beau											

Information is presented based on assumptions, due to a lack of RCI data and/or inability to calculate future year data.
*Assumptions for RCI data collection involved the following county, section, and sub-section codes; SR 7: 86100000, Lyons Road: 86000222, Rock Island Road: 86000047, Commercial Boulevard: 86014000, Oakland Park Boulevard: 86090000, Atlantic Boulevard: 86130000

*** Level of Service Capacity Thresholds are provided for peak hour, peak direction. The actual level of service standard for off system facilities is LOS D. Assumptions for off system facilities identified are based upon information published by the Broward County MPO in Roadway Capacity Analysis for 2001 and 2025 dated September 2002 and the 2002 Quality and Level of Service Manual, Table 4-7, Generalized Peak Hour Directional Volumes for Florida's Urbanized Areas. Level of service C thresholds for ramp roadways are based on capacity information published in the Highway Capacity Manual in Table 25-3, and volume/capacity ratio of 0.74 for LOS C as suggested in Table 23-2 for freeway segments with free flow speeds of 70 mph. Level of service C thresholds for freeway segments are based on Fiele 25-3, and volume/capacity ratio of 0.74 for LOS C as suggested in Table 23-2 for freeway segments with free flow speeds of 70 mph. Level of service C thresholds for freeway segments are based on Free Plan analysis assuming X30 of 10.66% and D30 of 52.65%, free flow speed of 70 mph, interchange density relating to Class 3, truck percentage of 2%, and a local adjustment factor of 0.98. ****LOS C threshold refers to the volume of all ramps combined due to the design of the ramp roadways.

*****Based on data provided in the Draft Project Traffic Memorandum for Broward Widening PD&E Study dated November 2002, AM peak hour was determined to be worst case overall review of 2030 Broward Model showed Vol/Cap>LOS C on off-system facilities.

NA = not applicable EBSP = Eastbound SunPass, WBSP = Westbound SunPass, SBSP = Southbound SunPass.

.

Attachment 2 – List of Criteria/Methodology/Marino Berrios response

L Carrol Fowler

From:	Berrios, Mariano <mariano.berrios@dot.state.fl.us></mariano.berrios@dot.state.fl.us>
Sent:	Thursday, November 01, 2012 2:01 PM
То:	L Carrol Fowler
Subject:	RE: FDOT/Turnpike Traffic Noise Analysis Procedures

The items listed in your e-mail are in accordance with noise analysis requirements established in Part 2, Chapter 17 of the FDOT PD&E Manual used for FDOT projects.

Maríano Berrios

ENVIRONMENTAL PROGRAMS ADMINISTRATOR FLORIDA DEPARTMENT OF TRANSPORTATION ENVIRONMENTAL MANAGEMENT OFFICE 605 SUWANNEE STREET, MS 37 TALLAHASSEE, FLORIDA 32399-0450

TELEPHONE: (850)414-5250 Fax: (850)414-4443 E-MAIL: mariano.berrios@dot.state.fl.us

Hang Up, Buckle Up and Drive Safely!

From: L Carrol Fowler [<u>mailto:cfowler@kbenv.com</u>] Sent: Thursday, November 01, 2012 1:01 PM To: Berrios, Mariano Subject: FDOT/Turnpike Traffic Noise Analysis Procedures

Mariano:

I am preparing a traffic noise analysis for a developer in south Florida. For the purpose of demonstrating to others (e.g., city and county officials) that the analysis was performed following procedures detailed in the FDOT's Project Development and Environment (PD&E) Manual, those involved have requested that I have someone with FDOT confirm that each of the following are documented in the Manual and routinely used by analysts (such as myself) when performing assessments for roadway improvement projects:

- FDOT, which includes Florida's Turnpike Enterprise (FTE), only consider traffic noise abatement measures for properties at which a predicted traffic noise level approaches, meets, or exceeds the Federal Highway Administration's (FHWA's) Noise Abatement Criteria (Page 17-11, Section 17-5.4: Traffic Noise Impacts).
- Traffic noise levels are predicted using the FHWA's Traffic Noise Model (TNM)—(Page 17-2, first paragraph, last sentence).
- These criteria, and the level which FDOT/FTE consider to "approach" the NAC are listed on Table 17.1 of the PD&E Manual (Page 17-35)
- For residential land uses, the FDOT/FTE NAC for exterior areas of frequent use is 66 decibels on the "A"-weighted scale (Page 17-35, Table 17.1).
- There are no NAC for interior traffic noise levels for residential land uses (Page 17-35, Table 17.1).
- To be considered "benefited" by a noise barrier, the barrier must provide at least a 5 dB(A) reduction in predicted traffic noise levels (Page 17-3, Definition of Benefited Receptor).
- To be considered a feasible abatement measure, the number of impacted receptors required to achieve a 5 dB(A) or greater reduction must be two or greater (Page 17-15, Section 17-6.1.1 – Noise Reduction Factor, last sentence).
- The goal of any noise abatement measure is a reduction in traffic noise of 7 dB(A) for at least one "impacted" receptor (Page 17-4, Definition of Noise Reduction Design Goal).

Are you able to confirm the above are stated in the PD&E Manual and routinely used by analyst when performing traffic noise assessments?

Carrol

Carrol Fowler KB Environmental Sciences, Inc. T: 727.578.5152 F: 727.578.5210 C: 727.776.4766 9500 Koger Blvd N, STE 211 St Petersburg FL 33702 CFowler@KBEnv.com Skype: cfowler53

Browse KBE's services at our website: <u>http://www.KBEnv.com</u>

Exhibit 4 Page 17 of 38

Attachment 3 – Detailed Predicted Traffic Noise Levels

	Predicted		Noise	Barrier	He	ight/Pred	icted In	isei	tion Loss	s (IL)
Lot No.	Noise	Impacted	11	ft		12	ft		13	ft
/Location	Level	based on								
(B=Backyard,	Without Dorriger	FDOT/FTE	$d\mathbf{P}(\mathbf{A})$	п		$d\mathbf{D}(\mathbf{A})$	п		$d\mathbf{P}(\mathbf{A})$	п
$\Gamma = \Gamma(0)(yard)$	545	Criteria?	UD(A)			UD(A)			UD(A)	
1/0B	54.5		53.9	0.0		53.9	0.0		53.9	0.0
169B	55.0		54.5	0.7		54.5	0.7		54.5	0.7
168B	55.1		54.4	0.7		54.3	0.8		54.3	0.8
16/B	55.0		54.2	0.8		54.2	0.8		54.2	0.8
166B	55.5		54.7	0.8		54.6	0.9		54.6	0.9
165B	55.2		54.1	1.1		54.1	1.1		54.1	1.1
164B	55.5		54.4	1.1		54.4	1.1		54.3	1.2
163B	55.9		54.9	1.0		54.9	1.0		54.9	1.0
162B	56.2		55.1	1.1		55.1	1.1		55.1	1.1
161B	56.4		55.4	1.0		55.4	1.0		55.3	1.1
160B	56.7		55.5	1.2		55.5	1.2		55.5	1.2
159B	57.0		55.9	1.1		55.9	1.1		55.8	1.2
158B	57.2		56.2	1.0		56.1	1.1		56.1	1.1
157B	57.5		56.4	1.1		56.4	1.1		56.3	1.2
156B	57.8		56.8	1.0		56.8	1.0	-	56.7	1.1
155B	58.0		56.9	1.1		56.9	1.1		56.8	1.2
154B	58.3		57.3	1.0		57.2	1.1		57.2	1.1
153B	58.6		57.6	1.0		57.5	1.1		57.5	1.1
152B	59.1		58.7	0.4		58.6	0.5		58.6	0.5
121B	64.3		61.9	2.4		61.7	2.6		61.6	2.7
120B	64.6		61.9	2.7		61.6	3.0		61.5	3.1
119B	65.1		62.0	3.1		61.7	3.4		61.5	3.6
118B	65.5		61.9	3.6		61.6	3.9		61.4	4.1
117B	66.1	Yes	61.5	4.6		61.0	5.1		60.6	5.5
116B	66.6	Yes	60.6	6.0		59.9	6.7		59.2	7.4
115B	67.4	Yes	60.9	6.5		60.1	7.3		59.5	7.9
114B	68.3	Yes	61.4	6.9		60.7	7.6		60.0	8.3
113B	69.6	Yes	62.1	7.5		61.3	8.3		60.6	9.0
112B	70.7	Yes	62.8	7.9		62.0	8.7		61.3	9.4
111B	72.0	Yes	63.6	8.4		62.8	9.2		62.2	9.8
110B	73.4	Yes	64.1	9.3		63.3	10.1		62.6	10.8
109B	74.6	Yes	64.4	10.2		63.7	10.9		62.8	11.8
108B	75.0	Yes	65.1	9.9		64.2	10.8		63.4	11.6
107B	74.5	Yes	64.9	9.6		64.0	10.5		63.3	11.2
106B	74.0	Yes	64.6	9.4		63.7	10.3		63.1	10.9
105B	73.0	Yes	64.2	8.8		63.5	9.5		62.7	10.3

	Predicted		Noise	Barrier	He	ight/Pred	icted In	isei	tion Loss	s (IL)
Lot No.	Noise	Impacted	11	ft		12	ft		13	ft
/Location	Level	based on								
(B=Backyard,	Without	FDOT/FTE	dD(A)	п		$d\mathbf{P}(\mathbf{A})$	п		$d\mathbf{P}(\mathbf{A})$	п
$\Gamma = \Gamma O \Pi V a \Gamma U$		Vac.	(A)	1L 05		(A)	1L 0.2		(A)	10.0
104D	72.4	Tes Vac	62.6	0.3		62.9	9.5		62.2	0.7
103D	71.9	Tes Vac	62.0	0.5		62.2	9.1	-	61.7	9.7
102D	/0.0	Tes Vac	62.4	7.0		61.7	0.3 7.0		61.0	0.9
101D	69.0	Tes Vac	61.7	<i>1.2</i>		61.0	7.9		60.2	0.0
100B	00.5	I es	(1.2	0.0		01.0 60.5	7.5		50.0	0.2
99B	08.1	Yes	60.7	0.9		60.5	7.0		59.9	8.2
96D	67.1	I es	60.7	7.0		50.7	7.0		59.5	0.2
97B	0/.1	Yes	60.2	0.9		59.7	7.4		59.1	8.0
90B	00.0	Yes	00.1	0.5		59.0	7.0		59.0	/.0
95B	66.0	res	61.1	4.9		60.8	5.2 2.6		60.5	<u> </u>
94B	65.4		62.9	2.5		62.8	2.6		62.7	2.7
93B	65.3		63.9	1.4		63.8	1.5		63.7	1.6
92B	64.7		63.6	1.1		63.5	1.2		63.5	1.2
91B	64.2		63.3	0.9		63.3	0.9		63.2	1.0
122B	58.7		55.2	3.5		54.9	3.8		54.5	4.2
123B	59.0		55.4	3.6		55.0	4.0		54.6	4.4
124B	59.5		55.8	3.7		55.3	4.2		54.9	4.6
125B	59.9		56.1	3.8		55.6	4.3		55.2	4.7
126B	60.9		57.8	3.1		57.2	3.7		56.6	4.3
127B	61.5		58.7	2.8		58.1	3.4		57.5	4.0
128B	61.7		57.4	4.3		56.8	4.9		56.2	5.5
129B	60.0		56.3	3.7		55.8	4.2	-	55.3	4.7
130B	58.9		55.8	3.1		55.4	3.5	-	54.9	4.0
131B	58.2		55.5	2.7		55.1	3.1		54.7	3.5
132B	57.7		55.3	2.4		55.0	2.7		54.6	3.1
133B	57.3		55.0	2.3		54.7	2.6		54.4	2.9
134B	57.3		55.0	2.3		54.7	2.6		54.5	2.8
135B	56.9		54.5	2.4		54.2	2.7		54.0	2.9
136B	56.6		54.1	2.5		53.8	2.8		53.6	3.0
137B	56.2		54.0	2.2		53.8	2.4		53.6	2.6
138B	56.0		54.2	1.8		54.0	2.0		53.8	2.2
139B	55.7		53.9	1.8		53.8	1.9		53.6	2.1
140B	56.4		55.0	1.4		54.8	1.6		54.7	1.7
141B	55.8		53.8	2.0		53.6	2.2		53.4	2.4
142B	56.1		53.8	2.3		53.6	2.5		53.3	2.8
143B	56.5		53.9	2.6		53.6	2.9		53.3	3.2
144B	56.9		54.2	2.7		53.9	3.0		53.6	3.3

	Predicted		Noise	Barrier	He	ight/Pred	icted In	sei	rtion Loss	s (IL)
Lot No.	Noise	Impacted	11	ft		12	ft		13	ft
/Location	Level	based on								
(B=Backyard, E=Eroptyard)	Without	FDOT/FTE	$d\mathbf{P}(\mathbf{A})$	п		$d\mathbf{P}(\mathbf{A})$	п		$d\mathbf{P}(\mathbf{A})$	п
$\Gamma = \Gamma(0)(yard)$	57.2	Criteria?	UD(A)	1L 2.0		UD(A)	1L 2.1		UD(A)	1L 2.4
143D	57.5		54.4	2.9		54.2	2.1		52.0	5.4 2.7
146B	57.0		54.6	3.0		54.5	3.3		53.9	3.7
14/B	57.7		54.9	2.8		54.6	3.1		54.2	3.5
148B	57.5		55.1	2.4		54.7	2.8		54.4	3.1
149B	57.9		55.3	2.6		54.9	3.0		54.5	3.4
150B	58.2		55.3	2.9		54.9	3.3		54.5	3.7
151B	58.5		55.4	3.1		55.0	3.5		54.6	3.9
170F	55.5		54.8	0.7		54.7	0.8		54.7	0.8
169F	55.4		54.6	0.8		54.6	0.8		54.5	0.9
168F	55.3		54.3	1.0		54.3	1.0		54.2	1.1
167F	55.3		54.2	1.1		54.1	1.2		54.1	1.2
166F	55.2		53.9	1.3		53.8	1.4		53.8	1.4
165F	54.5		52.7	1.8		52.6	1.9		52.5	2.0
164F	54.9		53.1	1.8		53.0	1.9		52.9	2.0
163F	55.1		53.2	1.9		53.1	2.0		53.0	2.1
162F	55.4		53.4	2.0		53.4	2.0		53.3	2.1
161F	55.7		53.8	1.9		53.7	2.0		53.6	2.1
160F	55.8		53.8	2.0		53.7	2.1		53.6	2.2
159F	56.4		54.5	1.9		54.4	2.0		54.3	2.1
158F	56.8		54.9	1.9		54.9	1.9		54.7	2.1
157F	57.4		55.5	1.9		55.4	2.0		55.3	2.1
156F	58.1		56.4	1.7		56.3	1.8		56.1	2.0
155F	58.5		56.5	2.0		56.3	2.2		56.1	2.4
154F	60.3		57.6	2.7		57.4	2.9		57.1	3.2
153F	60.8		58.2	2.6		57.9	2.9		57.7	3.1
152F	61.1		58.5	2.6		58.2	2.9		58.0	3.1
121F	60.3		57.6	2.7		57.3	3.0		57.0	3.3
120F	60.4		57.3	3.1		56.9	3.5		56.6	3.8
119F	60.8		57.6	3.2		57.1	3.7		56.8	4.0
118F	60.9		58.0	2.9		57.6	3.3		57.3	3.6
117F	61.6		58.0	3.6		57.5	4.1		57.0	4.6
116F	62.0		58.1	3.9		57.6	4.4		57.1	4.9
115F	62.6		58.4	4.2		57.8	4.8		57.2	5.4
114F	63.5		59.0	4.5		58.4	5.1		57.7	5.8
113F	64 3		59.6	47		58.9	5.4		58.3	6.0
112F	65.1		61 3	3.8		60.7	44		60.2	49
111F	66 7	Ves	61.1	5.6		60.7	 6 4		59.6	7 1
1111	00.7	103	01.1	5.0		00.5	0.4		57.0	/.1

	Predicted		Noise	Barrier	He	ight/Pred	icted Ir	isei	rtion Loss	s (IL)
Lot No.	Noise	Impacted	11	ft		12	ft		13	ft
/Location	Level	based on								
(B=Backyard, E=Frontyard)	Without Barrier	FDOT/FTE Criteria?	$d\mathbf{B}(\mathbf{A})$	п		$d\mathbf{B}(\mathbf{A})$	П		$d\mathbf{B}(\mathbf{A})$	П
110F	68 3	Yes	62 1	62		61 3	7.0		60 5	7.8
109F	71.0	Yes	63.4	7.6		62.6	8.4		61.9	9.1
1091 108F	69.4	Yes	62.4	7.0		61.6	7.8		61.0	8.4
107F	67.2	Yes	61.2	6.0		60.5	67		59.9	73
106F	65.8	105	60.5	53		59.8	6.0		59.1	67
105F	64.8		60.0	4.8		59.2	5.6		58.6	6.2
104F	64.4		60.0	4.4		59.3	5.1		58.6	5.8
103F	64.2		60.2	4.0		59.5	4.7		58.9	5.3
102F	63.8		61.2	2.6		60.5	3.3		59.7	4.1
101F	63.1		60.1	3.0		59.4	3.7		58.7	4.4
100F	62.3		59.1	3.2		58.4	3.9		57.7	4.6
99F	62.2		58.6	3.6		58.1	4.1		57.5	4.7
98F	61.5		57.9	3.6		57.4	4.1		56.9	4.6
97F	61.1		57.4	3.7		56.9	4.2		56.4	4.7
96F	60.7		57.0	3.7		56.6	4.1		56.1	4.6
95F	60.3		56.7	3.6		56.4	3.9		56.0	4.3
94F	59.5		56.9	2.6		56.7	2.8		56.4	3.1
93F	59.3		56.7	2.6		56.5	2.8		56.2	3.1
92F	58.8		56.5	2.3		56.3	2.5		56.0	2.8
91F	58.4		56.7	1.7		56.6	1.8		56.4	2.0
122F	62.4		58.4	4.0		57.8	4.6		57.4	5.0
123F	63.0		58.8	4.2		58.1	4.9		57.6	5.4
124F	63.6		59.1	4.5		58.4	5.2		57.8	5.8
125F	64.4		59.5	4.9		58.8	5.6		58.2	6.2
126F	65.4		60.0	5.4		59.3	6.1		58.7	6.7
127F	66.2	Yes	60.5	5.7		59.8	6.4		59.1	7.1
128F	64.2		59.7	4.5		59.1	5.1		58.5	5.7
129F	63.1		59.1	4.0		58.4	4.7		57.9	5.2
130F	62.4		58.7	3.7		58.0	4.4		57.5	4.9
131F	61.7		58.2	3.5		57.7	4.0		57.1	4.6
132F	61.1		57.7	3.4		57.2	3.9		56.7	4.4
133F	60.7		57.3	3.4		56.9	3.8		56.4	4.3
134F	60.2		56.9	3.3		56.5	3.7		56.1	4.1
135F	59.9		56.7	3.2		56.2	3.7		55.8	4.1
136F	59.6		56.4	3.2		56.1	3.5		55.7	3.9
137F	59.1		56.3	2.8		56.0	3.1		55.6	3.5
138F	58.8		56.1	2.7		55.9	2.9		55.6	3.2

	Predicted		Noise	Barrier	He	ight/Pred	icted Ir	isei	tion Loss	s (IL)
Lot No.	Noise	Impacted	11	ft		12	ft		13	ft
/Location	Level	based on								
(B=Backyard,	Without	FDOT/FTE								
F=Frontyard)	Barrier	Criteria?	dB(A)	IL		dB(A)	IL		dB(A)	IL
139F	59.1		57.1	2.0		57.0	2.1		56.8	2.3
140F	56.1		54.9	1.2		54.8	1.3		54.8	1.3
141F	56.2		54.9	1.3		54.8	1.4		54.8	1.4
142F	56.5		55.0	1.5		54.9	1.6		54.9	1.6
143F	56.8		55.2	1.6		55.1	1.7		55.1	1.7
144F	57.1		55.5	1.6		55.5	1.6		55.4	1.7
145F	57.2		55.5	1.7		55.4	1.8		55.3	1.9
146F	57.4		55.7	1.7		55.6	1.8		55.5	1.9
147F	57.6		55.9	1.7		55.9	1.7		55.8	1.8
148F	57.9		56.2	1.7		56.1	1.8		56.0	1.9
149F	58.1		56.4	1.7		56.3	1.8		56.2	1.9
150F	58.2		56.4	1.8		56.3	1.9		56.2	2.0
151F	58.3		56.4	1.9		56.3	2.0		56.2	2.1
Count/Average		29		7.4			8.1			8.7

Attachment 4 – Effective Barrier Height Calculations and Supporting Data

Effective Barrier Height Pompano Park

Stations	5194	5195	5196	5197	5198	5199	5200	5201	5202	5203	5204	5205	5206	5207	Average
Ground Elevations at Residences	6	11	12.5	13	13	13	13.5	13.5	13.5	13	13	13	1.	1	13
"Listener" at each Station	14	16	17.5	18	18	18	18.5	18.5	18.5	100		1 2	2 4	i e	19
											2	2	7	F C	OT
Top of Wall	27.4	27.4	27.4	27.4	27.4	27.4	27.4	27.4	27.4	27.4	27.4	27.4	27 A	27 A	77
				I	10000000000000000000000000000000000000			11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i						21
Lurnpike Elevation (tires)	13.83	14.56	15.51	16.68	18.06	19.67	21.42	23.18	24.94	26.69	28.34	99.79	31 06	32 14	22
				I							-		20172		53
Lurnpike Elevation (engine)	18.83	19.56	20.51	21.68	23.06	24.67	26.42	28.18	29.94	31.69	33,34	34 79	36.06	37 14	28
													20122	1	50
I urnpike Elevation (stack)	25.83	26.56	27.51	28.68	30.06	31.67	33.42	35.18	36.94	38.69	40.34	41.79	43.06	44 14	35
															20

Effective Wall Height (ft) - 1st row of homes															
Stations	5194	5195	5196	5197	5198	5199	5200	5201	5202	5203	5204	5205	5206	5207	Average
					Ī							2	222	250	UVCI 06C
at tires	16.2	14.8	13.6	12.8	12.1	11.4	10.4	9.6	8.8	8.3	7 5	69	5	с Х	10
									2	2	2	;;	2:2	2.2	2
at engine	14.0	12.6	11.3	10.5	9.9	9.2	8.1	7.3	6.5	6.0	5 3	4.6	41	36	a
											2	2	1	2	
at stack	10.9	9.4	8.2	7.4	6.8	6.0	5.0	4.2	3.4	2.9	2.0	1 5	90	с С	Ľ
													;;	;	ſ
Notes:													Avera	age	X
														200	2
														1 1 1 1 1 1	

Distance between 1st row of homes to centerline of turnpike = 230 ft

Distance between 1st row of homes to wall = 103 ft

Effective Wall Height (ft) - 2nd row of homes															
Stations	5194	5195	5196	5197	5198	5199	5200	5201	5202	5203	5204	5205	5206	5207	Average
at tires	15.6	14.3	13.1	12.2	11.4	10.5	9.2	8.2	2.7	6.3	5 4	4.5	0	31	0
Constant of the second s									!	2	5	2	2.2	1.5	2
at engine	12.6	11.4	10.2	9.3	8.5	7.5	6.3	5.3	4.2	3.4	2.4	1.6	0.8	00	y
-				I							i	2	2	1	>
at stack	8.5	7.2	6.1	5.2	4.4	3.4	2.2	1.1	0.1	-0.7	-1.7	-7.6		9 8-	C
														;	1
Notes:													Avera	ge	9

Distance between 2nd row of homes to centerline of turnpike = 230 ft +79 ft = 309ft

Distance between 2nd row of homes to wall = 103 ft +79ft = 182ft

Exhibit 4 Page 24 of 38

Exhibit 4 Page 25 of 38

SHEET NO. This project was constructed in substantial compliance with bear the seal, signature and date of the responsible enginee LAUDERDAL changes were made, they are indicated by ink revision and Nameof CHE Consultanty Hartputter Belling Line Croup, Inc Sr. Phyle CHMED Die Bryth Williams, P.E. these plans as provided by the Engineer of Record. If CONTRACT NO. C-8492 VENDOR NO. VF-560-885-615-001 CERTIFICATE OF AUTHORIZATION NO. 695 KENNETH W. JACKSON, P.E. Name of Contractor - Community Asphalt Corp. KIMLEY-HORN AND ASSOCIATES, INC. KENNETH W.JACKSOM, P.E. 4431 EUBARCADERO DRNE WEST PALM BEACH, FLORIDA 33407 FISCAL Date Werk Sherredur February & 2016 conraw: Date Wick Finally Coopfed - March 57, 2618 443! EUBARCADERO DRIVE WEST PALU BEACH, FLORIDA 33407 (561) 845-0665 PHORE (561) 882-0198 FAX S Projoch Administration Richard Lastin A.E. District Secretary 5 James Fily Kimley-Horn and Associates, Inc. 20905 KET WEST POADWAY SHOP DRAWINGS TO BE SUBWITTED TO: PLANS PHEPARED BY: ROADWAY PLANS ENGINEER OF RECORD: PE.NG. LOCATION OF PROJECT SHEET REVISIONS ADDED SHEET BEGIN BRIDGE END BRIDGE 5299+27.30 5296+27.80 NORTH OF SUNRISE BOULEVARD TO ATLANTIC BOULEVARD KEY S T 49 5 DEPARTMENT OF TRANSPORTATION STATE ROAD NO. 91 (FLORIDA'S TURNPIKE) FINANCIAL PROJECT ID 406097-1-52-01 RDALE FINAL "AS-BUILT" PLANS MILES 6.363 6.22 0.136 6.363 E 3a] CONTRACT PLANS TO DEERFIELD BROWARD COUNTY (86470) STATE OF FLORIDA BEACH **PROJECT** PROJECT LENGTH IS BASED ON & SURVEY FDOT PROJECT MANAGER: WILLIAM F. SLOUP, P.E. GEC PROJECT MANAGER: PETER T. KUHNE, P.E. LINEAR FEET 720.83 32879.17 13600.00 05 8 45 E EXCEPTIONS GROSS LENGTH OF PROJECT 31 Ì BRIDGES NET LENGTH OF PROJECT LENGTH TO DAVIE PLANTAN PLANT E, NIS. ROADWAY END PROJECT STA. 5346+00.00 COUNTY MP 17.957 TURNPIKE MP 66.044 STA. 5010+00.00 COUNTY MP 11.593 TURNPIKE MP 59.681 T 48 S BEGIN BRIDGE BEGIN BRIDGE END BRIDGE END BRIDGE 5214+25.40 > Field Books I to 8 - Pile Driving 5210+95.40 5096+21.08 BEGIN PROJECT > Field Books 2-5 & 7 - Roadway 5097+12.41 > See Pages IC-1 to IC-3 for INDEX OF FINAL PLANS WAET MO. SHEET MO. MOET JATE > Computation Books 1-7 WAS 1-5 G 0-0-35 > Field Book 1 - Bridge MAS 0-0-35 > Field Books 2-5 & 7 - RU 0-0-0-35 > Field Books 2-5 & 7 - RU (Field Book 6 - voided) Shop Drawings Log TORINWATER POLLUTION PREVENTION PLAN PRAFFIC CONTROL PLANS RETANNIG WALL PLANS RETANNIG WALL PLANS UTULT BELLOATTON PLANS ARCHITECTURAL PLANS A BETAILED NUDEX APPEARS ON THE KEY SHEET OF EACH COUPOWENT TTPCAL SECTION SUMMARY OF DANNITIES SUMMARY OF DANNAGE STRUCTURES SUMMARY OF DANNAGE STRUCTURES PROJECT UNDUR PROJECT UNDUR PROJECT UNDUR DRAWAGE DETAILS DRAWAGE DETAILS DRAWAGE STRUCTURES DRAWAGE STRUCTURES DRAWAGE STRUCTURES NOT USED NOT USED DRAWAGE STRUCTURES DRAWAGE STRUCTURES DRAWAGE STRUCTURES алейник Standards and Speck сатомы Гронил Селитиент ог тамаслон, 2058ы Standards Dated Januar 2004, ми Standard Speck сатому For Roud and Bridge Construction Dated Rout, is миелеб вгоритаст орошентs. INDI A @ J O W POND DETAIL POND CROSS SECTIONS CROSS SECTIONS FORONS SECTION PATTERN SHEET ROADWAT SOILS SURVEY CROSS SECTIONS VE AND COORDWATE DATA P TERUMAL DETAUS RAUP A P TERUMAL DETAUS RAUP A P TERUMAL DETAUS RAUP C P TERUMAL DETAUS REVISION INDEX SHEET SUMMARY OF PAY ITEUS DRAIMAGE UAP SUPPLEMENTAL DRAINAGE WAP TYPICAL SECTION NOT USED TRAFFIC CONTROL PLANS NOT USED TRAFFIC CONTROL PLANS ADFILES 37 USED 37 USED 1TERSECTION DETAIL VTERCHANGE LAYOUT NOT USED TRAFFIC CONTROL PLANS NOT USED TRAFFIC CONTROL PLANS CONTROL PLANS ROLOWAY PLANS SCANIC AND PAKEUENT MARKING PLANS SCANIC AND PLANS SCANLZATON PLANS NYTFULIGENT TRANSPORTATION SYSTEMS IITSI PLANS UTILITY ADJUSTMENTS SHEET DESCRIPTION KEY SHEET SCELLANEOUS APPLICABLE 2004 INTERIN STANDARDS INDEX OF ROADWAY PLANS SHEET NO. SHEET DESCH USED REVISIONS SEE REVISION INDEX SHEET IA, 18 702-715,7754 "mru 7150, 712-715,7754,8518,654-872 855-865,4654,4558,654-872 877-805 886-893 886-893 881-893 881-893 882-893 882-893 882-893 1130-1201200, mru 12022, 1204 "1387",1387 325-380,3804,381-401,399A 401A,402-426 427 314 319-319, 1194, 320-323 CHTING PLANS 275 276-314 430 430A 431-658 659-70/ 254-274 428-429

COMPONENTS OF CONTRACT PLANS SET

Exhibit 4 Page 26 of 38

וסדוכב: דאב סרדוכואן הבכסהם סר דאון Sheet is the Electronic file Skoked אום Sealed Under Rule Giols-23.003, ר.א.ב.

Exhibit 4 Page 28 of 38

Exhibit 4 Page 29 of 38

Exhibit 4 Page 30 of 38

Exhibit 4 Page 31 of 38

Exhibit 4 Page 34 of 38

Attachment 5 – Credentials and Resume

Credentials

Carrol Fowler graduated from the University of South Florida in 1978 and is a Chief Scientist with, and President of, KB Environmental Sciences, Inc. Mrs. Fowler is certified by the FDOT to perform traffic noise analysis (Certificate No. 27) and has been performing this type of analysis for more than 30 years. The vast majority of projects for which she has provided such services have been FDOT-sponsored or reviewed. She is also a long-standing member of FDOT's Noise Task Team, a team that consists of representatives of each of FDOT's District offices and a few select consultants.

References: Jeff James, FDOT D1 – <u>Jeffrey.W.James@dot.myflorida.com</u> Bill Walsh, FDOT D5 – <u>William.Walsh@dot.myflorida.com</u> Robin Rhinesmith, FDOT D7 – <u>Robin.Rhinesmith@dot.myflorida.com</u>

Resume

Provided on the following page.

L. Carrol Fowler

Chief Scientist

Mrs. Fowler works from KB Environmental Sciences, Inc. office in St. Petersburg. Her noise expertise encompasses field monitoring to establish background levels and computer simulation to establish both existing and future conditions. She is considered an expert in the technical analysis of the traffic noise effects of proposed roadway projects. She has a thorough knowledge of numerous environmental impact prediction tools (e.g., computer models and screening tools). These models include the Federal Highway Administration's Traffic Noise Model (TNM) for highway traffic noise/noise barrier assessments and the Federal Aviation Administration's Integrated Noise Model for airport assessments.

Expertise

 Traffic noise analysis to support highway improvement projects.

Experience

- A total of 32 years
- 7.5 years with KBE
- 19.5 years with other private consulting firms
- Five years with a government regulatory agency

Education

- BA, 1978 Geography University of South Florida

Certifications / Professional Affiliations

- Highway Noise Analyst Florida Department of Transportation (FDOT) 1994 – Certificate No. 27
- National and Florida Association of Environmental Professionals

Mrs. Fowler is a long-standing member of the Florida Department of Transportation's Noise Task Team and has, on behalf of the Department, demonstrated the use of the TNM.

Representative Projects – Discipline Management and/or Technical Analysis

Project Highlights

- Interstate 75 (I-75) Project Development and Environment (PD&E) Study from north of University Parkway to north of Moccasin Wallow Road, FDOT District 1, Manatee County, FL-Traffic Noise Analyst who provided discipline management and technical analysis to upgrade the existing six-lane, limited access interstate to a 10-lane four-roadway system. Within the project limits, 898 noise sensitive sites were determined to have the potential to be impacted by traffic noise with the improvements. The sites were comprised of single-and multi-family residences, recreational vehicle (RV) park, a cemetery, a regional park, playgrounds within several of the residential communities, hotel, restaurants with outdoor dining, and a golf course. Noise barriers were determined to be both a potentially feasible and reasonable abatement measure for eight residential areas and the RV park.
- I-75 from Golden Gate Parkway to Colonial . Boulevard, FDOT District 1, Collier and Lee Counties, FL-Traffic Noise Analyst who provided discipline management and technical analysis for this design-build project. After а final determination of acoustic feasibility and cost reasonableness, noise barriers were constructed to abate traffic noise levels for five residential communities and a park (at a cost of approximately ten million dollars).

C. Fowler Page 2

- I-75 from north of Moccasin Wallow Road to US 301, FDOT District 7, Manatee and Hillsborough Counties, FL- Both interim and ultimate improvements were evaluated for this segment of Interstate 75. The interim improvements studied would upgrade three interchanges and have minimal noise-related impacts while the ultimate improvements would improve existing interchanges, consider possible new interchanges, and increase the capacity of the mainline through lanes. Noise sensitive sites within this project corridor comprised 979 sites (single family residences, common use pools, an assisted living facility, and a recreational area at a high school). Noise barriers were determined to be both potentially acoustically feasible and cost reasonable to abate traffic noise for from 384 to 828 of the impacted sites depending on barrier height. The estimated cost of the barriers ranged from \$13 to \$22 million.
- Ben C. Pratt/Six Mile Cypress Parkway, . FDOT District 1, Lee County, FL-The Lee County Department of Transportation evaluated the widening of the last two lane section of Ben C. Pratt/Six Mile Cypress Parkway in Fort Myers, Florida. Within the project corridor there were four noise sensitive areas comprised of single-family residences, a common use tennis court (recreational area) and an open air structure at the Six Mile Cypress Slough Preserve used for public educational purposes. Noise abatement measures were not considered for any of the noise sensitive sites because predicted levels with the roadway improvement did not approach, meet, or exceed the Federal Highway Administration's Noise Abatement Criteria.
- US 41 (SR 45) Intersection Improvements from 10th Street to 14th Street, FDOT, District 1, Sarasota, FL —This proposed project involved construction of

roundabouts at two intersections. Although only a four block area comprised the study area, more than 75 noise sensitive sites were evaluated (including singleand multi-family residences, three active sports areas and three parks). Potential impacts were identified at 49 of the sites and noise abatement, in the form of a noise barrier. was determined to be both potentially acoustically feasible and cost reasonable to abate predicted levels at a multi-family residence.

SR 29 from Cowboy Way to US 27, FDOT District 1, Hendry and Glades Counties, FL-The FDOT conducted a PD&E Study to evaluate upgrading this 2-lane facility to a 4-lane facility, including the addition of a new bridge over the Caloosahatchee River. Approximately 165 noise sensitive sites were evaluated. Several of the evaluated sites are considered "special" and evaluated as being so. These sites included a RV park, a courthouse, a library, a park, a municipal boat dock, and a playground. The results of the analysis indicated that noise barriers were a potential acoustically feasible and cost reasonable measure to abate predicted impacts at the RV park.

Other Project Experience

- SR 29 from Oil Well Road to SR 82
- SR 674 from US 301 to CR 579
- US 41 from Old US 41 to Corkscrew Road
- SR 70 from NE 80th Ave. to the County Line
- SR 31 from SR 80 to CR 78
- I-4 from west of Memorial Boulevard to Polk/Osceola County Line
- SR 64 from west of I-75 to East of Lorraine Road
- County Road 851 (CR 851) from CR 896 (Pine Ridge Rd) to CR 862 (Vanderbilt Beach Road)
- North/South Route (SR 563)

Exhibit 4 Page 38 of 38

C. Fowler Page 3

- CR 862 from CR 31 (Airport Pulling Road) to CR 951 (Collier Boulevard)
- Interstate 75 from SR 64 to Kay Road
- Bee Ridge Road from East of McIntosh Road to Cattlemen Road
- US 41 from CR 951 to CR 92
- SR 54 from Suncoast Parkway to US 41
- Lithia-Pinecrest Road from CR 39 to SR 60
- Big Bend Road from Covington Garden Drive to Simmons Loop
- SR 415 from Reed Ellis Road to Acron Lake Road
- SR 500 from US 192 to Country Boulevard
- SR 710 from SW Trail Drive to SR 76
- NW 7th Avenue Reversible Lane Project
- I-75 and I-4 (Downtown Interchange)
- SR 686 (East Bay Drive),
- SR 688 (Ulmerton Road)
- SR 45 (US 41)
- SR 699 (Blind Pass Road)
- US 19 (Pinellas County)
- Drew Street (Pinellas County)
- SR 54 from east of US41 to Cypress Creek Bridge (Pasco County)
- SR 39 (Hillsborough County)
- I-4 (Hillsborough County)
- East-West Roadway (Hillsborough County)
- SR 574 (Martin Luther King, Jr. Boulevard)
- US 301 from north of SR 674 to Gibsonton Drive
- SR 415 from Reed Ellis Road to Acorn Lake Road (Volusia County)
- SR 600 (Gandy Boulevard)
- CR 581 (Bruce B. Downs Boulevard,
- I-275 (Hillsborough County)
- I-75 (Hillsborough County)
- US 441 from SR 44 to SR 46

